hydromt.Dataset.vector.from_gdf#
- static Dataset.vector.from_gdf(gdf: GeoDataFrame, data_vars: dict = None, coords: dict = None, index_dim: str = None, keep_cols: bool = True, cols_as_data_vars: bool = False, merge_index: str = 'gdf') Dataset #
Create Dataset with geospatial coordinates.
- Parameters:
gdf (
geopandas GeoDataFrame
) – Spatial coordinates. The index should match the df index and the geometry columun may only contain Point geometries. Additional columns are also parsed to the xarray DataArray coordinates.data_vars (
dict-like
,DataArray
orDataset
) – A mapping from variable names to xarray.DataArray objects. See xarray.Dataset for all options. Aditionally it accepts xarray.DataArray with name property and xarray.Dataset.coords (
sequence
ordict
ofarray_like
, optional) – Coordinates (tick labels) to use for indexing along each dimension.index_dim (
str
, optional) – Name of index dimension in data_varskeep_cols (
bool
, optional) – If True, keep gdf columns as extra coordinates in datasetcols_as_data_vars (
bool
, optional) – If True, parse gdf columns as data variables rather than coordinates.merge_index (
{'gdf', 'inner'}
, default'gdf'
) –Type of merge to be performed between gdf and data.
gdf: use only keys from gdf index. Missing values will be filled with NaNs
inner: use intersection of gdf and data index.
- Returns:
da – Dataset with geospatial coordinates
- Return type: