hydromt.workflows.grid.grid_from_raster_reclass#
- hydromt.workflows.grid.grid_from_raster_reclass(grid_like: DataArray | Dataset, da: DataArray, reclass_table: DataFrame, reclass_variables: List, fill_method: str | None = None, reproject_method: List | str | None = 'nearest', mask_name: str | None = 'mask', rename: Dict | None = None) Dataset [source]#
Prepare data variable(s) resampled to grid_like object by reclassifying the data in
da
based onreclass_table
.- Parameters:
grid_like (
xr.DataArray
,xr.Dataset
) – Grid to copy metadata from.da (
xr.DataArray
) – DataArray with classification raster data.reclass_table (
pd.DataFrame
) – Tabular pandas dataframe object for the reclassification table of da.reclass_variables (
list
) – List of reclass_variables from reclass_table_fn table to add to maps. Index column should match values in raster_fn.fill_method (
str
, optional) – If specified, fills nodata values in raster_fn using fill_nodata method before reclassifying. Available methods are {‘linear’, ‘nearest’, ‘cubic’, ‘rio_idw’}.reproject_method (
str
, optional) – See rasterio.warp.reproject for existing methods, by default “nearest”. Can provide a list corresponding toreclass_variables
.mask_name (
str
, optional) – Name of mask in self.grid to use for masking raster_fn. By default ‘mask’. Use None to disable masking.rename (
dict
, optional) – Dictionary to rename variable names in reclass_variables before adding to grid {‘name_in_reclass_table’: ‘name_in_grid’}. By default empty.
- Returns:
ds_out – Dataset with reclassified data from reclass_table to da resampled to grid_like.
- Return type:
xr.Dataset