hydromt.workflows.forcing.wind#
- hydromt.workflows.forcing.wind(da_model: ~xarray.core.dataarray.DataArray | ~xarray.core.dataset.Dataset, wind: ~xarray.core.dataarray.DataArray = None, wind_u: ~xarray.core.dataarray.DataArray = None, wind_v: ~xarray.core.dataarray.DataArray = None, altitude: float = 10, altitude_correction: bool = False, freq: ~pandas._libs.tslibs.timedeltas.Timedelta = None, reproj_method: str = 'nearest_index', resample_kwargs: dict = None, logger=<Logger hydromt.workflows.forcing (WARNING)>)[source]#
Return lazy reprojection of wind speed to model grid.
Resample time dimension to frequency. Either provides wind speed directly or both wind_u and wind_v components.
- Parameters:
wind (
xarray.DataArray
) – DataArray of wind speed forcing [m s-1]wind_u (
xarray.DataArray
) – DataArray of U component of wind speed forcing [m s-1]wind_v (
xarray.DataArray
) – DataArray of V component of wind speed forcing [m s-1]da_model (
xarray.DataArray
) – DataArray of the target resolution and projectionaltitude (
float
, optional) – ALtitude of wind speed data. By default 10m.altitude_correction (
str
, optional) – If True wind speed is re-calculated to wind speed at 2 meters using original altitude.freq (
str
,Timedelta
) – output frequency of timedimensionreproj_method (
str
, optional) – Method for spatital reprojection of precip, by default ‘nearest_index’resample_kwargs – Additional key-word arguments (e.g. label, closed) for time resampling method
logger – The logger to use.
- Returns:
wind_out – processed wind forcing
- Return type:
xarray.DataArray (lazy)