imod.visualize.plot_map#
- imod.visualize.plot_map(raster, colors, levels, overlays=[], basemap=None, kwargs_raster=None, kwargs_colorbar=None, kwargs_basemap={}, figsize=None, return_cbar=False, fig=None, ax=None)[source]#
- Plot raster on a map with optional vector overlays and basemap. - Parameters:
- raster (xr.DataArray) – 2D grid to plot. 
- colors (list of str, list of RGBA/RGBA tuples, colormap name (str), or) – - LinearSegmentedColormap. - If list, it should be a Matplotlib acceptable list of colors. Length N. Accepts both tuples of (R, G, B) and hexidecimal (e.g. #7ec0ee). - If str, use an existing Matplotlib colormap. This function will autmatically add distinctive colors for pixels lower or high than the given min respectivly max level. - If LinearSegmentedColormap, you can use something like matplotlib.cm.get_cmap(‘jet’) as input. This function will not alter the colormap, so add under- and over-colors yourself. - Looking for good colormaps? Try: http://colorbrewer2.org/ Choose a colormap, and use the HEX JS array. 
- levels (listlike of floats or integers) – Boundaries between the legend colors/classes. Length: N - 1. 
- overlays (list of dicts, optional) – Dicts contain geodataframe (key is “gdf”), and the keyword arguments for plotting the geodataframe. 
- basemap (bool or contextily._providers.TileProvider, optional) – - When True or a contextily._providers.TileProvider object: plot a basemap as a background for the plot and make the raster translucent. If basemap=True, then CartoDB.Positron is used as the default provider. If not set explicitly through kwargs_basemap, plot_map() will try and infer the crs from the raster or overlays, or fall back to EPSG:28992 (Amersfoort/RDnew). - Requires contextily 
- kwargs_raster (dict of keyword arguments, optional) – These arguments are forwarded to ax.imshow() 
- kwargs_colorbar (dict of keyword arguments, optional) – These arguments are forwarded to fig.colorbar(). The key label can be used to label the colorbar. Key whiten_triangles can be set to False to alter the default behavior of coloring the min / max triangles of the colorbar white if the value is not present in the map. 
- kwargs_basemap (dict of keyword arguments, optional) – Except for “alpha”, these arguments are forwarded to contextily.add_basemap(). Parameter “alpha” controls the transparency of raster. 
- figsize (tuple of two floats or integers, optional) – This is used in plt.subplots(figsize) 
- return_cbar (boolean, optional) – Return the matplotlib.Colorbar instance. Defaults to False. 
- fig (matplotlib.figure, optional) – If provided, figure to which to add the map 
- ax (matplot.ax, optional) – If provided, axis to which to add the map 
 
- Returns:
- fig (matplotlib.figure ax : matplotlib.ax if return_cbar == True: cbar :) 
- matplotlib.Colorbar 
 
 - Examples - Plot with an overlay: - >>> overlays = [{"gdf": geodataframe, "edgecolor": "black", "facecolor": "None"}] >>> imod.visualize.plot_map(raster, colors, levels, overlays) - Label the colorbar: - >>> imod.visualize.plot_map(raster, colors, levels, kwargs_colorbar={"label":"Head aquifer (m)"}) - Plot with a basemap: - >>> import contextily as ctx >>> src = ctx.providers.Stamen.TonerLite >>> imod.visualize.plot_map(raster, colors, levels, basemap=src, kwargs_basemap={"alpha":0.6})