hydromt.data_catalog.sources.GeoDatasetSource#

class hydromt.data_catalog.sources.GeoDatasetSource(*, name: str, uri: str, data_adapter: GeoDatasetAdapter = None, driver: GeoDatasetDriver, uri_resolver: URIResolver = None, root: str | None = None, version: str | int | float | None = None, provider: str | None = None, metadata: SourceMetadata = None)[source]#

DataSource class for the GeoDatasetSource type.

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

__init__(**data: Any) None#

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Methods

__init__(**data)

Create a new model by parsing and validating input data from keyword arguments.

construct([_fields_set])

copy(*[, include, exclude, update, deep])

Returns a copy of the model.

detect_bbox([ds])

Detect the bounding box and crs of the dataset.

detect_time_range([ds])

Detect the temporal range of the dataset.

dict(*[, include, exclude, by_alias, ...])

from_orm(obj)

get_bbox([crs, detect])

Return the bounding box and espg code of the dataset.

get_time_range([detect])

Detect the time range of the dataset.

json(*[, include, exclude, by_alias, ...])

model_construct([_fields_set])

Creates a new instance of the Model class with validated data.

model_copy(*[, update, deep])

Usage docs: https://docs.pydantic.dev/2.9/concepts/serialization/#model_copy

model_dump(*[, mode, include, exclude, ...])

Usage docs: https://docs.pydantic.dev/2.9/concepts/serialization/#modelmodel_dump

model_dump_json(*[, indent, include, ...])

Usage docs: https://docs.pydantic.dev/2.9/concepts/serialization/#modelmodel_dump_json

model_json_schema([by_alias, ref_template, ...])

Generates a JSON schema for a model class.

model_parametrized_name(params)

Compute the class name for parametrizations of generic classes.

model_post_init(context, /)

We need to both initialize private attributes and call the user-defined model_post_init method.

model_rebuild(*[, force, raise_errors, ...])

Try to rebuild the pydantic-core schema for the model.

model_validate(obj, *[, strict, ...])

Validate a pydantic model instance.

model_validate_json(json_data, *[, strict, ...])

Usage docs: https://docs.pydantic.dev/2.9/concepts/json/#json-parsing

model_validate_strings(obj, *[, strict, context])

Validate the given object with string data against the Pydantic model.

parse_file(path, *[, content_type, ...])

parse_obj(obj)

parse_raw(b, *[, content_type, encoding, ...])

read_data(*[, mask, predicate, variables, ...])

Read data from this source.

schema([by_alias, ref_template])

schema_json(*[, by_alias, ref_template])

summary()

Return a summary of the DataSource.

to_file(file_path, *[, driver_override, ...])

Write the GeoDatasetSource to a local file.

to_stac_catalog([handle_nodata])

Convert a geodataset into a STAC Catalog representation.

update_forward_refs(**localns)

validate(value)

Attributes

data_type

full_uri

Join root with uri.

model_computed_fields

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

model_config

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

model_extra

Get extra fields set during validation.

model_fields

Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.

model_fields_set

Returns the set of fields that have been explicitly set on this model instance.

driver

data_adapter

name

uri

uri_resolver

root

version

provider

metadata