hydromt.data_catalog.sources.DataSource#
- class hydromt.data_catalog.sources.DataSource(*, name: str, uri: str, data_adapter: DataAdapterBase, driver: BaseDriver, uri_resolver: URIResolver = None, root: str | None = None, version: str | int | float | None = None, provider: str | None = None, metadata: SourceMetadata = None)[source]#
A DataSource is a parsed section of a DataCatalog.
The DataSource, specific for a data type within HydroMT, is responsible for validating the input from the DataCatalog, to ensure the workflow fails as early as possible. A DataSource has information on the driver that the data should be read with, and is responsible for initializing this driver.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- __init__(**data: Any) None #
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
Methods
__init__
(**data)Create a new model by parsing and validating input data from keyword arguments.
construct
([_fields_set])copy
(*[, include, exclude, update, deep])Returns a copy of the model.
dict
(*[, include, exclude, by_alias, ...])from_orm
(obj)json
(*[, include, exclude, by_alias, ...])model_construct
([_fields_set])Creates a new instance of the Model class with validated data.
model_copy
(*[, update, deep])Usage docs: https://docs.pydantic.dev/2.8/concepts/serialization/#model_copy
model_dump
(*[, mode, include, exclude, ...])Usage docs: https://docs.pydantic.dev/2.8/concepts/serialization/#modelmodel_dump
model_dump_json
(*[, indent, include, ...])Usage docs: https://docs.pydantic.dev/2.8/concepts/serialization/#modelmodel_dump_json
model_json_schema
([by_alias, ref_template, ...])Generates a JSON schema for a model class.
model_parametrized_name
(params)Compute the class name for parametrizations of generic classes.
model_post_init
(context, /)This function is meant to behave like a BaseModel method to initialise private attributes.
model_rebuild
(*[, force, raise_errors, ...])Try to rebuild the pydantic-core schema for the model.
model_validate
(obj, *[, strict, ...])Validate a pydantic model instance.
model_validate_json
(json_data, *[, strict, ...])Usage docs: https://docs.pydantic.dev/2.8/concepts/json/#json-parsing
model_validate_strings
(obj, *[, strict, context])Validate the given object with string data against the Pydantic model.
parse_file
(path, *[, content_type, ...])parse_obj
(obj)parse_raw
(b, *[, content_type, encoding, ...])schema
([by_alias, ref_template])schema_json
(*[, by_alias, ref_template])summary
()Return a summary of the DataSource.
update_forward_refs
(**localns)validate
(value)Attributes
full_uri
Join root with uri.
model_computed_fields
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
model_config
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
model_extra
Get extra fields set during validation.
model_fields
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].
model_fields_set
Returns the set of fields that have been explicitly set on this model instance.
name
uri
data_adapter
driver
uri_resolver
data_type
root
version
provider
metadata