import pathlib
from copy import deepcopy
from typing import Any, List, Optional
import numpy as np
import imod
from imod.logging import init_log_decorator, standard_log_decorator
from imod.mf6.interfaces.imaskingsettings import IMaskingSettings
from imod.mf6.interfaces.iregridpackage import IRegridPackage
from imod.mf6.package import Package
from imod.mf6.regrid.regrid_schemes import DiscretizationRegridMethod, RegridMethodType
from imod.mf6.utilities.grid import create_smallest_target_grid
from imod.mf6.utilities.imod5_converter import convert_ibound_to_idomain
from imod.mf6.utilities.regrid import (
RegridderWeightsCache,
_regrid_package_data,
)
from imod.mf6.validation import DisBottomSchema
from imod.schemata import (
ActiveCellsConnectedSchema,
AllValueSchema,
AnyValueSchema,
DimsSchema,
DTypeSchema,
IdentityNoDataSchema,
IndexesSchema,
UniqueValuesSchema,
ValidationError,
)
from imod.typing.grid import GridDataArray
[docs]
class StructuredDiscretization(Package, IRegridPackage, IMaskingSettings):
"""
Discretization information for structered grids is specified using the file.
(DIS6) Only one discretization input file (DISU6, DISV6 or DIS6) can be
specified for a model.
https://water.usgs.gov/water-resources/software/MODFLOW-6/mf6io_6.0.4.pdf#page=35
Parameters
----------
top: array of floats (xr.DataArray)
is the top elevation for each cell in the top model layer.
bottom: array of floats (xr.DataArray)
is the bottom elevation for each cell.
idomain: array of integers (xr.DataArray)
Indicates the existence status of a cell. Horizontal discretization
information will be derived from the x and y coordinates of the
DataArray. If the idomain value for a cell is 0, the cell does not exist
in the simulation. Input and output values will be read and written for
the cell, but internal to the program, the cell is excluded from the
solution. If the idomain value for a cell is 1, the cell exists in the
simulation. if the idomain value for a cell is -1, the cell does not
exist in the simulation. Furthermore, the first existing cell above will
be connected to the first existing cell below. This type of cell is
referred to as a "vertical pass through" cell.
validate: {True, False}
Flag to indicate whether the package should be validated upon
initialization. This raises a ValidationError if package input is
provided in the wrong manner. Defaults to True.
"""
_pkg_id = "dis"
_init_schemata = {
"top": [
DTypeSchema(np.floating),
DimsSchema("y", "x") | DimsSchema(),
IndexesSchema(),
],
"bottom": [
DTypeSchema(np.floating),
DimsSchema("layer", "y", "x") | DimsSchema("layer"),
IndexesSchema(),
],
"idomain": [
DTypeSchema(np.integer),
DimsSchema("layer", "y", "x"),
IndexesSchema(),
],
}
_write_schemata = {
"idomain": (
ActiveCellsConnectedSchema(is_notnull=("!=", 0)),
AnyValueSchema(">", 0),
),
"top": (
AllValueSchema(">", "bottom", ignore=("idomain", "==", -1)),
IdentityNoDataSchema(other="idomain", is_other_notnull=(">", 0)),
# No need to check coords: dataset ensures they align with idomain.
),
"bottom": (DisBottomSchema(other="idomain", is_other_notnull=(">", 0)),),
}
_grid_data = {"top": np.float64, "bottom": np.float64, "idomain": np.int32}
_keyword_map = {"bottom": "botm"}
_template = Package._initialize_template(_pkg_id)
_regrid_method = DiscretizationRegridMethod()
@property
def skip_variables(self) -> List[str]:
return ["bottom"]
[docs]
@init_log_decorator()
def __init__(self, top, bottom, idomain, validate: bool = True):
dict_dataset = {
"idomain": idomain,
"top": top,
"bottom": bottom,
}
super().__init__(dict_dataset)
self._validate_init_schemata(validate)
def _delrc(self, dx):
"""
dx means dx or dy
"""
if isinstance(dx, (int, float)):
return f"constant {dx}"
elif isinstance(dx, np.ndarray):
arrstr = str(dx)[1:-1]
return f"internal\n {arrstr}"
else:
raise ValueError(f"Unhandled type of {dx}")
def render(self, directory, pkgname, globaltimes, binary):
disdirectory = pathlib.Path(directory) / pkgname
d: dict[str, Any] = {}
x = self.dataset["idomain"].coords["x"]
y = self.dataset["idomain"].coords["y"]
dx, xmin, _ = imod.util.spatial.coord_reference(x)
dy, ymin, _ = imod.util.spatial.coord_reference(y)
d["xorigin"] = xmin
d["yorigin"] = ymin
d["nlay"] = self.dataset["idomain"].coords["layer"].size
d["nrow"] = y.size
d["ncol"] = x.size
d["delr"] = self._delrc(np.abs(dx))
d["delc"] = self._delrc(np.abs(dy))
_, d["top"] = self._compose_values(
self["top"], disdirectory, "top", binary=binary
)
d["botm_layered"], d["botm"] = self._compose_values(
self["bottom"], disdirectory, "botm", binary=binary
)
d["idomain_layered"], d["idomain"] = self._compose_values(
self["idomain"], disdirectory, "idomain", binary=binary
)
return self._template.render(d)
def _validate(self, schemata, **kwargs):
# Insert additional kwargs
kwargs["bottom"] = self["bottom"]
errors = super()._validate(schemata, **kwargs)
return errors
@classmethod
@standard_log_decorator()
def from_imod5_data(
cls,
imod5_data: dict[str, dict[str, GridDataArray]],
regridder_types: Optional[RegridMethodType] = None,
regrid_cache: RegridderWeightsCache = RegridderWeightsCache(),
validate: bool = True,
) -> "StructuredDiscretization":
"""
Construct package from iMOD5 data, loaded with the
:func:`imod.formats.prj.open_projectfile_data` function.
Method regrids all variables to a target grid with the smallest extent
and smallest cellsize available in all the grids. Consequently it
converts iMODFLOW data to MODFLOW 6 data.
.. note::
The method expects the iMOD5 model to be fully 3D, not quasi-3D.
Parameters
----------
imod5_data: dict
Dictionary with iMOD5 data. This can be constructed from the
:func:`imod.formats.prj.open_projectfile_data` method.
regridder_types: DiscretizationRegridMethod, optional
Optional dataclass with regridder types for a specific variable.
Use this to override default regridding methods.
regrid_cache: RegridderWeightsCache, optional
stores regridder weights for different regridders. Can be used to speed up regridding,
if the same regridders are used several times for regridding different arrays.
Returns
-------
Modflow 6 StructuredDiscretization package.
"""
data = {
"idomain": imod5_data["bnd"]["ibound"].astype(np.int32),
"top": imod5_data["top"]["top"],
"bottom": imod5_data["bot"]["bottom"],
}
target_grid = create_smallest_target_grid(*data.values())
if regridder_types is None:
regridder_types = StructuredDiscretization.get_regrid_methods()
new_package_data = _regrid_package_data(
data, target_grid, regridder_types, regrid_cache
)
# Validate iMOD5 data
if validate:
UniqueValuesSchema([-1, 0, 1]).validate(imod5_data["bnd"]["ibound"])
if not np.all(
new_package_data["top"][1:].data == new_package_data["bottom"][:-1].data
):
raise ValidationError(
"Model discretization not fully 3D. Make sure TOP[n+1] matches BOT[n]"
)
thickness = new_package_data["top"] - new_package_data["bottom"]
new_package_data["idomain"] = convert_ibound_to_idomain(
new_package_data["idomain"], thickness
)
# TOP 3D -> TOP 2D
# Assume iMOD5 data provided as fully 3D and not Quasi-3D
new_package_data["top"] = new_package_data["top"].sel(layer=1, drop=True)
return cls(**new_package_data, validate=True)
@classmethod
def get_regrid_methods(cls) -> DiscretizationRegridMethod:
return deepcopy(cls._regrid_method)