xugrid.UgridDataset.from_structured2d#
- static UgridDataset.from_structured2d(dataset: Dataset, topology: dict | None = None) UgridDataset [source]#
Create a UgridDataset from a (structured) xarray Dataset.
The spatial dimensions are flattened into a single UGRID face dimension. By default, this method looks for:
“x” and “y” dimensions
“longitude” and “latitude” dimensions
“axis” attributes of “X” or “Y” on coordinates
“standard_name” attributes of “longitude”, “latitude”, “projection_x_coordinate”, or “projection_y_coordinate” on coordinate variables
- Parameters:
dataset (xr.Dataset) – The structured dataset to convert.
topology (dict, optional) – Either: * A mapping of topology name to (x, y) coordinate names * A mapping of topology name to a dict containing: - “x”: x-dimension name - “y”: y-dimension name - “bounds_x”: x-bounds variable name - “bounds_y”: y-bounds variable name Defaults to {“mesh2d”: (None, None)}.
- Returns:
The unstructured grid dataset.
- Return type:
Notes
When using bounds, they should have one of these shapes: * x bounds: (M, 2) or (N, M, 4) * y bounds: (N, 2) or (N, M, 4) where N is the number of rows (along y) and M is columns (along x). Cells with NaN bounds coordinates are omitted.
Examples
Basic usage with default coordinate names:
>>> uds = xugrid.UgridDataset.from_structured2d(dataset)
Specifying custom coordinate names:
>>> uds = xugrid.UgridDataset.from_structured2d( ... dataset, ... topology={"my_mesh2d": {"x": "xc", "y": "yc"}} ... )
Multiple grid topologies in a single dataset:
>>> uds = xugrid.UgridDataset.from_structured2d( ... dataset, ... topology={ ... "mesh2d_xy": {"x": "x", "y": "y"}, ... "mesh2d_lonlat": {"x": "lon", "y": "lat"} ... } ... )
Using bounds for non-monotonic coordinates (e.g., curvilinear grids):
>>> uds = xugrid.UgridDataset.from_structured2d( ... dataset, ... topology={ ... "my_mesh2d": { ... "x": "M", ... "y": "N", ... "bounds_x": "grid_x", ... "bounds_y": "grid_y" ... } ... } ... )