Source code for hydromt_wflow.wflow_sediment

# -*- coding: utf-8 -*-

import os
from os.path import join
import numpy as np
import pandas as pd
import xarray as xr

from hydromt_wflow.wflow import WflowModel, PCR_VS_MAP
from .workflows import landuse, soilgrids_sediment
from . import DATADIR

import logging


__all__ = ["WflowSedimentModel"]

logger = logging.getLogger(__name__)


[docs]class WflowSedimentModel(WflowModel): """This is the wflow sediment model class, a subclass of WflowModel""" _NAME = "wflow_sediment" _CONF = "wflow_sediment.toml" _DATADIR = DATADIR _GEOMS = {} _MAPS = WflowModel._MAPS.copy() _MAPS.update( { "soil": "wflow_soil", } ) _FOLDERS = WflowModel._FOLDERS
[docs] def __init__( self, root=None, mode="w", config_fn=None, data_libs=None, deltares_data=False, logger=logger, ): super().__init__( root=root, mode=mode, config_fn=config_fn, data_libs=data_libs, deltares_data=deltares_data, logger=logger, )
[docs] def setup_lakes(self, lakes_fn="hydro_lakes", min_area=1.0): """This component generates maps of lake areas and outlets as well as parameters with average lake area, depth a discharge values. The data is generated from features with ``min_area`` [km2] from a database with lake geometry, IDs and metadata. Currently, "hydro_lakes" (hydroLakes) is the only supported ``lakes_fn`` data source and we use a default minimum area of 1 km2. Adds model layers: * **wflow_lakeareas** map: lake IDs [-] * **wflow_lakelocs** map: lake IDs at outlet locations [-] * **LakeArea** map: lake area [m2] * **LakeAvgLevel** map: lake average water level [m] * **LakeAvgOut** map: lake average discharge [m3/s] * **Lake_b** map: lake rating curve coefficient [-] * **lakes** geom: polygon with lakes and wflow lake parameters Parameters ---------- lakes_fn : {'hydro_lakes'} Name of data source for lake parameters, see data/data_sources.yml. * Required variables: ['waterbody_id', 'Area_avg', 'Vol_avg', 'Depth_avg', 'Dis_avg'] min_area : float, optional Minimum lake area threshold [km2], by default 1.0 km2. """ super().setup_lakes(lakes_fn=lakes_fn, min_area=min_area) # Update the toml to match wflow_sediment and not wflow_sbm lakes_toml_add = { "model.dolake": True, "model.lakes": False, } if "wflow_lakeareas" in self.staticmaps: for option in lakes_toml_add: self.set_config(option, lakes_toml_add[option]) if self.get_config("state.lateral.river.lake") is not None: del self.config["state"]["lateral"]["river"]["lake"] if self.get_config("input.lateral.river.lake") is not None: del self.config["input"]["lateral"]["river"]["lake"]
[docs] def setup_reservoirs( self, reservoirs_fn="hydro_reservoirs", min_area=1.0, priority_jrc=True, **kwargs, ): """This component generates maps of lake areas and outlets as well as parameters with average reservoir area, demand, min and max target storage capacities and discharge capacity values. The data is generated from features with ``min_area`` [km2] from a database with reservoir geometry, IDs and metadata. Currently, "hydro_reservoirs" (based on GRAND) is the only supported ``reservoirs_fn`` data source and we use a default minimum area of 1 km2. Adds model layers: * **wflow_reservoirareas** map: reservoir IDs [-] * **wflow_reservoirlocs** map: reservoir IDs at outlet locations [-] * **ResSimpleArea** map: reservoir area [m2] * **ResMaxVolume** map: reservoir max volume [m3] * **ResTargetMinFrac** map: reservoir target min frac [m3/m3] * **ResTargetFullFrac** map: reservoir target full frac [m3/m3] * **ResDemand** map: reservoir demand flow [m3/s] * **ResMaxRelease** map: reservoir max release flow [m3/s] * **reservoirs** geom: polygon with reservoirs and wflow reservoir parameters Parameters ---------- reservoirs_fn : {'hydro_reservoirs'} Name of data source for reservoir parameters, see data/data_sources.yml. * Required variables with hydroengine: ['waterbody_id', 'Hylak_id', 'Vol_avg', 'Depth_avg', 'Dis_avg', 'Dam_height'] * Required variables without hydroengine: ['waterbody_id', 'Area_avg', 'Vol_avg', 'Depth_avg', 'Dis_avg', 'Capacity_max', 'Capacity_norm', 'Capacity_min', 'Dam_height'] min_area : float, optional Minimum reservoir area threshold [km2], by default 1.0 km2. priority_jrc : boolean, optional If True, use JRC water occurence (Pekel,2016) data from GEE to calculate and overwrite the reservoir volume/areas of the data source. """ super().setup_reservoirs( reservoirs_fn=reservoirs_fn, min_area=min_area, priority_jrc=priority_jrc, **kwargs, ) # Update the toml to match wflow_sediment and not wflow_sbm res_toml_add = { "model.doreservoir": True, "model.reservoirs": False, } if "wflow_reservoirareas" in self.staticmaps: for option in res_toml_add: self.set_config(option, res_toml_add[option]) if self.get_config("state.lateral.river.reservoir") is not None: del self.config["state"]["lateral"]["river"]["reservoir"] if self.get_config("input.lateral.river.reservoir") is not None: del self.config["input"]["lateral"]["river"]["reservoir"]
[docs] def setup_gauges( self, gauges_fn=None, source_gdf=None, snap_to_river=True, mask=None, derive_subcatch=False, derive_outlet=True, basename=None, update_toml=True, gauge_toml_header=None, gauge_toml_param=None, **kwargs, ): """This components sets the default gauge map based on basin outlets and additional gauge maps based on ``gauges_fn`` data. Supported gauge datasets include "grdc" or "<path_to_source>" for user supplied csv or geometry files with gauge locations. If a csv file is provided, a "x" or "lon" and "y" or "lat" column is required and the first column will be used as IDs in the map. If ``snap_to_river`` is set to True, the gauge location will be snapped to the boolean river mask. If ``derive_subcatch`` is set to True, an additonal subcatch map is derived from the gauge locations. Adds model layers: * **wflow_gauges** map: gauge IDs map from catchment outlets [-] * **wflow_gauges_source** map: gauge IDs map from source [-] (if gauges_fn) * **wflow_subcatch_source** map: subcatchment based on gauge locations [-] (if derive_subcatch) * **gauges** geom: polygon of catchment outlets * **gauges_source** geom: polygon of gauges from source * **subcatch_source** geom: polygon of subcatchment based on gauge locations [-] (if derive_subcatch) Parameters ---------- gauges_fn : str, {"grdc"}, optional Known source name or path to gauges file geometry file, by default None. source_gdf : geopandas.GeoDataFame, optional Direct gauges file geometry, by default None. snap_to_river : bool, optional Snap point locations to the closest downstream river cell, by default True mask : np.boolean, optional If provided snaps to the mask, else snaps to the river (default). derive_subcatch : bool, optional Derive subcatch map for gauges, by default False derive_outlet : bool, optional Derive gaugemap based on catchment outlets, by default True basename : str, optional Map name in staticmaps (wflow_gauges_basename), if None use the gauges_fn basename. update_toml : boolean, optional Update [outputcsv] section of wflow toml file. gauge_toml_header : list, optional Save specific model parameters in csv section. This option defines the header of the csv file./ By default saves Q (for lateral.river.q_riv) and TSS (for lateral.river.SSconc). gauge_toml_param: list, optional Save specific model parameters in csv section. This option defines the wflow variable corresponding to the/ names in gauge_toml_header. By default saves lateral.river.q_riv (for Q) and lateral.river.SSconc (for TSS). """ # # Add new outputcsv section in the config if gauge_toml_param is None and update_toml: gauge_toml_header = ["Q", "TSS"] gauge_toml_param = ["lateral.river.q_riv", "lateral.river.SSconc"] super().setup_gauges( gauges_fn=gauges_fn, source_gdf=source_gdf, snap_to_river=snap_to_river, mask=mask, derive_subcatch=derive_subcatch, derive_outlet=derive_outlet, basename=basename, update_toml=update_toml, gauge_toml_header=gauge_toml_header, gauge_toml_param=gauge_toml_param, )
[docs] def setup_lulcmaps( self, lulc_fn="globcover", lulc_mapping_fn=None, lulc_vars=[ "landuse", "Cov_River", "Kext", "N", "PathFrac", "Sl", "Swood", "USLE_C", "WaterFrac", ], ): """This component derives several wflow maps are derived based on landuse- landcover (LULC) data. Currently, ``lulc_fn`` can be set to the "vito", "globcover" or "corine", fo which lookup tables are constructed to convert lulc classses to model parameters based on literature. The data is remapped at its original resolution and then resampled to the model resolution using the average value, unless noted differently. Adds model layers: * **landuse** map: Landuse class [-] Original source dependent LULC class, resampled using nearest neighbour. * **Cov_river** map: vegetation coefficent reducing stream bank erosion [-]. * **Kext** map: Extinction coefficient in the canopy gap fraction equation [-] * **Sl** map: Specific leaf storage [mm] * **Swood** map: Fraction of wood in the vegetation/plant [-] * **USLE_C** map: Cover managment factor from the USLE equation [-] * **PathFrac** map: The fraction of compacted or urban area per grid cell [-] * **WaterFrac** map: The fraction of open water per grid cell [-] * **N** map: Manning Roughness [-] Parameters ---------- lulc_fn : {"globcover", "vito", "corine"} Name of data source in data_sources.yml file. lulc_mapping_fn : str Path to a mapping csv file from landuse in source name to parameter values in lulc_vars. lulc_vars : list List of landuse parameters to keep.\ By default ["landuse","Cov_river","Kext","N","PathFrac","USLE_C","Sl","Swood","WaterFrac"] """ super().setup_lulcmaps( lulc_fn=lulc_fn, lulc_mapping_fn=lulc_mapping_fn, lulc_vars=lulc_vars )
[docs] def setup_riverbedsed( self, bedsed_mapping_fn=None, ): """Setup sediments based river bed characteristics maps. Adds model layers: * **D50_River** map: median sediment diameter of the river bed [mm] * **ClayF_River** map: fraction of clay material in the river bed [-] * **SiltF_River** map: fraction of silt material in the river bed [-] * **SandF_River** map: fraction of sand material in the river bed [-] * **GravelF_River** map: fraction of gravel material in the river bed [-] Parameters ---------- bedsed_mapping_fn : str Path to a mapping csv file from streamorder to river bed particles characteristics. * Required variable: ['strord','D50_River', 'ClayF_River', 'SiltF_River', 'SandF_River', 'GravelF_River'] """ self.logger.info(f"Preparing riverbedsed parameter maps.") # Make D50_River map from csv file with mapping between streamorder and D50_River value if bedsed_mapping_fn is None: fn_map = join(DATADIR, "wflow_sediment", "riverbedsed_mapping.csv") else: fn_map = bedsed_mapping_fn strord = self.staticmaps[self._MAPS["strord"]].copy() df = pd.read_csv(fn_map, index_col=0, sep=",|;", engine="python") # max streamorder value above which values get the same N_River value max_str = df.index[-2] # if streamroder value larger than max_str, assign last value strord = strord.where(strord <= max_str, max_str) # handle missing value (last row of csv is mapping of nan values) strord = strord.where(strord != strord.raster.nodata, -999) strord.raster.set_nodata(-999) ds_riversed = landuse( da=strord, ds_like=self.staticmaps, fn_map=fn_map, logger=self.logger, ) self.set_staticmaps(ds_riversed)
[docs] def setup_canopymaps( self, canopy_fn="simard", ): """Setup sediments based canopy height maps. Adds model layers: * **CanopyHeight** map: height of the vegetation canopy [m] Parameters ---------- canopy_fn : {"simard"} Name of canopy height data source in data_sources.yml file. """ self.logger.info(f"Preparing canopy height map.") # Canopy height if canopy_fn not in ["simard"]: self.logger.warning( f"Invalid source '{canopy_fn}', skipping setup canopy map for sediment." ) return dsin = self.data_catalog.get_rasterdataset( canopy_fn, geom=self.region, buffer=2 ) dsout = xr.Dataset(coords=self.staticmaps.raster.coords) ds_out = dsin.raster.reproject_like(self.staticmaps, method="average") dsout["CanopyHeight"] = ds_out.astype(np.float32) dsout["CanopyHeight"] = dsout["CanopyHeight"].fillna(-9999.0) dsout["CanopyHeight"].raster.set_nodata(-9999.0) self.set_staticmaps(dsout)
[docs] def setup_soilmaps( self, soil_fn="soilgrids", usleK_method="renard", ): """Setup sediments based soil parameter maps. Adds model layers: * **PercentClay** map: clay content of the topsoil [%] * **PercentSilt** map: silt content of the topsoil [%] * **PercentOC** map: organic carbon in the topsoil [%] * **ErosK** map: mean detachability of the soil (Morgan et al., 1998) [g/J] * **USLE_K** map: soil erodibility factor from the USLE equation [-] Parameters ---------- soil_fn : {"soilgrids"} Name of soil data source in data_sources.yml file. * Required variables: ['clyppt_sl1', 'sltppt_sl1', 'oc_sl1'] usleK_method: {"renard", "epic"} Method to compute the USLE K factor, by default renard. """ self.logger.info(f"Preparing soil parameter maps.") # Soil related maps if soil_fn not in ["soilgrids"]: self.logger.warning( f"Invalid source '{soil_fn}', skipping setup_soilmaps for sediment." ) return dsin = self.data_catalog.get_rasterdataset(soil_fn, geom=self.region, buffer=2) dsout = soilgrids_sediment( dsin, self.staticmaps, usleK_method, logger=self.logger, ) self.set_staticmaps(dsout)