Statistics and Extreme Value Analysis#

Statistics and performance metrics#

skills.bias(sim, obs[, dim])

Return the bias between two time series.

skills.percentual_bias(sim, obs[, dim])

Return the percentual bias between two time series.

skills.volumetric_error(sim, obs[, dim])

Return the volumetric error between two time series.

skills.nashsutcliffe(sim, obs[, dim])

Return the Nash-Sutcliffe model efficiency.

skills.lognashsutcliffe(sim, obs[, epsilon, dim])

Return the log Nash-Sutcliffe model efficiency.

skills.pearson_correlation(sim, obs[, dim])

Return the Pearson correlation coefficient of two time series.

skills.spearman_rank_correlation(sim, obs[, dim])

Return the spearman rank correlation coefficient of two time series.

skills.kge(sim, obs[, dim])

Return the Kling-Gupta Efficiency (KGE) of two time series.

skills.kge_2012(sim, obs[, dim])

Return the Kling-Gupta Efficiency (KGE, 2012) of two time series.

skills.kge_non_parametric(sim, obs[, dim])

Return the Non Parametric Kling-Gupta Efficiency (KGE, 2018).

skills.kge_non_parametric_flood(sim, obs[, dim])

Return the Non Parametric Kling-Gupta Efficiency (KGE, 2018) of two time series.

skills.rsquared(sim, obs[, dim])

Return the coefficient of determination of two time series.

skills.mse(sim, obs[, dim])

Return the mean squared error (MSE) between two time series.

skills.rmse(sim, obs[, dim])

Return the root mean squared error between two time series.

skills.rsr(sim, obs[, dim])

Return the RMSE-observations standard deviation (RSR) between two time series.

Extreme Value Analysis#

extremes.get_peaks(da[, ev_type, min_dist, ...])

Return peaks from time series.

extremes.fit_extremes(da_peaks[, ...])

Return distribution fit from extremes.

extremes.get_return_value(da_params[, rps, ...])

Return return value based on EVA.

extremes.eva(da[, ev_type, min_dist, ...])

Return Extreme Value Analysis.

Design Events#

design_events.get_peak_hydrographs(da, ...)

Return peak hydrographs.