hydromt.data_catalog.DataCatalog.get_dataframe#
- DataCatalog.get_dataframe(data_like: str | SourceSpecDict | Path | DataFrame | DataFrameSource, variables: List | None = None, time_range: TimeRange | tuple | dict | None = None, handle_nodata: NoDataStrategy = NoDataStrategy.RAISE, provider: str | None = None, version: str | None = None, source_kwargs: dict[str, Any] | None = None) DataFrame[source]#
Return a clipped, sliced and unified DataFrame.
- Parameters:
data_like (
Union[str,SourceSpecDict,Path,pd.DataFrame,DataFrameSource]) – Data catalog key, path to tabular data file, DataFrameSource object or tabular pandas dataframe. The catalog key can be a string or a dictionary with the following keys: {‘name’, ‘provider’, ‘version’}. If a path to a tabular data file is provided it will be added to the catalog with its based on the file basename.variables (
Optional[List], optional) – Names of DataFrame variables to return, or all if None, by default Nonetime_range (
TimeRange | tuple | dict | None, optional) – Start and end date of period of interest. By default the entire time period of the dataset is returned. If not None, must be parsable by TimeRange.create, by default Nonehandle_nodata (
NoDataStrategy, optional) – How to react when no data is found, by default NoDataStrategy.RAISEprovider (
Optional[str], optional) – Specifies a data provider, by default Noneversion (
Optional[str], optional) – Specifies a data version, by default Nonesource_kwargs (
dict[str,Any] | None) – Extra keyword arguments passed to the DataFrameSource construction
- Returns:
A unified and sliced DataFrame
- Return type:
pd.DataFrame- Raises:
ValueError – On unknown type of data_like
NoDataException – If no data is found and handle_nodata is NoDataStrategy.RAISE