Source code for imod.visualize.cross_sections

import matplotlib.pyplot as plt
import numpy as np
import xarray as xr
from mpl_toolkits.axes_grid1 import make_axes_locatable

import imod
from imod.visualize import common


def _meshcoords(da, continuous=True):
    """
    Generate coordinates for pcolormesh, or fill_between

    Parameters
    ----------
    da : xr.DataArray
        The array to plot
    continuous : bool, optional
        Whether the layers are connected, such that the bottom of layer N is
        the top of layer N + 1.

    Returns
    -------
    X : np.array
        x coordinates of mesh
    Y : np.array
        y coordinates of mesh
    C : np.array
        values of the mesh
    """
    dims = tuple(da.dims)
    if not dims[0] == "layer":
        # Switch 'm around
        dims = (dims[1], dims[0])

    # Ensure dimensions are in the right order
    da = da.transpose(*dims, transpose_coords=True)
    data = da.values
    xcoord = da.dims[1]
    dx, xmin, xmax = imod.util.spatial.coord_reference(da[xcoord])
    if isinstance(dx, (int, float)):
        if dx < 0.0:
            dx = abs(dx)
            data = data[:, ::-1]
        X = np.arange(xmin + dx, xmax, dx)
    else:  # assuming dx is an array, non-equidistant dx
        if (dx < 0.0).all():
            dx = abs(dx)
            data = data[:, ::-1]
        elif (dx > 0.0).all():
            pass
        else:
            raise ValueError(f"{xcoord} is not monotonic")
        X = (xmin + dx[0]) + dx[1:].cumsum()

    # if dimensions of top and bottom are 1D (voxels), promote to 2D
    if len(da["top"].dims) == 1 and len(da["bottom"].dims) == 1:
        top = np.repeat(np.atleast_2d(da.top), len(da[xcoord]), axis=0).T
        da = da.assign_coords(top=(("layer", xcoord), top))
        bot = np.repeat(np.atleast_2d(da.bottom), len(da[xcoord]), axis=0).T
        da = da.assign_coords(bottom=(("layer", xcoord), bot))

    if continuous:
        Y = np.vstack([da["top"].isel(layer=0).values, da["bottom"].values])
    else:
        nrow, ncol = da["top"].shape
        Y = np.empty((nrow * 2, ncol))
        Y[0::2] = da["top"].values
        Y[1::2] = da["bottom"].values

    Y = np.repeat(Y, 2, 1)
    nodata = np.isnan(Y)
    Y[nodata] = 0.0

    X = np.hstack([xmin, np.repeat(X, 2), xmax])
    X = np.full_like(Y, X)

    if continuous:
        nrow, ncol = Y.shape
        C = np.full((nrow - 1, ncol - 1), np.nan)
        C[:, 0::2] = data
    else:
        _, ncol = Y.shape
        C = np.full((nrow, ncol - 1), np.nan)
        C[:, 0::2] = data

    return X, Y, C, nodata


def _plot_aquitards(aquitards, ax, kwargs_aquitards):
    """
    Overlay aquitards on ax

    Parameters
    ----------
    aquitards : xr.DataArray
        DataArray containing location of aquitards
        NaN's and zeros are treated as locations without aquitard
    ax : matplotlib.Axes object
    kwargs_aquitards : dict
        keyword arguments for ax.fill_between()
    """
    if kwargs_aquitards is None:
        kwargs_aquitards = {"alpha": 0.5, "facecolor": "grey"}
    X_aq, Y_aq, C_aq, _ = _meshcoords(aquitards, continuous=False)
    C_aq = C_aq.astype(np.float64)
    for j, i in enumerate(range(0, X_aq.shape[0] - 1, 2)):
        Y_i = Y_aq[i : i + 2]
        C_i = C_aq[j]
        C_i[C_i == 0.0] = np.nan
        nodata = np.repeat(np.isnan(C_i[0::2]), 2)
        Y_i[:, nodata] = np.nan
        ax.fill_between(X_aq[0], Y_i[0], Y_i[1], **kwargs_aquitards)


[docs] def cross_section( da, colors, levels, layers=False, aquitards=None, kwargs_pcolormesh={}, kwargs_colorbar={}, kwargs_aquitards=None, return_cmap_norm=False, fig=None, ax=None, ): """ Wraps matplotlib.pcolormesh to draw cross-sections, drawing cell boundaries accurately. Aquitards can be plotted on top of the cross-section, by providing a DataArray with the aquitard location for `aquitards`. Parameters ---------- da : xr.DataArray Two dimensional DataArray containing data of the cross section. One dimension must be "layer", and the second dimension will be used as the x-axis for the cross-section. Coordinates "top" and "bottom" must be present, and must have at least the "layer" dimension (voxels) or both the "layer" and x-coordinate dimension. *Use imod.select.cross_section_line() or cross_section_linestring() to obtain the required DataArray.* colors : list of str, or list of RGB tuples Matplotlib acceptable list of colors. Length N. Accepts both tuples of (R, G, B) and hexidecimal (e.g. "#7ec0ee"). Looking for good colormaps? Try: http://colorbrewer2.org/ Choose a colormap, and use the HEX JS array. levels : listlike of floats or integers Boundaries between the legend colors/classes. Length: N - 1. layers : boolean, optional Whether to draw lines separating the layers. aquitards : xr.DataArray, optional Datarray containing data on location of aquitard layers. kwargs_pcolormesh : dict Other optional keyword arguments for matplotlib.pcolormesh. kwargs_colorbar : dict If optional key ``plot_colorbar`` is set to False, no colorbar is drawn. Defaults to True. Optional keyword argument ``whiten_triangles`` whitens respective colorbar triangle if data is not larger/smaller than legend_levels-range. Defaults to True. Other arguments are forwarded to fig.colorbar() kwargs_aquitards: dict These arguments are forwarded to matplotlib.fill_between to draw the aquitards. return_cmap_norm : boolean, optional Return the cmap and norm of the plot, default False fig : matplotlib Figure instance, optional Figure to write plot to. If not supplied, a Figure instance is created ax : matplotlib Axes instance, optional Axes to write plot to. If not supplied, an Axes instance is created Returns ------- fig : matplotlib.figure ax : matplotlig.ax if return_cmap_norm == True: cmap : matplotlib.colors.ListedColormap norm : matplotlib.colors.BoundaryNorm Examples -------- Basic cross section: >>> imod.visualize.cross_section(da, colors, levels) Aquitards can be styled in multiple ways. For a transparent grey overlay (the default): >>> kwargs_aquitards = {"alpha": 0.5, "facecolor": "grey"} >>> imod.visualize.cross_section(da, colors, levels, aquitards=aquitards, kwargs_aquitards) For a hatched overlay: >>> kwargs_aquitards = {"hatch": "/", "edgecolor": "k"} >>> imod.visualize.cross_section(da, colors, levels, aquitards=aquitards, kwargs_aquitards) """ da = da.copy(deep=False) if aquitards is not None: aquitards = aquitards.copy(deep=False) if len(da.dims) != 2: raise ValueError("DataArray must be 2D") if "layer" not in da.dims: raise ValueError('DataArray must contain dimension "layer"') if "top" not in da.coords: raise ValueError('DataArray must contain coordinate "top"') if "bottom" not in da.coords: raise ValueError('DataArray must contain coordinate "bottom"') if len(da["top"].dims) > 2: raise ValueError('"top" coordinate be 1D or 2D') if len(da["bottom"].dims) > 2: raise ValueError('"bottom" coordinate be 1D or 2D') # Read legend settings cmap, norm = common._cmapnorm_from_colorslevels(colors, levels) # cbar kwargs settings_cbar = {"ticks": levels, "extend": "both"} # Find a unit in the raster to use in the colorbar label try: settings_cbar["label"] = da.attrs["units"] except (KeyError, AttributeError): try: settings_cbar["label"] = da.attrs["unit"] except (KeyError, AttributeError): pass whiten_triangles = True plot_colorbar = True if kwargs_colorbar is not None: whiten_triangles = kwargs_colorbar.pop("whiten_triangles", True) plot_colorbar = kwargs_colorbar.pop("plot_colorbar", True) settings_cbar.update(kwargs_colorbar) # pcmesh kwargs settings_pcmesh = {"cmap": cmap, "norm": norm} if kwargs_pcolormesh is not None: settings_pcmesh.update(kwargs_pcolormesh) if fig is None or ax is None: fig, ax = plt.subplots() # Plot raster X, Y, C, nodata = _meshcoords(da, continuous=True) ax1 = ax.pcolormesh(X, Y, C, **settings_pcmesh) # Plot aquitards if applicable if aquitards is not None: _plot_aquitards(aquitards, ax, kwargs_aquitards) if layers: Y[nodata] = np.nan for y in Y: ax.step(x=X[0], y=y) # Make triangles white if data is not larger/smaller than legend_levels-range if whiten_triangles: if float(da.max().compute()) < levels[-1]: ax1.cmap.set_over("#FFFFFF") if float(da.min().compute()) > levels[0]: ax1.cmap.set_under("#FFFFFF") # Add colorbar if plot_colorbar: divider = make_axes_locatable(ax) cbar_ax = divider.append_axes("right", size="5%", pad="5%") fig.colorbar(ax1, cax=cbar_ax, **settings_cbar) if not return_cmap_norm: return fig, ax else: return fig, ax, cmap, norm
[docs] def streamfunction(da, ax, n_streamlines=10, kwargs_contour={}): """ Wraps matplotlib.contour to draw stream lines. Function can be used to draw stream lines on top of a cross-section. Parameters ---------- da : xr.DataArray Two dimensional DataArray containing data of the cross section. One dimension must be "layer", and the second dimension will be used as the x-axis for the cross-section. Coordinates "top" and "bottom" must be present, and must have at least the "layer" dimension (voxels) or both the "layer" and x-coordinate dimension. *Use imod.evaluate.streamfunction_line() or streamfunction_linestring() to obtain the required DataArray.* ax : matplotlib Axes instance Axes to write plot to. n_streamlines : int or array_like Determines the number and positions of the contour lines / regions. If an int n, use n data intervals; i.e. draw n+1 contour lines. The level heights are automatically chosen. If array-like, draw contour lines at the specified levels. The values must be in increasing order. kwargs_contour : dict Other optional keyword arguments for matplotlib.contour. Returns ------- matplotlib.contour.QuadContourSet The drawn contour lines. """ da = da.copy(deep=False) if len(da.dims) != 2: raise ValueError("DataArray must be 2D") if "layer" not in da.dims: raise ValueError('DataArray must contain dimension "layer"') if "top" not in da.coords: raise ValueError('DataArray must contain coordinate "top"') if "bottom" not in da.coords: raise ValueError('DataArray must contain coordinate "bottom"') if len(da["top"].dims) > 2: raise ValueError('"top" coordinate be 1D or 2D') if len(da["bottom"].dims) > 2: raise ValueError('"bottom" coordinate be 1D or 2D') # add a row of zeros at the bottom, with thickness zero # moved here i/o imod.evaluate to not bother user with # additional layer hampering coord assignment zeros = xr.zeros_like(da.isel(layer=-1)) zeros.coords["layer"] += 1 zeros.coords["top"] = zeros.coords["bottom"] # layer of zero thickness zeros.coords["bottom"] = zeros.coords["bottom"] - 0.1 da = xr.concat((da, zeros), dim="layer") # _meshcoords returns mesh edges, but useful here to allow 1D/2D # dimensions in da # go back to cell centers in 2D X = np.broadcast_to(da["s"].values, da.shape) Y = (0.5 * da["top"] + 0.5 * da["bottom"]).values if Y.ndim == 1: Y = np.broadcast_to(Y[:, np.newaxis], da.shape) settings_contour = { "colors": "w", "linestyles": "solid", "linewidths": 0.8, "zorder": 10, } settings_contour.update(kwargs_contour) CS = ax.contour(X, Y, da.values, n_streamlines, **settings_contour) return CS
[docs] def quiver(u, v, ax, kwargs_quiver={}): """ Wraps matplotlib.quiver to draw quiver plots. Function can be used to draw flow quivers on top of a cross-section. Parameters ---------- u : xr.DataArray Two dimensional DataArray containing u component of quivers. One dimension must be "layer", and the second dimension will be used as the x-axis for the cross-section. Coordinates "top" and "bottom" must be present, and must have at least the "layer" dimension (voxels) or both the "layer" and x-coordinate dimension. *Use imod.evaluate.quiver_line() or quiver_linestring() to obtain the required DataArray.* v : xr.DataArray Two dimensional DataArray containing v component of quivers. One dimension must be "layer", and the second dimension will be used as the x-axis for the cross-section. Coordinates "top" and "bottom" must be present, and must have at least the "layer" dimension (voxels) or both the "layer" and x-coordinate dimension. *Use imod.evaluate.quiver_line() or quiver_linestring() to obtain the required DataArray.* ax : matplotlib Axes instance Axes to write plot to. kwargs_quiver : dict Other optional keyword arguments for matplotlib.quiver. Returns ------- matplotlib.quiver.Quiver The drawn quivers. Examples -------- First: apply evaluate.quiver_line to get the u and v components of the quivers from a three dimensional flow field. Assign top and bottom coordinates if these are not already present in the flow field data arrays. >>> u, v = imod.evaluate.quiver_line(right, front, lower, start, end) >>> u.assign_coords(top=top, bottom=bottom) >>> v.assign_coords(top=top, bottom=bottom) The quivers can then be plotted over a cross section created by imod.visualize.cross_section(): >>> imod.visualize.quiver(u, v, ax) Quivers can easily overwhelm your plot, so it is a good idea to 'thin out' some of the quivers: >>> # Only plot quivers at every 5th cell and every 3rd layer >>> thin = {"s": slice(0, None, 5), "layer": slice(0, None, 3)} >>> imod.visualize.quiver(u.isel(**thin), v.isel(**thin), ax) """ for da, name in zip([u, v], ["u", "v"]): if len(da.dims) != 2: raise ValueError(f"DataArray {name} must be 2D") if "layer" not in da.dims: raise ValueError(f'DataArray {name} must contain dimension "layer"') if "top" not in da.coords: raise ValueError(f'DataArray {name} must contain coordinate "top"') if "bottom" not in da.coords: raise ValueError(f'DataArray {name} must contain coordinate "bottom"') if len(da["top"].dims) > 2: raise ValueError(f'"top" coordinate in dataarray {name} must be 1D or 2D') if len(da["bottom"].dims) > 2: raise ValueError( f'"bottom" coordinate in dataarray {name} must be 1D or 2D' ) # do not draw quivers for cells that are only thinly sliced (ds > 25% of cellsize) dsmin = 0.25 * u.dx u = u.where(u.ds > dsmin) v = v.where(v.ds > dsmin) # _meshcoords returns mesh edges, but useful here to allow 1D/2D # dimensions in da # go back to cell centers in 2D X, _ = np.meshgrid(u.s.values, u.layer.values) Y = 0.5 * u.top + 0.5 * u.bottom if Y.ndim == 1: # promote to 2D Y = xr.concat(u.shape[1] * [Y], dim=u.s) settings_quiver = { "color": "w", "scale": None, # autoscaling "linestyle": "-", "zorder": 10, } settings_quiver.update(kwargs_quiver) Q = ax.quiver(X, Y, u.values, v.values, **settings_quiver) return Q