hydromt.data_catalog.drivers.DataFrameDriver#
- class hydromt.data_catalog.drivers.DataFrameDriver(*, filesystem: Annotated[AbstractFileSystem, PlainValidator(func=validate_filesystem, json_schema_input_type=Any), PlainSerializer(func=serialize_filesystem, return_type=PydanticUndefined, when_used=always)] = None, options: Dict[str, Any] = None)[source]#
Abstract Driver to read DataFrames.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- __init__(**data: Any) None #
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
Methods
__init__
(**data)Create a new model by parsing and validating input data from keyword arguments.
construct
([_fields_set])copy
(*[, include, exclude, update, deep])Returns a copy of the model.
dict
(*[, include, exclude, by_alias, ...])from_orm
(obj)json
(*[, include, exclude, by_alias, ...])model_construct
([_fields_set])Creates a new instance of the Model class with validated data.
model_copy
(*[, update, deep])Usage docs: https://docs.pydantic.dev/2.9/concepts/serialization/#model_copy
model_dump
(*[, mode, include, exclude, ...])Usage docs: https://docs.pydantic.dev/2.9/concepts/serialization/#modelmodel_dump
model_dump_json
(*[, indent, include, ...])Usage docs: https://docs.pydantic.dev/2.9/concepts/serialization/#modelmodel_dump_json
model_json_schema
([by_alias, ref_template, ...])Generates a JSON schema for a model class.
model_parametrized_name
(params)Compute the class name for parametrizations of generic classes.
model_post_init
(_BaseModel__context)Override this method to perform additional initialization after __init__ and model_construct.
model_rebuild
(*[, force, raise_errors, ...])Try to rebuild the pydantic-core schema for the model.
model_validate
(obj, *[, strict, ...])Validate a pydantic model instance.
model_validate_json
(json_data, *[, strict, ...])Usage docs: https://docs.pydantic.dev/2.9/concepts/json/#json-parsing
model_validate_strings
(obj, *[, strict, context])Validate the given object with string data against the Pydantic model.
parse_file
(path, *[, content_type, ...])parse_obj
(obj)parse_raw
(b, *[, content_type, encoding, ...])read
(uris, *[, variables, time_range, ...])Read in any compatible data source to a pandas DataFrame.
schema
([by_alias, ref_template])schema_json
(*[, by_alias, ref_template])update_forward_refs
(**localns)validate
(value)write
(path, df, **kwargs)Write out a DataFrame to file.
Attributes
model_computed_fields
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
model_config
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
model_extra
Get extra fields set during validation.
model_fields
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
supports_writing
filesystem
options
name