Source code for imod.mf6.chd

import numpy as np

from imod.logging import init_log_decorator
from imod.mf6.boundary_condition import BoundaryCondition
from imod.mf6.interfaces.iregridpackage import IRegridPackage
from imod.mf6.regrid.regrid_schemes import ConstantHeadRegridMethod
from imod.mf6.validation import BOUNDARY_DIMS_SCHEMA, CONC_DIMS_SCHEMA
from imod.schemata import (
    AllInsideNoDataSchema,
    AllNoDataSchema,
    AllValueSchema,
    CoordsSchema,
    DTypeSchema,
    IdentityNoDataSchema,
    IndexesSchema,
    OtherCoordsSchema,
)


[docs] class ConstantHead(BoundaryCondition, IRegridPackage): """ Constant-Head package. Any number of CHD Packages can be specified for a single groundwater flow model; however, an error will occur if a CHD Package attempts to make a GWF cell a constant-head cell when that cell has already been designated as a constant-head cell either within the present CHD Package or within another CHD Package. In previous MODFLOW versions, it was not possible to convert a constant-head cell to an active cell. Once a cell was designated as a constant-head cell, it remained a constant-head cell until the end of the end of the simulation. In MODFLOW 6 a constant-head cell will become active again if it is not included as a constant-head cell in subsequent stress periods. Previous MODFLOW versions allowed specification of SHEAD and EHEAD, which were the starting and ending prescribed heads for a stress period. Linear interpolation was used to calculate a value for each time step. In MODFLOW 6 only a single head value can be specified for any constant-head cell in any stress period. The time-series functionality must be used in order to interpolate values to individual time steps. Parameters ---------- head: array of floats (xr.DataArray) Is the head at the boundary. print_input: ({True, False}, optional) keyword to indicate that the list of constant head information will be written to the listing file immediately after it is read. Default is False. concentration: array of floats (xr.DataArray, optional) if this flow package is used in simulations also involving transport, then this array is used as the concentration for inflow over this boundary. concentration_boundary_type: ({"AUX", "AUXMIXED"}, optional) if this flow package is used in simulations also involving transport, then this keyword specifies how outflow over this boundary is computed. print_flows: ({True, False}, optional) Indicates that the list of constant head flow rates will be printed to the listing file for every stress period time step in which "BUDGET PRINT" is specified in Output Control. If there is no Output Control option and PRINT FLOWS is specified, then flow rates are printed for the last time step of each stress period. Default is False. save_flows: ({True, False}, optional) Indicates that constant head flow terms will be written to the file specified with "BUDGET FILEOUT" in Output Control. Default is False. observations: [Not yet supported.] Default is None. validate: {True, False} Flag to indicate whether the package should be validated upon initialization. This raises a ValidationError if package input is provided in the wrong manner. Defaults to True. repeat_stress: Optional[xr.DataArray] of datetimes Used to repeat data for e.g. repeating stress periods such as seasonality without duplicating the values. The DataArray should have dimensions ``("repeat", "repeat_items")``. The ``repeat_items`` dimension should have size 2: the first value is the "key", the second value is the "value". For the "key" datetime, the data of the "value" datetime will be used. Can also be set with a dictionary using the ``set_repeat_stress`` method. """ _pkg_id = "chd" _keyword_map = {} _period_data = ("head",) _init_schemata = { "head": [ DTypeSchema(np.floating), IndexesSchema(), CoordsSchema(("layer",)), BOUNDARY_DIMS_SCHEMA, ], "concentration": [ DTypeSchema(np.floating), IndexesSchema(), CoordsSchema(("layer",)), CONC_DIMS_SCHEMA, ], } _write_schemata = { "head": [ OtherCoordsSchema("idomain"), AllNoDataSchema(), # Check for all nan, can occur while clipping AllInsideNoDataSchema(other="idomain", is_other_notnull=(">", 0)), ], "concentration": [IdentityNoDataSchema("head"), AllValueSchema(">=", 0.0)], } _keyword_map = {} _auxiliary_data = {"concentration": "species"} _template = BoundaryCondition._initialize_template(_pkg_id) _regrid_method = ConstantHeadRegridMethod()
[docs] @init_log_decorator() def __init__( self, head, concentration=None, concentration_boundary_type="aux", print_input=False, print_flows=False, save_flows=False, observations=None, validate: bool = True, repeat_stress=None, ): dict_dataset = { "head": head, "concentration": concentration, "concentration_boundary_type": concentration_boundary_type, "print_input": print_input, "print_flows": print_flows, "save_flows": save_flows, "observations": observations, "repeat_stress": repeat_stress, } super().__init__(dict_dataset) self._validate_init_schemata(validate)
def _validate(self, schemata, **kwargs): # Insert additional kwargs kwargs["head"] = self["head"] errors = super()._validate(schemata, **kwargs) return errors