Source code for imod.mf6.model_gwf

from __future__ import annotations

import textwrap
from datetime import datetime
from typing import Optional, cast

import cftime
import numpy as np

from imod.logging import init_log_decorator
from imod.logging.logging_decorators import standard_log_decorator
from imod.mf6 import ConstantHead
from imod.mf6.clipped_boundary_condition_creator import create_clipped_boundary
from imod.mf6.dis import StructuredDiscretization
from imod.mf6.drn import Drainage
from imod.mf6.ghb import GeneralHeadBoundary
from imod.mf6.hfb import SingleLayerHorizontalFlowBarrierResistance
from imod.mf6.ic import InitialConditions
from imod.mf6.model import Modflow6Model
from imod.mf6.npf import NodePropertyFlow
from imod.mf6.rch import Recharge
from imod.mf6.regrid.regrid_schemes import (
    ConstantHeadRegridMethod,
    DiscretizationRegridMethod,
    DrainageRegridMethod,
    GeneralHeadBoundaryRegridMethod,
    InitialConditionsRegridMethod,
    NodePropertyFlowRegridMethod,
    RechargeRegridMethod,
    RegridMethodType,
    RiverRegridMethod,
    StorageCoefficientRegridMethod,
)
from imod.mf6.riv import River
from imod.mf6.sto import StorageCoefficient
from imod.mf6.utilities.chd_concat import concat_layered_chd_packages
from imod.mf6.utilities.regrid import RegridderWeightsCache
from imod.mf6.wel import LayeredWell, Well
from imod.prepare.topsystem.default_allocation_methods import (
    SimulationAllocationOptions,
    SimulationDistributingOptions,
)
from imod.typing import GridDataArray
from imod.typing.grid import zeros_like


[docs] class GroundwaterFlowModel(Modflow6Model): """ The GroundwaterFlowModel (GWF) simulates flow of (liquid) groundwater. More information can be found here: https://water.usgs.gov/water-resources/software/MODFLOW-6/mf6io_6.4.2.pdf#page=27 Parameters ---------- listing_file: Optional[str] = None name of the listing file to create for this GWF model. If not specified, then the name of the list file will be the basename of the GWF model name file and the 'lst' extension. print_input: bool = False keyword to indicate that the list of all model stress package information will be written to the listing file immediately after it is read. print_flows: bool = False keyword to indicate that the list of all model package flow rates will be printed to the listing file for every stress period time step in which "BUDGET PRINT" is specified in Output Control. save_flows: bool = False indicate that all model package flow terms will be written to the file specified with "BUDGET FILEOUT" in Output Control. newton: bool = False activates the Newton-Raphson formulation for groundwater flow between connected, convertible groundwater cells and stress packages that support calculation of Newton-Raphson terms for groundwater exchanges. under_relaxation: bool = False, indicates whether the groundwater head in a cell will be under-relaxed when water levels fall below the bottom of the model below any given cell. By default, Newton-Raphson UNDER_RELAXATION is not applied. """ _mandatory_packages = ("npf", "ic", "oc", "sto") _model_id = "gwf6" _template = Modflow6Model._initialize_template("gwf-nam.j2")
[docs] @init_log_decorator() def __init__( self, listing_file: Optional[str] = None, print_input: bool = False, print_flows: bool = False, save_flows: bool = False, newton: bool = False, under_relaxation: bool = False, ): super().__init__() self._options = { "listing_file": listing_file, "print_input": print_input, "print_flows": print_flows, "save_flows": save_flows, "newton": newton, "under_relaxation": under_relaxation, }
def clip_box( self, time_min: Optional[cftime.datetime | np.datetime64 | str] = None, time_max: Optional[cftime.datetime | np.datetime64 | str] = None, layer_min: Optional[int] = None, layer_max: Optional[int] = None, x_min: Optional[float] = None, x_max: Optional[float] = None, y_min: Optional[float] = None, y_max: Optional[float] = None, state_for_boundary: Optional[GridDataArray] = None, ): clipped = super().clip_box( time_min, time_max, layer_min, layer_max, x_min, x_max, y_min, y_max ) clipped_boundary_condition = self.__create_boundary_condition_clipped_boundary( self, clipped, state_for_boundary ) if clipped_boundary_condition is not None: clipped["chd_clipped"] = clipped_boundary_condition clipped.purge_empty_packages() return clipped def __create_boundary_condition_clipped_boundary( self, original_model: Modflow6Model, clipped_model: Modflow6Model, state_for_boundary: Optional[GridDataArray], ): unassigned_boundary_original_domain = ( self.__create_boundary_condition_for_unassigned_boundary( original_model, state_for_boundary ) ) return self.__create_boundary_condition_for_unassigned_boundary( clipped_model, state_for_boundary, [unassigned_boundary_original_domain] ) @staticmethod def __create_boundary_condition_for_unassigned_boundary( model: Modflow6Model, state_for_boundary: Optional[GridDataArray], additional_boundaries: Optional[list[ConstantHead]] = None, ): if state_for_boundary is None: return None constant_head_packages = [ pkg for name, pkg in model.items() if isinstance(pkg, ConstantHead) ] additional_boundaries = [ item for item in additional_boundaries or [] if item is not None ] constant_head_packages.extend(additional_boundaries) return create_clipped_boundary( model.domain, state_for_boundary, constant_head_packages ) def is_use_newton(self): return self._options["newton"] def set_newton(self, is_newton: bool) -> None: self._options["newton"] = is_newton def update_buoyancy_package(self, transport_models_per_flow_model) -> None: """ If the simulation is partitioned, then the buoyancy package, if present, must be updated for the renamed transport models. """ buoyancy_key = self._get_pkgkey("buy") if buoyancy_key is None: return buoyancy_package = self[buoyancy_key] transport_models_old = buoyancy_package.get_transport_model_names() if len(transport_models_old) == len(transport_models_per_flow_model): buoyancy_package.update_transport_models(transport_models_per_flow_model)
[docs] @classmethod @standard_log_decorator() def from_imod5_data( cls, imod5_data: dict[str, dict[str, GridDataArray]], period_data: dict[str, list[datetime]], times: list[datetime], allocation_options: Optional[SimulationAllocationOptions] = None, distributing_options: Optional[SimulationDistributingOptions] = None, regridder_types: Optional[dict[str, RegridMethodType]] = None, ) -> "GroundwaterFlowModel": """ Imports a GroundwaterFlowModel (GWF) from the data in an iMOD5 project file and puts it in a simulation. Quasi-3D iMOD5 models, i.e. models where there is only horizontal flow in aquifers and vertical flow in aquitards, are not supported. This method adds all static and boundary condition packages from the projectfile to the simulation. Output Control (OC) must be added manually after importing. Parameters ---------- imod5_data: dict[str, dict[str, GridDataArray]] dictionary containing the arrays mentioned in the project file as xarray datasets, under the key of the package type to which it belongs period_data: dict[str, list[datetime]] dictionary containing the package names mapped to a list of repeated stress periods. These are set as ``repeat_stress``. times: list[datetime] Time discretization of the simulation. These times are used for the following: * Times of wells with associated timeseries are resampled to these times * Start- and end times in the list are used to repeat the stresses of periodic data (e.g. river stages in iMOD5 for "summer", "winter") allocation_options: SimulationAllocationOptions object containing the allocation options per package type. If you want a package to have a different allocation option, then it should be imported separately distributing_options: SimulationDistributingOptions object containing the conductivity distribution options per package type. If you want a package to have a different allocation option, then it should be imported separately regridder_types: dict[str, RegridMethodType] the key is the package name. The value is a subclass of RegridMethodType. Returns ------- A GWF model containing the packages that could be imported form IMOD5. Users must still add the OC package to the model. """ if allocation_options is None: allocation_options = SimulationAllocationOptions() if distributing_options is None: distributing_options = SimulationDistributingOptions() if regridder_types is None: regridder_types = {} # first import the singleton packages # import dis regrid_cache = RegridderWeightsCache() result = GroundwaterFlowModel() dis_pkg = StructuredDiscretization.from_imod5_data( imod5_data, cast(DiscretizationRegridMethod, regridder_types.get("dis")), regrid_cache, False, ) grid = dis_pkg.dataset["idomain"] result["dis"] = dis_pkg # import npf npf_pkg = NodePropertyFlow.from_imod5_data( imod5_data, grid, cast(NodePropertyFlowRegridMethod, regridder_types.get("npf")), regrid_cache, ) result["npf"] = npf_pkg # import sto if "sto" in imod5_data.keys(): result["sto"] = StorageCoefficient.from_imod5_data( imod5_data, grid, cast(StorageCoefficientRegridMethod, regridder_types.get("sto")), regrid_cache, ) else: zeros = zeros_like(grid, dtype=float) result["sto"] = StorageCoefficient( storage_coefficient=zeros, specific_yield=zeros, transient=False, convertible=zeros.astype(int), ) # import initial conditions result["ic"] = InitialConditions.from_imod5_data( imod5_data, grid, cast(InitialConditionsRegridMethod, regridder_types.get("ic")), regrid_cache, ) # import recharge if "rch" in imod5_data.keys(): result["rch"] = Recharge.from_imod5_data( imod5_data, dis_pkg, cast(RechargeRegridMethod, regridder_types.get("rch")), regrid_cache, ) # now import the non-singleton packages' imod5_keys = list(imod5_data.keys()) # import wells wel_keys = [key for key in imod5_keys if key[0:3] == "wel"] for wel_key in wel_keys: wel_key_truncated = wel_key[:16] if wel_key_truncated in result.keys(): # Remove this when https://github.com/Deltares/imod-python/issues/1167 # is resolved msg = textwrap.dedent( f"""Truncated key: '{wel_key_truncated}' already assigned to imported model, please rename wells so that unique names are formed after they are truncated to 16 characters for MODFLOW 6. """ ) raise KeyError(msg) layer = np.array(imod5_data[wel_key]["layer"]) if np.any(layer == 0): result[wel_key_truncated] = Well.from_imod5_data( wel_key, imod5_data, times ) else: result[wel_key_truncated] = LayeredWell.from_imod5_data( wel_key, imod5_data, times ) if "cap" in imod5_keys: result["msw-sprinkling"] = LayeredWell.from_imod5_cap_data(imod5_data) # type: ignore result["msw-rch"] = Recharge.from_imod5_cap_data(imod5_data) # type: ignore # import ghb's ghb_keys = [key for key in imod5_keys if key[0:3] == "ghb"] for ghb_key in ghb_keys: ghb_pkg = GeneralHeadBoundary.from_imod5_data( ghb_key, imod5_data, period_data, dis_pkg, npf_pkg, times[0], times[-1], allocation_options.ghb, distributing_options.ghb, regridder_types=cast( GeneralHeadBoundaryRegridMethod, regridder_types.get(ghb_key) ), regrid_cache=regrid_cache, ) result[ghb_key] = ghb_pkg # import drainage drainage_keys = [key for key in imod5_keys if key[0:3] == "drn"] for drn_key in drainage_keys: drn_pkg = Drainage.from_imod5_data( drn_key, imod5_data, period_data, dis_pkg, npf_pkg, times[0], times[-1], allocation_options.drn, distributing_option=distributing_options.drn, regridder_types=cast( DrainageRegridMethod, regridder_types.get(drn_key) ), regrid_cache=regrid_cache, ) result[drn_key] = drn_pkg # import rivers ( and drainage to account for infiltration factor) riv_keys = [key for key in imod5_keys if key[0:3] == "riv"] for riv_key in riv_keys: riv_pkg, riv_drn_pkg = River.from_imod5_data( riv_key, imod5_data, period_data, dis_pkg, npf_pkg, times[0], times[-1], allocation_options.riv, distributing_options.riv, cast(RiverRegridMethod, regridder_types.get(riv_key)), regrid_cache, ) if riv_pkg is not None: result[riv_key + "riv"] = riv_pkg if riv_drn_pkg is not None: result[riv_key + "drn"] = riv_drn_pkg # import hfb hfb_keys = [key for key in imod5_keys if key[0:3] == "hfb"] if len(hfb_keys) != 0: for hfb_key in hfb_keys: result[hfb_key] = ( SingleLayerHorizontalFlowBarrierResistance.from_imod5_data( hfb_key, imod5_data ) ) # import chd chd_keys = [key for key in imod5_keys if key[0:3] == "chd"] if len(chd_keys) == 0: result["chd_from_shd"] = ConstantHead.from_imod5_shd_data( imod5_data, dis_pkg, cast(ConstantHeadRegridMethod, regridder_types.get("chd_from_shd")), regrid_cache, ) else: chd_packages = {} for chd_key in chd_keys: chd_packages[chd_key] = ConstantHead.from_imod5_data( chd_key, imod5_data, dis_pkg, cast(ConstantHeadRegridMethod, regridder_types.get(chd_key)), regrid_cache, ) merged_chd = concat_layered_chd_packages( "chd", chd_packages, remove_merged_packages=True ) if merged_chd is not None: result["chd_merged"] = merged_chd for key, chd_package in chd_packages.items(): result[key] = chd_package return result