# -*- coding: utf-8 -*-
import os
from os.path import join
import numpy as np
import pandas as pd
import xarray as xr
from hydromt_wflow.wflow import WflowModel, PCR_VS_MAP
from .workflows import landuse, soilgrids_sediment
from . import DATADIR
import logging
__all__ = ["WflowSedimentModel"]
logger = logging.getLogger(__name__)
[docs]class WflowSedimentModel(WflowModel):
"""This is the wflow sediment model class, a subclass of WflowModel"""
_NAME = "wflow_sediment"
_CONF = "wflow_sediment.toml"
_DATADIR = DATADIR
_GEOMS = {}
_MAPS = WflowModel._MAPS.copy()
_MAPS.update(
{
"soil": "wflow_soil",
}
)
_FOLDERS = WflowModel._FOLDERS
[docs] def __init__(
self,
root=None,
mode="w",
config_fn=None,
data_libs=None,
deltares_data=False,
logger=logger,
):
super().__init__(
root=root,
mode=mode,
config_fn=config_fn,
data_libs=data_libs,
deltares_data=deltares_data,
logger=logger,
)
[docs] def setup_lakes(self, lakes_fn="hydro_lakes", min_area=1.0):
"""This component generates maps of lake areas and outlets as well as parameters
with average lake area, depth a discharge values.
The data is generated from features with ``min_area`` [km2] from a database with
lake geometry, IDs and metadata. Currently, "hydro_lakes" (hydroLakes) is the only
supported ``lakes_fn`` data source and we use a default minimum area of 1 km2.
Adds model layers:
* **wflow_lakeareas** map: lake IDs [-]
* **wflow_lakelocs** map: lake IDs at outlet locations [-]
* **LakeArea** map: lake area [m2]
* **LakeAvgLevel** map: lake average water level [m]
* **LakeAvgOut** map: lake average discharge [m3/s]
* **Lake_b** map: lake rating curve coefficient [-]
* **lakes** geom: polygon with lakes and wflow lake parameters
Parameters
----------
lakes_fn : {'hydro_lakes'}
Name of data source for lake parameters, see data/data_sources.yml.
* Required variables: ['waterbody_id', 'Area_avg', 'Vol_avg', 'Depth_avg', 'Dis_avg']
min_area : float, optional
Minimum lake area threshold [km2], by default 1.0 km2.
"""
super().setup_lakes(lakes_fn=lakes_fn, min_area=min_area)
# Update the toml to match wflow_sediment and not wflow_sbm
lakes_toml_add = {
"model.dolake": True,
"model.lakes": False,
}
if "wflow_lakeareas" in self.staticmaps:
for option in lakes_toml_add:
self.set_config(option, lakes_toml_add[option])
if self.get_config("state.lateral.river.lake") is not None:
del self.config["state"]["lateral"]["river"]["lake"]
if self.get_config("input.lateral.river.lake") is not None:
del self.config["input"]["lateral"]["river"]["lake"]
[docs] def setup_reservoirs(
self,
reservoirs_fn="hydro_reservoirs",
min_area=1.0,
priority_jrc=True,
**kwargs,
):
"""This component generates maps of lake areas and outlets as well as parameters
with average reservoir area, demand, min and max target storage capacities and
discharge capacity values.
The data is generated from features with ``min_area`` [km2]
from a database with reservoir geometry, IDs and metadata.
Currently, "hydro_reservoirs" (based on GRAND) is the only supported ``reservoirs_fn``
data source and we use a default minimum area of 1 km2.
Adds model layers:
* **wflow_reservoirareas** map: reservoir IDs [-]
* **wflow_reservoirlocs** map: reservoir IDs at outlet locations [-]
* **ResSimpleArea** map: reservoir area [m2]
* **ResMaxVolume** map: reservoir max volume [m3]
* **ResTargetMinFrac** map: reservoir target min frac [m3/m3]
* **ResTargetFullFrac** map: reservoir target full frac [m3/m3]
* **ResDemand** map: reservoir demand flow [m3/s]
* **ResMaxRelease** map: reservoir max release flow [m3/s]
* **reservoirs** geom: polygon with reservoirs and wflow reservoir parameters
Parameters
----------
reservoirs_fn : {'hydro_reservoirs'}
Name of data source for reservoir parameters, see data/data_sources.yml.
* Required variables with hydroengine: ['waterbody_id', 'Hylak_id', 'Vol_avg', 'Depth_avg', 'Dis_avg', 'Dam_height']
* Required variables without hydroengine: ['waterbody_id', 'Area_avg', 'Vol_avg', 'Depth_avg', 'Dis_avg', 'Capacity_max', 'Capacity_norm', 'Capacity_min', 'Dam_height']
min_area : float, optional
Minimum reservoir area threshold [km2], by default 1.0 km2.
priority_jrc : boolean, optional
If True, use JRC water occurence (Pekel,2016) data from GEE to calculate
and overwrite the reservoir volume/areas of the data source.
"""
super().setup_reservoirs(
reservoirs_fn=reservoirs_fn,
min_area=min_area,
priority_jrc=priority_jrc,
**kwargs,
)
# Update the toml to match wflow_sediment and not wflow_sbm
res_toml_add = {
"model.doreservoir": True,
"model.reservoirs": False,
}
if "wflow_reservoirareas" in self.staticmaps:
for option in res_toml_add:
self.set_config(option, res_toml_add[option])
if self.get_config("state.lateral.river.reservoir") is not None:
del self.config["state"]["lateral"]["river"]["reservoir"]
if self.get_config("input.lateral.river.reservoir") is not None:
del self.config["input"]["lateral"]["river"]["reservoir"]
[docs] def setup_gauges(
self,
gauges_fn=None,
source_gdf=None,
snap_to_river=True,
mask=None,
derive_subcatch=False,
derive_outlet=True,
basename=None,
update_toml=True,
gauge_toml_header=None,
gauge_toml_param=None,
**kwargs,
):
"""This components sets the default gauge map based on basin outlets and additional
gauge maps based on ``gauges_fn`` data.
Supported gauge datasets include "grdc"
or "<path_to_source>" for user supplied csv or geometry files with gauge locations.
If a csv file is provided, a "x" or "lon" and "y" or "lat" column is required
and the first column will be used as IDs in the map. If ``snap_to_river`` is set
to True, the gauge location will be snapped to the boolean river mask. If
``derive_subcatch`` is set to True, an additonal subcatch map is derived from
the gauge locations.
Adds model layers:
* **wflow_gauges** map: gauge IDs map from catchment outlets [-]
* **wflow_gauges_source** map: gauge IDs map from source [-] (if gauges_fn)
* **wflow_subcatch_source** map: subcatchment based on gauge locations [-] (if derive_subcatch)
* **gauges** geom: polygon of catchment outlets
* **gauges_source** geom: polygon of gauges from source
* **subcatch_source** geom: polygon of subcatchment based on gauge locations [-] (if derive_subcatch)
Parameters
----------
gauges_fn : str, {"grdc"}, optional
Known source name or path to gauges file geometry file, by default None.
source_gdf : geopandas.GeoDataFame, optional
Direct gauges file geometry, by default None.
snap_to_river : bool, optional
Snap point locations to the closest downstream river cell, by default True
mask : np.boolean, optional
If provided snaps to the mask, else snaps to the river (default).
derive_subcatch : bool, optional
Derive subcatch map for gauges, by default False
derive_outlet : bool, optional
Derive gaugemap based on catchment outlets, by default True
basename : str, optional
Map name in staticmaps (wflow_gauges_basename), if None use the gauges_fn basename.
update_toml : boolean, optional
Update [outputcsv] section of wflow toml file.
gauge_toml_header : list, optional
Save specific model parameters in csv section. This option defines the header of the csv file./
By default saves Q (for lateral.river.q_riv) and TSS (for lateral.river.SSconc).
gauge_toml_param: list, optional
Save specific model parameters in csv section. This option defines the wflow variable corresponding to the/
names in gauge_toml_header. By default saves lateral.river.q_riv (for Q) and lateral.river.SSconc (for TSS).
"""
# # Add new outputcsv section in the config
if gauge_toml_param is None and update_toml:
gauge_toml_header = ["Q", "TSS"]
gauge_toml_param = ["lateral.river.q_riv", "lateral.river.SSconc"]
super().setup_gauges(
gauges_fn=gauges_fn,
source_gdf=source_gdf,
snap_to_river=snap_to_river,
mask=mask,
derive_subcatch=derive_subcatch,
derive_outlet=derive_outlet,
basename=basename,
update_toml=update_toml,
gauge_toml_header=gauge_toml_header,
gauge_toml_param=gauge_toml_param,
)
[docs] def setup_lulcmaps(
self,
lulc_fn="globcover",
lulc_mapping_fn=None,
lulc_vars=[
"landuse",
"Cov_River",
"Kext",
"N",
"PathFrac",
"Sl",
"Swood",
"USLE_C",
"WaterFrac",
],
):
"""This component derives several wflow maps are derived based on landuse-
landcover (LULC) data.
Currently, ``lulc_fn`` can be set to the "vito", "globcover"
or "corine", fo which lookup tables are constructed to convert lulc classses to
model parameters based on literature. The data is remapped at its original
resolution and then resampled to the model resolution using the average
value, unless noted differently.
Adds model layers:
* **landuse** map: Landuse class [-]
Original source dependent LULC class, resampled using nearest neighbour.
* **Cov_river** map: vegetation coefficent reducing stream bank erosion [-].
* **Kext** map: Extinction coefficient in the canopy gap fraction equation [-]
* **Sl** map: Specific leaf storage [mm]
* **Swood** map: Fraction of wood in the vegetation/plant [-]
* **USLE_C** map: Cover managment factor from the USLE equation [-]
* **PathFrac** map: The fraction of compacted or urban area per grid cell [-]
* **WaterFrac** map: The fraction of open water per grid cell [-]
* **N** map: Manning Roughness [-]
Parameters
----------
lulc_fn : {"globcover", "vito", "corine"}
Name of data source in data_sources.yml file.
lulc_mapping_fn : str
Path to a mapping csv file from landuse in source name to parameter values in lulc_vars.
lulc_vars : list
List of landuse parameters to keep.\
By default ["landuse","Cov_river","Kext","N","PathFrac","USLE_C","Sl","Swood","WaterFrac"]
"""
super().setup_lulcmaps(
lulc_fn=lulc_fn, lulc_mapping_fn=lulc_mapping_fn, lulc_vars=lulc_vars
)
[docs] def setup_riverbedsed(
self,
bedsed_mapping_fn=None,
):
"""Setup sediments based river bed characteristics maps.
Adds model layers:
* **D50_River** map: median sediment diameter of the river bed [mm]
* **ClayF_River** map: fraction of clay material in the river bed [-]
* **SiltF_River** map: fraction of silt material in the river bed [-]
* **SandF_River** map: fraction of sand material in the river bed [-]
* **GravelF_River** map: fraction of gravel material in the river bed [-]
Parameters
----------
bedsed_mapping_fn : str
Path to a mapping csv file from streamorder to river bed particles characteristics.
* Required variable: ['strord','D50_River', 'ClayF_River', 'SiltF_River', 'SandF_River', 'GravelF_River']
"""
self.logger.info(f"Preparing riverbedsed parameter maps.")
# Make D50_River map from csv file with mapping between streamorder and D50_River value
if bedsed_mapping_fn is None:
fn_map = join(DATADIR, "wflow_sediment", "riverbedsed_mapping.csv")
else:
fn_map = bedsed_mapping_fn
strord = self.staticmaps[self._MAPS["strord"]].copy()
df = pd.read_csv(fn_map, index_col=0, sep=",|;", engine="python")
# max streamorder value above which values get the same N_River value
max_str = df.index[-2]
# if streamroder value larger than max_str, assign last value
strord = strord.where(strord <= max_str, max_str)
# handle missing value (last row of csv is mapping of nan values)
strord = strord.where(strord != strord.raster.nodata, -999)
strord.raster.set_nodata(-999)
ds_riversed = landuse(
da=strord,
ds_like=self.staticmaps,
fn_map=fn_map,
logger=self.logger,
)
self.set_staticmaps(ds_riversed)
[docs] def setup_canopymaps(
self,
canopy_fn="simard",
):
"""Setup sediments based canopy height maps.
Adds model layers:
* **CanopyHeight** map: height of the vegetation canopy [m]
Parameters
----------
canopy_fn : {"simard"}
Name of canopy height data source in data_sources.yml file.
"""
self.logger.info(f"Preparing canopy height map.")
# Canopy height
if canopy_fn not in ["simard"]:
self.logger.warning(
f"Invalid source '{canopy_fn}', skipping setup canopy map for sediment."
)
return
dsin = self.data_catalog.get_rasterdataset(
canopy_fn, geom=self.region, buffer=2
)
dsout = xr.Dataset(coords=self.staticmaps.raster.coords)
ds_out = dsin.raster.reproject_like(self.staticmaps, method="average")
dsout["CanopyHeight"] = ds_out.astype(np.float32)
dsout["CanopyHeight"] = dsout["CanopyHeight"].fillna(-9999.0)
dsout["CanopyHeight"].raster.set_nodata(-9999.0)
self.set_staticmaps(dsout)
[docs] def setup_soilmaps(
self,
soil_fn="soilgrids",
usleK_method="renard",
):
"""Setup sediments based soil parameter maps.
Adds model layers:
* **PercentClay** map: clay content of the topsoil [%]
* **PercentSilt** map: silt content of the topsoil [%]
* **PercentOC** map: organic carbon in the topsoil [%]
* **ErosK** map: mean detachability of the soil (Morgan et al., 1998) [g/J]
* **USLE_K** map: soil erodibility factor from the USLE equation [-]
Parameters
----------
soil_fn : {"soilgrids"}
Name of soil data source in data_sources.yml file.
* Required variables: ['clyppt_sl1', 'sltppt_sl1', 'oc_sl1']
usleK_method: {"renard", "epic"}
Method to compute the USLE K factor, by default renard.
"""
self.logger.info(f"Preparing soil parameter maps.")
# Soil related maps
if soil_fn not in ["soilgrids"]:
self.logger.warning(
f"Invalid source '{soil_fn}', skipping setup_soilmaps for sediment."
)
return
dsin = self.data_catalog.get_rasterdataset(soil_fn, geom=self.region, buffer=2)
dsout = soilgrids_sediment(
dsin,
self.staticmaps,
usleK_method,
logger=self.logger,
)
self.set_staticmaps(dsout)