from copy import deepcopy
from datetime import datetime
from typing import Optional
import numpy as np
from imod.common.interfaces.iregridpackage import IRegridPackage
from imod.common.utilities.regrid import (
_regrid_package_data,
)
from imod.logging import init_log_decorator, standard_log_decorator
from imod.mf6.boundary_condition import BoundaryCondition
from imod.mf6.dis import StructuredDiscretization
from imod.mf6.disv import VerticesDiscretization
from imod.mf6.npf import NodePropertyFlow
from imod.mf6.regrid.regrid_schemes import DrainageRegridMethod
from imod.mf6.validation import BOUNDARY_DIMS_SCHEMA, CONC_DIMS_SCHEMA
from imod.prepare.cleanup import cleanup_drn
from imod.prepare.topsystem.allocation import ALLOCATION_OPTION, allocate_drn_cells
from imod.prepare.topsystem.conductance import (
DISTRIBUTING_OPTION,
distribute_drn_conductance,
)
from imod.schemata import (
AllCoordsValueSchema,
AllInsideNoDataSchema,
AllNoDataSchema,
AllValueSchema,
CoordsSchema,
DimsSchema,
DTypeSchema,
IdentityNoDataSchema,
IndexesSchema,
OtherCoordsSchema,
)
from imod.typing import GridDataArray
from imod.typing.grid import enforce_dim_order, has_negative_layer, is_planar_grid
from imod.util.expand_repetitions import expand_repetitions
from imod.util.regrid import RegridderWeightsCache
[docs]
class Drainage(BoundaryCondition, IRegridPackage):
"""
The Drain package is used to simulate head-dependent flux boundaries.
https://water.usgs.gov/ogw/modflow/mf6io.pdf#page=67
Parameters
----------
elevation: array of floats (xr.DataArray)
elevation of the drain. (elev)
conductance: array of floats (xr.DataArray)
is the conductance of the drain. (cond)
concentration: array of floats (xr.DataArray, optional)
if this flow package is used in simulations also involving transport, then this array is used
as the concentration for inflow over this boundary.
concentration_boundary_type: ({"AUX", "AUXMIXED"}, optional)
if this flow package is used in simulations also involving transport, then this keyword specifies
how outflow over this boundary is computed.
print_input: ({True, False}, optional)
keyword to indicate that the list of drain information will be written
to the listing file immediately after it is read. Default is False.
print_flows: ({True, False}, optional)
Indicates that the list of drain flow rates will be printed to the
listing file for every stress period time step in which "BUDGET PRINT"
is specified in Output Control. If there is no Output Control option and
PRINT FLOWS is specified, then flow rates are printed for the last time
step of each stress period.
Default is False.
save_flows: ({True, False}, optional)
Indicates that drain flow terms will be written to the file specified
with "BUDGET FILEOUT" in Output Control. Default is False.
observations: [Not yet supported.]
Default is None.
validate: {True, False}
Flag to indicate whether the package should be validated upon
initialization. This raises a ValidationError if package input is
provided in the wrong manner. Defaults to True.
repeat_stress: Optional[xr.DataArray] of datetimes
Used to repeat data for e.g. repeating stress periods such as
seasonality without duplicating the values. The DataArray should have
dimensions ``("repeat", "repeat_items")``. The ``repeat_items``
dimension should have size 2: the first value is the "key", the second
value is the "value". For the "key" datetime, the data of the "value"
datetime will be used. Can also be set with a dictionary using the
``set_repeat_stress`` method.
"""
_pkg_id = "drn"
# has to be ordered as in the list
_init_schemata = {
"elevation": [
DTypeSchema(np.floating),
IndexesSchema(),
CoordsSchema(("layer",)),
BOUNDARY_DIMS_SCHEMA,
AllCoordsValueSchema("layer", ">", 0),
],
"conductance": [
DTypeSchema(np.floating),
IndexesSchema(),
CoordsSchema(("layer",)),
BOUNDARY_DIMS_SCHEMA,
AllCoordsValueSchema("layer", ">", 0),
],
"concentration": [
DTypeSchema(np.floating),
IndexesSchema(),
CoordsSchema(
(
"species",
"layer",
)
),
CONC_DIMS_SCHEMA,
AllCoordsValueSchema("layer", ">", 0),
],
"print_flows": [DTypeSchema(np.bool_), DimsSchema()],
"save_flows": [DTypeSchema(np.bool_), DimsSchema()],
}
_write_schemata = {
"elevation": [
OtherCoordsSchema("idomain"),
AllNoDataSchema(), # Check for all nan, can occur while clipping
AllInsideNoDataSchema(other="idomain", is_other_notnull=(">", 0)),
],
"conductance": [IdentityNoDataSchema("elevation"), AllValueSchema(">", 0.0)],
"concentration": [IdentityNoDataSchema("elevation"), AllValueSchema(">=", 0.0)],
}
_period_data = ("elevation", "conductance")
_keyword_map = {}
_template = BoundaryCondition._initialize_template(_pkg_id)
_auxiliary_data = {"concentration": "species"}
_regrid_method = DrainageRegridMethod()
[docs]
@init_log_decorator()
def __init__(
self,
elevation,
conductance,
concentration=None,
concentration_boundary_type="aux",
print_input=False,
print_flows=False,
save_flows=False,
observations=None,
validate: bool = True,
repeat_stress=None,
):
dict_dataset = {
"elevation": elevation,
"conductance": conductance,
"concentration": concentration,
"concentration_boundary_type": concentration_boundary_type,
"print_input": print_input,
"print_flows": print_flows,
"save_flows": save_flows,
"observations": observations,
"repeat_stress": repeat_stress,
}
super().__init__(dict_dataset)
self._validate_init_schemata(validate)
def _validate(self, schemata, **kwargs):
# Insert additional kwargs
kwargs["elevation"] = self["elevation"]
errors = super()._validate(schemata, **kwargs)
return errors
[docs]
@standard_log_decorator()
def cleanup(self, dis: StructuredDiscretization | VerticesDiscretization) -> None:
"""
Clean up package inplace. This method calls
:func:`imod.prepare.cleanup_drn`, see documentation of that
function for details on cleanup.
dis: imod.mf6.StructuredDiscretization | imod.mf6.VerticesDiscretization
Model discretization package.
"""
dis_dict = {"idomain": dis.dataset["idomain"]}
cleaned_dict = self._call_func_on_grids(cleanup_drn, dis_dict)
super().__init__(cleaned_dict)
@classmethod
def allocate_and_distribute_planar_data(
cls,
planar_data: dict[str, GridDataArray],
dis: StructuredDiscretization,
npf: NodePropertyFlow,
allocation_option: ALLOCATION_OPTION,
distributing_option: DISTRIBUTING_OPTION,
) -> dict[str, GridDataArray]:
"""
Allocate and distribute planar data for given discretization and npf
package. If layer number of ``planar_data`` is negative,
``allocation_option`` is overrided and set to
ALLOCATION_OPTION.at_first_active.
Parameters
----------
planar_data: dict[str, GridDataArray]
Dictionary with planar grid data.
dis: imod.mf6.StructuredDiscretization
Model discretization package.
npf: imod.mf6.NodePropertyFlow
Node property flow package.
allocation_option: ALLOCATION_OPTION
allocation option. If planar data is assigned to a negative layer
number, this option is overridden and set to
ALLOCATION_OPTION.at_first_active.
distributing_option: DISTRIBUTING_OPTION
distributing option.
Returns
-------
dict[str, GridDataArray]
Dictionary with layered grid data.
"""
top = dis.dataset["top"]
bottom = dis.dataset["bottom"]
idomain = dis.dataset["idomain"]
if has_negative_layer(planar_data["elevation"]):
allocation_option = ALLOCATION_OPTION.at_first_active
# Enforce planar data, remove all layer dimension information
planar_data = {
key: grid.isel({"layer": 0}, drop=True, missing_dims="ignore")
for key, grid in planar_data.items()
}
drn_allocation = allocate_drn_cells(
allocation_option,
idomain > 0,
top,
bottom,
planar_data["elevation"],
)
layered_data = {}
layered_data["conductance"] = distribute_drn_conductance(
distributing_option,
drn_allocation,
planar_data["conductance"],
top,
bottom,
npf.dataset["k"],
planar_data["elevation"],
)
layered_data["elevation"] = planar_data["elevation"].where(drn_allocation)
layered_data["elevation"] = enforce_dim_order(layered_data["elevation"])
return layered_data
[docs]
@classmethod
def from_imod5_data(
cls,
key: str,
imod5_data: dict[str, dict[str, GridDataArray]],
period_data: dict[str, list[datetime]],
target_dis: StructuredDiscretization,
target_npf: NodePropertyFlow,
time_min: datetime,
time_max: datetime,
allocation_option: ALLOCATION_OPTION,
distributing_option: DISTRIBUTING_OPTION,
regridder_types: Optional[DrainageRegridMethod] = None,
regrid_cache: RegridderWeightsCache = RegridderWeightsCache(),
) -> "Drainage":
"""
Construct a drainage-package from iMOD5 data, loaded with the
:func:`imod.formats.prj.open_projectfile_data` function.
.. note::
The method expects the iMOD5 model to be fully 3D, not quasi-3D.
Parameters
----------
key: str
Packagename of the iMOD5 data to use.
imod5_data: dict
Dictionary with iMOD5 data. This can be constructed from the
:func:`imod.formats.prj.open_projectfile_data` method.
period_data: dict
Dictionary with iMOD5 period data. This can be constructed from the
:func:`imod.formats.prj.open_projectfile_data` method.
target_dis: StructuredDiscretization package
The grid that should be used for the new package. Does not
need to be identical to one of the input grids.
target_npf: NodePropertyFlow package
The conductivity information, used to compute drainage flux
allocation_option: ALLOCATION_OPTION
allocation option. If package data is assigned to a negative layer
number, this option is overridden and set to
ALLOCATION_OPTION.at_first_active.
distributing_option: dict[str, DISTRIBUTING_OPTION]
distributing option.
time_min: datetime
Begin-time of the simulation. Used for expanding period data.
time_max: datetime
End-time of the simulation. Used for expanding period data.
regridder_types: DrainageRegridMethod, optional
Optional dataclass with regridder types for a specific variable.
Use this to override default regridding methods.
regrid_cache: RegridderWeightsCache, optional
stores regridder weights for different regridders. Can be used to speed up regridding,
if the same regridders are used several times for regridding different arrays.
Returns
-------
A Modflow 6 Drainage package.
"""
target_idomain = target_dis.dataset["idomain"]
data = {
"elevation": imod5_data[key]["elevation"],
"conductance": imod5_data[key]["conductance"],
}
is_planar = is_planar_grid(data["elevation"])
if regridder_types is None:
regridder_types = Drainage.get_regrid_methods()
regridded_package_data = _regrid_package_data(
data, target_idomain, regridder_types, regrid_cache, {}
)
if is_planar:
layered_data = cls.allocate_and_distribute_planar_data(
regridded_package_data,
target_dis,
target_npf,
allocation_option,
distributing_option,
)
regridded_package_data.update(layered_data)
drn = Drainage(**regridded_package_data, validate=True)
repeat = period_data.get(key)
if repeat is not None:
drn.set_repeat_stress(expand_repetitions(repeat, time_min, time_max))
return drn
@classmethod
def get_regrid_methods(cls) -> DrainageRegridMethod:
return deepcopy(cls._regrid_method)