hydromt.Dataset.vector.from_gdf#

static Dataset.vector.from_gdf(gdf: GeoDataFrame, data_vars: dict = None, coords: dict = None, index_dim: str = None, keep_cols: bool = True, cols_as_data_vars: bool = False, merge_index: str = 'gdf') Dataset#

Create Dataset with geospatial coordinates.

Parameters:
  • gdf (geopandas GeoDataFrame) – Spatial coordinates. The index should match the df index and the geometry columun may only contain Point geometries. Additional columns are also parsed to the xarray DataArray coordinates.

  • data_vars (dict-like, DataArray or Dataset) – A mapping from variable names to xarray.DataArray objects. See xarray.Dataset for all options. Aditionally it accepts xarray.DataArray with name property and xarray.Dataset.

  • coords (sequence or dict of array_like, optional) – Coordinates (tick labels) to use for indexing along each dimension.

  • index_dim (str, optional) – Name of index dimension in data_vars

  • keep_cols (bool, optional) – If True, keep gdf columns as extra coordinates in dataset

  • cols_as_data_vars (bool, optional) – If True, parse gdf columns as data variables rather than coordinates.

  • merge_index ({'gdf', 'inner'}, default 'gdf') –

    Type of merge to be performed between gdf and data.

    • gdf: use only keys from gdf index. Missing values will be filled with NaNs

    • inner: use intersection of gdf and data index.

Returns:

da – Dataset with geospatial coordinates

Return type:

xarray.Dataset