Tutorial defining and calculating parameters for the Soft Soil Creep model¶
Part of the GEOLIB+ package is also a module that can determine certain parameters
used as input of the Soft Soil Creep (SSC) model. To do that we can use the
SoftSoilCreepParameters
class.
In this tutorial the user reads will perform the following steps to calculate the SSC parameters:
read a cpt and interpret it using the
RobertsonCptInterpretation
class.calculate the OCR values in every point of the cpt
calculate the initial void ratio based on the lithology
calculate the compression index based on Nishida (1956) [16]
To begin with the SSC model calculation the SoftSoilCreepParameters
class
should be initialized.
from geolib_plus.soft_soil_creep_parameters import SoftSoilCreepParameters # initialize class SSC_model = SoftSoilCreepParameters()
The user will then read and interpret a gef file using GEOLIB+. Note that reading the cpt is not neccessary for the SSC parameter determination. Input parameters can also come from labtests (which is more accurate).
from pathlib import Path from geolib_plus.gef_cpt import GefCpt from geolib_plus.robertson_cpt_interpretation import RobertsonCptInterpretation # read cpt from gef file cpt_file_gef = Path("cpt", "gef", "test_cpt.gef") cpt_gef = GefCpt() cpt_gef.read(cpt_file_gef) cpt_gef.pre_process_data() # define interpreter interpreter = RobertsonCptInterpretation() # perform interpretation cpt_gef.interpret_cpt(interpreter)
The data stored in the cpt_gef can be used to calculate more parameters that can be used as inputs of the SSC parameter calculation. For example, the OCR value can be calculated using the following equation [1].
import numpy as np OCR = np.array([ 0.25 * Qtn_value ** 1.25 for Qtn_value in cpt_gef.Qtn])
The initial void ratio is defined by using the lithology attribute. From the initial void ratio the compression index can also be calculated.
# assign size to void ratio list eo = np.zeros(len(cpt_gef.lithology)) for i, lithology_index in enumerate(cpt_gef.lithology): if lithology_index in ["1", "2", "3"]: eo[i] = 0.6 elif lithology_index == "4": eo[i] = 0.33 elif lithology_index in ["5", "6", "7"]: eo[i] = 0.26 else: eo[i] = 0.5 Cc = 1.15 * ( eo - 0.35)
Now that all the inputs are prepared for the SSC parameter calculation the user can input them into the class and perform the calculation.
# input calculated arrays in SSC object SSC_model.eo = eo SSC_model.Cc = Cc SSC_model.v_ur = cpt_gef.poisson SSC_model.OCR = OCR # some of the inputs can be defined as floats SSC_model.Cs = 1 SSC_model.Ca = 0.1 SSC_model.K0_NC = 0.5 # calculate parameters SSC_model.calculate_soft_soil_parameters()