Example: Reading 2D tabular data (DataFrame)#
This example illustrates the how to read 2D tabular data using the HydroMT DataCatalog with the csv
driver.
[1]:
from hydromt import DataCatalog
data_catalog = DataCatalog("data/tabular_data_catalog.yml")
Pandas driver#
time series data#
To read 2D tabular data from a comma-separated file (csv) and parse it into a pandas.DataFrame we use the pandas.read_csv(). Any driver_kwargs in the data catalog are passed to this method, e.g., parsing dates in the “time” colum and setting this as the index.
This works similarly for excel tables, but based on the pandas.read_excel() method.
For demonstration we use a dummy example timeseries data in csv.
[2]:
# inspect data source entry in data catalog yaml file
data_catalog.get_source("example_csv_data")
[2]:
DataFrameSource(name='example_csv_data', uri='example_csv_data.csv', data_adapter=DataFrameAdapter(unit_add={}, unit_mult={}, rename={}), driver=PandasDriver(filesystem=<fsspec.implementations.local.LocalFileSystem object at 0x77c6b4dbb040>, options={'parse_dates': True, 'index_col': 'time'}), uri_resolver=ConventionResolver(filesystem=<fsspec.implementations.local.LocalFileSystem object at 0x77c6b4dbb040>, options={}), root='data', version=None, provider=None, metadata=SourceMetadata(crs=None, unit=None, extent={}, nodata=None, attrs={}, category=None))
We can load any 2D tabular data using DataCatalog.get_dataframe(). Note that if we don’t provide any arguments it returns the full dataframe.
[3]:
df = data_catalog.get_dataframe("example_csv_data")
df.head()
object: PandasDriver does not use kwarg metadata with value crs=None unit=None extent={} nodata=None attrs={} category=None.
[3]:
col1 | col2 | |
---|---|---|
time | ||
2016-01-01 | 0.590860 | 0.591380 |
2016-01-02 | 0.565552 | 0.571342 |
2016-01-03 | 0.538679 | 0.549770 |
2016-01-04 | 0.511894 | 0.526932 |
2016-01-05 | 0.483989 | 0.502907 |
The data can be visualized with the .plot() pandas method.
[4]:
df.plot(y="col1")
[4]:
<Axes: xlabel='time'>

reclassification table#
Another typical usecase for tabular data are reclassification tables to reclassify e.g. land use data to manning roughness. An example of this data is shown in the cells below. Note tha the values are not validated and likely too high!
[5]:
# read both the vito_reclass and artifact_data data catalogs
data_catalog = DataCatalog(["data/vito_reclass.yml", "artifact_data"])
data_catalog.get_source("vito_reclass")
[5]:
DataFrameSource(name='vito_reclass', uri='vito_reclass.csv', data_adapter=DataFrameAdapter(unit_add={}, unit_mult={}, rename={}), driver=PandasDriver(filesystem=<fsspec.implementations.local.LocalFileSystem object at 0x77c6b4dbb040>, options={'index_col': 0}), uri_resolver=ConventionResolver(filesystem=<fsspec.implementations.local.LocalFileSystem object at 0x77c6b4dbb040>, options={}), root='data', version=None, provider=None, metadata=SourceMetadata(crs=None, unit=None, extent={}, nodata=None, attrs={}, category=None, notes='reclass table for manning values'))
[6]:
df = data_catalog.get_dataframe("vito_reclass")
df.head()
object: PandasDriver does not use kwarg metadata with value crs=None unit=None extent={} nodata=None attrs={} category=None notes='reclass table for manning values'.
[6]:
description | landuse | manning | |
---|---|---|---|
vito | |||
0 | Unknown | 0 | -999.000 |
20 | Shrubs | 20 | 0.500 |
30 | Herbaceous vegetation | 30 | 0.150 |
40 | Cultivated and managed vegetation/agriculture ... | 40 | 0.200 |
50 | Urban / built up | 50 | 0.011 |
[7]:
da_lulc = data_catalog.get_rasterdataset("vito_2015")
da_man = da_lulc.raster.reclassify(df[["manning"]])
da_man["manning"].plot.imshow()
[7]:
<matplotlib.image.AxesImage at 0x77c6b21e49d0>
