For an interactive online version click here: Binder badge

Plot Wflow static maps#

HydroMT provides a simple interface to model schematization from which we can make beautiful plots:

  • Raster layers are saved to the model staticmaps component as a xarray.Dataset

  • Vector layers are saved to the model staticgeoms component as a geopandas.GeoDataFrame. Note that in case of Wflow these are not used by the model engine, but only for analysis and visualization purposes.

We use the cartopy package to plot maps. This packages provides a simple interface to plot geographic data and add background satellite imagery.

Load dependencies#

import xarray as xr
import numpy as np
import hydromt
from hydromt_wflow import WflowModel

Read the model#

root = "wflow_piave_subbasin"
mod = WflowModel(root, mode="r")

Plot model schematization base maps#

Here we plot the model basemaps (topography map with rivers, lakes, reservoirs, glaciers and gauges geometries).

# plot maps dependencies
import matplotlib.pyplot as plt
from matplotlib import colors
import matplotlib.patches as mpatches
import cartopy.crs as ccrs
import cartopy.io.img_tiles as cimgt

# import descartes  # used under the hood to plot polygons
# read and mask the model elevation
da = mod.staticmaps["wflow_dem"].raster.mask_nodata()
da.attrs.update(long_name="elevation", units="m")
# read/derive river geometries
gdf_riv = mod.rivers
# read/derive model basin boundary
gdf_bas = mod.basins
plt.style.use("seaborn-whitegrid")  # set nice style
# we assume the model maps are in the geographic CRS EPSG:4326
proj = ccrs.PlateCarree()
# adjust zoomlevel and figure size to your basis size & aspect
zoom_level = 10
figsize = (10, 8)
shaded = False  # shaded elevation (looks nicer with more pixels (e.g.: larger basins))!

# initialize image with geoaxes
fig = plt.figure(figsize=figsize)
ax = fig.add_subplot(projection=proj)
bbox = da.raster.box.to_crs(3857).buffer(5e3).to_crs(da.raster.crs).total_bounds
extent = np.array(bbox)[[0, 2, 1, 3]]
ax.set_extent(extent, crs=proj)

# add sat background image
ax.add_image(cimgt.QuadtreeTiles(), zoom_level, alpha=0.5)

## plot elevation\
# create nice colormap
vmin, vmax = da.quantile([0.0, 0.98]).compute()
c_dem = plt.cm.terrain(np.linspace(0.25, 1, 256))
cmap = colors.LinearSegmentedColormap.from_list("dem", c_dem)
norm = colors.Normalize(vmin=vmin, vmax=vmax)
kwargs = dict(cmap=cmap, norm=norm)
# plot 'normal' elevation
    transform=proj, ax=ax, zorder=1, cbar_kwargs=dict(aspect=30, shrink=0.8), **kwargs
# plot elevation with shades
if shaded:
    ls = colors.LightSource(azdeg=315, altdeg=45)
    dx, dy = da.raster.res
    _rgb = ls.shade(
    rgb = xr.DataArray(dims=("y", "x", "rgb"), data=_rgb, coords=da.raster.coords)
    rgb = xr.where(np.isnan(da), np.nan, rgb)
    rgb.plot.imshow(transform=proj, ax=ax, zorder=2)

# plot rivers with increasing width with stream order
    ax=ax, linewidth=gdf_riv["strord"] / 2, color="blue", zorder=3, label="river"
# plot the basin boundary
gdf_bas.boundary.plot(ax=ax, color="k", linewidth=0.3)
# plot various vector layers if present
if "gauges" in mod.staticgeoms:
        ax=ax, marker="d", markersize=25, facecolor="k", zorder=5, label="gauges"
patches = (
)  # manual patches for legend, see https://github.com/geopandas/geopandas/issues/660
if "lakes" in mod.staticgeoms:
    kwargs = dict(facecolor="lightblue", edgecolor="black", linewidth=1, label="lakes")
    mod.staticgeoms["lakes"].plot(ax=ax, zorder=4, **kwargs)
if "reservoirs" in mod.staticgeoms:
    kwargs = dict(facecolor="blue", edgecolor="black", linewidth=1, label="reservoirs")
    mod.staticgeoms["reservoirs"].plot(ax=ax, zorder=4, **kwargs)
if "glaciers" in mod.staticgeoms:
    kwargs = dict(facecolor="grey", edgecolor="grey", linewidth=1, label="glaciers")
    mod.staticgeoms["glaciers"].plot(ax=ax, zorder=4, **kwargs)

ax.set_ylabel(f"latitude [degree north]")
ax.set_xlabel(f"longitude [degree east]")
_ = ax.set_title(f"wflow base map")
legend = ax.legend(
    handles=[*ax.get_legend_handles_labels()[0], *patches],
    loc="lower right",

# save figure
# NOTE create figs folder in model root if it does not exist
# fn_out = join(mod.root, "figs", "basemap.png")
# plt.savefig(fn_out, dpi=225, bbox_inches="tight")