Freshwater Lens#

This 2D examples illustrates the growth of a fresh water lens in an initially fully saline domain.

import matplotlib.pyplot as plt

We’ll start with the usual imports

import numpy as np
import xarray as xr

import imod

Discretization#

We’ll start off by creating a model discretization, since this is a simple conceptual model. The model is a 2D cross-section, hence nrow = 1.

nrow = 1  # number of rows
ncol = 40  # number of columns
nlay = 15  # number of layers

dz = 10
dx = 250
dy = -dx

Set up tops and bottoms

top1D = xr.DataArray(
    np.arange(nlay * dz, 0.0, -dz), {"layer": np.arange(1, nlay + 1)}, ("layer")
)

bot = top1D - dz

Set up ibound, which sets where active cells are (ibound = 1.0)

bnd = xr.DataArray(
    data=np.full((nlay, nrow, ncol), 1.0),
    coords={
        "y": [0.5],
        "x": np.arange(0.5 * dx, dx * ncol, dx),
        "layer": np.arange(1, 1 + nlay),
        "dx": dx,
        "dy": dy,
    },
    dims=("layer", "y", "x"),
)

Boundary Conditions#

Set the constant heads by specifying a negative value in iboud, that is: bnd[index] = -1`

bnd[0, :, 0:12] = -1
bnd[0, :, 28:40] = -1

fig, ax = plt.subplots()
bnd.plot(y="layer", yincrease=False, ax=ax)
y = 0.5, dx = 250, dy = -250
<matplotlib.collections.QuadMesh object at 0x00000289AFF9B990>

Define the recharge rates

rch_rate = xr.DataArray(
    data=np.full((nrow, ncol), 0.0),
    coords={"y": [0.5], "x": np.arange(0.5 * dx, dx * ncol, dx), "dx": dx, "dy": dy},
    dims=("y", "x"),
)
rch_rate[:, 13:27] = 0.001

fig, ax = plt.subplots()
rch_rate.plot(ax=ax)
y = 0.5, dx = 250, dy = -250
[<matplotlib.lines.Line2D object at 0x00000289B74D1910>]

The model is recharged with fresh water

rch_conc = xr.full_like(rch_rate, fill_value=0.0)

Initial Conditions#

Defining the starting concentrations

sconc = xr.DataArray(
    data=np.full((nlay, nrow, ncol), 35.0),
    coords={
        "y": [0.5],
        "x": np.arange(0.5 * dx, dx * ncol, dx),
        "layer": np.arange(1, nlay + 1),
        "dx": dx,
        "dy": dy,
    },
    dims=("layer", "y", "x"),
)

sconc[:, 13:27, 0] = 0.0

fig, ax = plt.subplots()
sconc.plot(y="layer", yincrease=False, ax=ax)
y = 0.5, dx = 250, dy = -250
<matplotlib.collections.QuadMesh object at 0x00000289B764B450>

Build#

Finally, we build the model.

m = imod.wq.SeawatModel("FreshwaterLens")
m["bas"] = imod.wq.BasicFlow(ibound=bnd, top=150.0, bottom=bot, starting_head=0.0)
m["lpf"] = imod.wq.LayerPropertyFlow(
    k_horizontal=10.0, k_vertical=20.0, specific_storage=0.0
)
m["btn"] = imod.wq.BasicTransport(
    icbund=bnd, starting_concentration=sconc, porosity=0.35
)
m["adv"] = imod.wq.AdvectionTVD(courant=1.0)
m["dsp"] = imod.wq.Dispersion(longitudinal=0.0, diffusion_coefficient=0.0)
m["vdf"] = imod.wq.VariableDensityFlow(density_concentration_slope=0.71)
m["rch"] = imod.wq.RechargeHighestActive(rate=rch_rate, concentration=0.0)
m["pcg"] = imod.wq.PreconditionedConjugateGradientSolver(
    max_iter=150, inner_iter=30, hclose=0.0001, rclose=0.1, relax=0.98, damp=1.0
)
m["gcg"] = imod.wq.GeneralizedConjugateGradientSolver(
    max_iter=150,
    inner_iter=30,
    cclose=1.0e-6,
    preconditioner="mic",
    lump_dispersion=True,
)
m["oc"] = imod.wq.OutputControl(save_head_idf=True, save_concentration_idf=True)
m.create_time_discretization(additional_times=["1900-01-01T00:00", "2000-01-01T00:00"])

Now we write the model, including runfile:

modeldir = imod.util.temporary_directory()
m.write(modeldir, resultdir_is_workdir=True)

Run#

You can run the model using the comand prompt and the iMOD-WQ executable. This is part of the iMOD v5 release, which can be downloaded here: https://oss.deltares.nl/web/imod/download-imod5 . This only works on Windows.

To run your model, open up a command prompt and run the following commands:

cd c:\path\to\modeldir
c:\path\to\imod\folder\iMOD-WQ_V5_3_SVN359_X64R.exe FreshwaterLens.run

Note that the version name of your executable might differ.

Visualise results#

After succesfully running the model, you can plot results as follows:

head = imod.idf.open(modeldir / "results/head/*.idf")

fig, ax = plt.subplots()
head.plot(yincrease=False, ax=ax)

conc = imod.idf.open(modeldir / "results/conc/*.idf")

fig, ax = plt.subplots()
conc.plot(levels=range(0, 35, 5), yincrease=False, ax=ax)

Total running time of the script: (0 minutes 0.766 seconds)

Gallery generated by Sphinx-Gallery