from datetime import datetime
from typing import Optional
import numpy as np
import xarray as xr
from imod.common.interfaces.iregridpackage import IRegridPackage
from imod.common.utilities.dataclass_type import DataclassType
from imod.logging import init_log_decorator
from imod.mf6.aggregate.aggregate_schemes import RechargeAggregationMethod
from imod.mf6.dis import StructuredDiscretization, VerticesDiscretization
from imod.mf6.regrid.regrid_schemes import RechargeRegridMethod
from imod.mf6.topsystem import TopSystemBoundaryCondition
from imod.mf6.utilities.imod5_converter import (
convert_unit_rch_rate,
regrid_imod5_pkg_data,
)
from imod.mf6.utilities.package import set_repeat_stress_if_available
from imod.mf6.validation import BOUNDARY_DIMS_SCHEMA, CONC_DIMS_SCHEMA
from imod.msw.utilities.imod5_converter import (
get_cell_area_from_imod5_data,
is_msw_active_cell,
)
from imod.prepare.topsystem.allocation import ALLOCATION_OPTION, allocate_rch_cells
from imod.schemata import (
AllCoordsValueSchema,
AllInsideNoDataSchema,
AllNoDataSchema,
AllValueSchema,
CoordsSchema,
DimsSchema,
DTypeSchema,
IdentityNoDataSchema,
IndexesSchema,
OtherCoordsSchema,
)
from imod.typing import GridDataArray, Imod5DataDict
from imod.typing.grid import (
enforce_dim_order,
is_planar_grid,
)
from imod.util.dims import drop_layer_dim_cap_data
from imod.util.regrid import RegridderWeightsCache
[docs]
class Recharge(TopSystemBoundaryCondition, IRegridPackage):
"""
Recharge Package.
Any number of RCH Packages can be specified for a single groundwater flow
model.
https://water.usgs.gov/water-resources/software/MODFLOW-6/mf6io_6.0.4.pdf#page=79
Parameters
----------
rate: array of floats (xr.DataArray)
is the recharge flux rate (LT −1). This rate is multiplied inside the
program by the surface area of the cell to calculate the volumetric
recharge rate. A time-series name may be specified.
concentration: array of floats (xr.DataArray, optional)
if this flow package is used in simulations also involving transport, then this array is used
as the concentration for inflow over this boundary.
concentration_boundary_type: ({"AUX", "AUXMIXED"}, optional)
if this flow package is used in simulations also involving transport, then this keyword specifies
how outflow over this boundary is computed.
print_input: ({True, False}, optional)
keyword to indicate that the list of recharge information will be
written to the listing file immediately after it is read.
Default is False.
print_flows: ({True, False}, optional)
Indicates that the list of recharge flow rates will be printed to the
listing file for every stress period time step in which "BUDGET PRINT"is
specified in Output Control. If there is no Output Control option and
PRINT FLOWS is specified, then flow rates are printed for the last time
step of each stress period.
Default is False.
save_flows: ({True, False}, optional)
Indicates that recharge flow terms will be written to the file specified
with "BUDGET FILEOUT" in Output Control.
Default is False.
observations: [Not yet supported.]
Default is None.
validate: {True, False}
Flag to indicate whether the package should be validated upon
initialization. This raises a ValidationError if package input is
provided in the wrong manner. Defaults to True.
repeat_stress: dict or xr.DataArray of datetimes, optional
Used to repeat data for e.g. repeating stress periods such as
seasonality without duplicating the values. If provided as dict, it
should map new dates to old dates present in the dataset.
``{"2001-04-01": "2000-04-01", "2001-10-01": "2000-10-01"}`` if provided
as DataArray, it should have dimensions ``("repeat", "repeat_items")``.
The ``repeat_items`` dimension should have size 2: the first value is
the "key", the second value is the "value". For the "key" datetime, the
data of the "value" datetime will be used.
fixed_cell: ({True, False}, optional)
indicates that recharge will not be reassigned to a cell underlying the
cell specified in the list if the specified cell is inactive.
"""
_pkg_id = "rch"
_period_data = ("rate",)
_keyword_map = {}
_init_schemata = {
"rate": [
DTypeSchema(np.floating),
IndexesSchema(),
CoordsSchema(("layer",)),
BOUNDARY_DIMS_SCHEMA,
AllCoordsValueSchema("layer", ">", 0),
],
"concentration": [
DTypeSchema(np.floating),
IndexesSchema(),
CoordsSchema(
(
"species",
"layer",
)
),
CONC_DIMS_SCHEMA,
AllCoordsValueSchema("layer", ">", 0),
],
"print_flows": [DTypeSchema(np.bool_), DimsSchema()],
"save_flows": [DTypeSchema(np.bool_), DimsSchema()],
}
_write_schemata = {
"rate": [
OtherCoordsSchema("idomain"),
AllNoDataSchema(), # Check for all nan, can occur while clipping
AllInsideNoDataSchema(other="idomain", is_other_notnull=(">", 0)),
],
"concentration": [IdentityNoDataSchema("rate"), AllValueSchema(">=", 0.0)],
}
_template = TopSystemBoundaryCondition._initialize_template(_pkg_id)
_auxiliary_data = {"concentration": "species"}
_regrid_method = RechargeRegridMethod()
_aggregate_method: DataclassType = RechargeAggregationMethod()
[docs]
@init_log_decorator()
def __init__(
self,
rate,
concentration=None,
concentration_boundary_type="auxmixed",
print_input=False,
print_flows=False,
save_flows=False,
observations=None,
validate: bool = True,
repeat_stress=None,
fixed_cell: bool = False,
):
dict_dataset = {
"rate": rate,
"concentration": concentration,
"concentration_boundary_type": concentration_boundary_type,
"print_input": print_input,
"print_flows": print_flows,
"save_flows": save_flows,
"observations": observations,
"repeat_stress": repeat_stress,
"fixed_cell": fixed_cell,
}
super().__init__(dict_dataset)
self._validate_init_schemata(validate)
def _validate(self, schemata, **kwargs):
# Insert additional kwargs
kwargs["rate"] = self["rate"]
errors = super()._validate(schemata, **kwargs)
return errors
@classmethod
def _allocate_planar_data(
cls,
planar_data: dict[str, GridDataArray],
dis: StructuredDiscretization | VerticesDiscretization,
allocation_option: ALLOCATION_OPTION,
) -> dict[str, GridDataArray]:
"""
Allocate and distribute planar data for given discretization and npf
package. To allocate cells, the allocation option
ALLOCATION_OPTION.at_first_active is set.
Parameters
----------
planar_data: dict[str, GridDataArray]
Dictionary with planar grid data.
dis: imod.mf6.StructuredDiscretization
Model discretization package.
allocation_option: ALLOCATION_OPTION
The allocation option to use for the reallocation.
Returns
-------
dict[str, GridDataArray]
Dictionary with layered grid data.
"""
idomain = dis.dataset["idomain"]
if "layer" in planar_data["rate"].dims:
planar_data["rate"] = planar_data["rate"].isel(layer=0, drop=True)
# create an array indicating in which cells rch is active
is_rch_cell = allocate_rch_cells(
allocation_option,
idomain > 0,
planar_data["rate"],
)
# remove rch from cells where it is not allocated and broadcast over layers.
layered_data = {}
layered_data["rate"] = planar_data["rate"].where(is_rch_cell)
layered_data["rate"] = enforce_dim_order(layered_data["rate"])
return layered_data
[docs]
@classmethod
def from_imod5_data(
cls,
imod5_data: dict[str, dict[str, GridDataArray]],
period_data: dict[str, list[datetime]],
target_dis: StructuredDiscretization,
time_min: datetime,
time_max: datetime,
regridder_types: Optional[RechargeRegridMethod] = None,
regrid_cache: RegridderWeightsCache = RegridderWeightsCache(),
) -> "Recharge":
"""
Construct an rch-package from iMOD5 data, loaded with the
:func:`imod.formats.prj.open_projectfile_data` function.
.. note::
The method expects the iMOD5 model to be fully 3D, not quasi-3D.
Parameters
----------
imod5_data: dict
Dictionary with iMOD5 data. This can be constructed from the
:func:`imod.formats.prj.open_projectfile_data` method.
period_data: dict
Dictionary with iMOD5 period data. This can be constructed from the
:func:`imod.formats.prj.open_projectfile_data` method.
target_dis: GridDataArray
The discretization package for the simulation. Its grid does not
need to be identical to one of the input grids.
time_min: datetime
Begin-time of the simulation. Used for expanding period data.
time_max: datetime
End-time of the simulation. Used for expanding period data.
regridder_types: RechargeRegridMethod, optional
Optional dataclass with regridder types for a specific variable.
Use this to override default regridding methods.
regrid_cache: RegridderWeightsCache, optional
stores regridder weights for different regridders. Can be used to speed up regridding,
if the same regridders are used several times for regridding different arrays.
Returns
-------
Modflow 6 rch package.
"""
data = {
"rate": convert_unit_rch_rate(imod5_data["rch"]["rate"]),
}
regridded_package_data = regrid_imod5_pkg_data(
cls, data, target_dis, regridder_types, regrid_cache
)
# if rate has only layer 0, then it is planar.
if is_planar_grid(regridded_package_data["rate"]):
allocation_option = ALLOCATION_OPTION.at_first_active
layered_data = cls._allocate_planar_data(
regridded_package_data, target_dis, allocation_option
)
regridded_package_data.update(layered_data)
rch = cls(**regridded_package_data, validate=True, fixed_cell=False)
repeat = period_data.get("rch")
set_repeat_stress_if_available(repeat, time_min, time_max, rch)
# Clip the rch package to the time range of the simulation and ensure
# time is forward filled.
rch = rch.clip_box(time_min=time_min, time_max=time_max)
return rch
[docs]
@classmethod
def from_imod5_cap_data(
cls,
imod5_data: Imod5DataDict,
target_dis: StructuredDiscretization,
) -> "Recharge":
"""
Construct an rch-package from iMOD5 data in the CAP package, loaded with
the :func:`imod.formats.prj.open_projectfile_data` function. Package is
used to couple MODFLOW6 to MetaSWAP models. Active cells will have a
recharge rate of 0.0.
"""
cap_data = drop_layer_dim_cap_data(imod5_data)["cap"]
msw_area = get_cell_area_from_imod5_data(cap_data)
msw_active = is_msw_active_cell(target_dis, cap_data, msw_area)
active = msw_active.all
data = {}
zero_scalar = xr.DataArray(0.0, coords={"layer": 1})
data["rate"] = zero_scalar.where(active)
return cls(**data, validate=True, fixed_cell=False)