Source code for imod.wq.rch

import abc

import jinja2
import numpy as np

from imod.wq.pkgbase import BoundaryCondition


class Recharge(BoundaryCondition, abc.ABC):
    _pkg_id = "rch"

    _mapping = (("rech", "rate"),)

    _keywords = {"save_budget": {False: 0, True: 1}}

    _template = jinja2.Template(
        "[rch]\n"
        "    nrchop = {{recharge_option}}\n"
        "    irchcb = {{save_budget}}\n"
        "    {%- for name, dictname in mapping -%}"
        "        {%- for time, timedict in dicts[dictname].items() -%}"
        "            {%- for layer, value in timedict.items() %}\n"
        "    {{name}}_p{{time}} = {{value}}\n"
        "            {%- endfor -%}\n"
        "        {%- endfor -%}"
        "    {%- endfor -%}"
    )

    def _render(self, directory, globaltimes, nlayer, *args, **kwargs):
        d = {
            "mapping": self._mapping,
            "save_budget": self.dataset["save_budget"].values,
            "recharge_option": self._option,
        }
        self._replace_keyword(d, "save_budget")

        dicts = {}
        for _, name in self._mapping:
            dicts[name] = self._compose_values_timelayer(
                name, globaltimes, directory, nlayer=nlayer
            )
        d["dicts"] = dicts

        return self._template.render(d)

    def _pkgcheck(self, ibound=None):
        pass

    def repeat_stress(self, rate=None, concentration=None, use_cftime=False):
        varnames = ["rate", "concentration"]
        values = [rate, concentration]
        for varname, value in zip(varnames, values):
            self._repeat_stress(varname, value, use_cftime)


[docs] class RechargeTopLayer(Recharge): """ The Recharge package is used to simulate a specified flux distributed over the top of the model and specified in units of length/time (usually m/d). Within MODFLOW, these rates are multiplied by the horizontal area of the cells to which they are applied to calculate the volumetric flux rates. In this class the Recharge gets applied to the top grid layer (NRCHOP=1). Parameters ---------- rate: float or xr.DataArray of floats is the amount of recharge. concentration: float or xr.DataArray of floats is the concentration of the recharge save_budget: bool, optional flag indicating if the budget needs to be saved. Default is False. """ _option = 1
[docs] def __init__(self, rate, concentration, save_budget=False): super().__init__() self["rate"] = rate self["concentration"] = concentration self["save_budget"] = save_budget
def _set_ssm_layers(self, ibound): self._ssm_layers = np.array([1])
[docs] class RechargeLayers(Recharge): """ The Recharge package is used to simulate a specified flux distributed over the top of the model and specified in units of length/time (usually m/d). Within MODFLOW, these rates are multiplied by the horizontal area of the cells to which they are applied to calculate the volumetric flux rates. In this class the Recharge gets applied to a specific, specified, layer (NRCHOP=2). Parameters ---------- rate: float or xr.DataArray of floats is the amount of recharge. recharge_layer: int or xr.DataArray of integers layer number variable that defines the layer in each vertical column where recharge is applied concentration: float or xr.DataArray of floats is the concentration of the recharge save_budget: bool, optional flag indicating if the budget needs to be saved. Default is False. """ _option = 2 _mapping = (("rech", "rate"), ("irch", "recharge_layer"))
[docs] def __init__(self, rate, recharge_layer, concentration, save_budget=False): super().__init__() self["rate"] = rate self["recharge_layer"] = recharge_layer self["concentration"] = concentration self["save_budget"] = save_budget
def _set_ssm_layers(self, ibound): unique_layers = np.unique(self.dataset["recharge_layer"].values) unique_layers = unique_layers[~np.isnan(unique_layers)] self._ssm_layers = unique_layers.astype(np.int32)
[docs] class RechargeHighestActive(Recharge): """ The Recharge package is used to simulate a specified flux distributed over the top of the model and specified in units of length/time (usually m/d). Within MODFLOW, these rates are multiplied by the horizontal area of the cells to which they are applied to calculate the volumetric flux rates. In this class the Recharge gets applied to the highest active cell in each vertical column (NRCHOP=3). Parameters ---------- rate: float or xr.DataArray of floats is the amount of recharge. concentration: float or xr.DataArray of floats is the concentration of the recharge save_budget: bool, optional flag indicating if the budget needs to be saved. Default is False. """ _option = 3
[docs] def __init__(self, rate, concentration, save_budget=False): super().__init__() rate_scalar = np.ndim(rate) == 0 conc_scalar = np.ndim(concentration) == 0 if rate_scalar and (not conc_scalar): raise ValueError("Rate cannot be scalar if concentration is non-scalar.") self["rate"] = rate self["concentration"] = concentration self["save_budget"] = save_budget
def _set_ssm_layers(self, ibound): rate = self.dataset["rate"] rate_idf = ("x" in rate.dims) and ("y" in rate.dims) conc_scalar = np.ndim(self.dataset["concentration"]) == 0 if rate_idf and conc_scalar: rch_active = (rate != 0.0) & rate.notnull() if "time" in rch_active.dims: rch_active = rch_active.any("time") rch_active = rch_active & (ibound > 0) else: rch_active = ibound > 0 top_layer = ibound["layer"].where(rch_active).min("layer") top_layer = top_layer.where((ibound > 0).any("layer")) unique_layers = np.unique(top_layer.values) unique_layers = unique_layers[~np.isnan(unique_layers)] self._ssm_layers = unique_layers.astype(np.int32) def repeat_stress(self, rate=None, concentration=None, use_cftime=False): varnames = ["rate", "concentration"] values = [rate, concentration] for varname, value in zip(varnames, values): self._repeat_stress(varname, value, use_cftime)