hydromt.gis.Dataset.vector.from_gdf#
- static gis.Dataset.vector.from_gdf(gdf: GeoDataFrame, data_vars: Mapping[Any, Any] | DataArray | Dataset | None = None, coords: Mapping[Any, Any] | None = None, index_dim: str | None = None, keep_cols: bool = True, cols_as_data_vars: bool = False, merge_index: str = 'gdf') Dataset #
Create Dataset with geospatial coordinates.
- Parameters:
gdf (
geopandas GeoDataFrame
) – Spatial coordinates. The index should match the df index and the geometry column may only contain Polygon, MultiPolygon, and Point geometries. Additional columns are also parsed to the xarray DataArray coordinates.data_vars (
dict-like
,DataArray
orDataset
) – A mapping from variable names to xarray.DataArray objects. See xarray.Dataset for all options. Additionally it accepts xarray.DataArray with name property and xarray.Dataset.coords (
sequence
ordict
ofarray_like
, optional) – Coordinates (tick labels) to use for indexing along each dimension.index_dim (
str
, optional) – Name of index dimension in data_varskeep_cols (
bool
, optional) – If True, keep gdf columns as extra coordinates in datasetcols_as_data_vars (
bool
, optional) – If True, parse gdf columns as data variables rather than coordinates.merge_index (
{'gdf', 'inner'}
, default'gdf'
) –Type of merge to be performed between gdf and data.
gdf: use only keys from gdf index. Missing values will be filled with NaNs
inner: use intersection of gdf and data index.
- Returns:
da – Dataset with geospatial coordinates
- Return type: