Source code for hydromt_sfincs.workflows.tiling

"""Tiling functions for fast visualization of the SFINCS model in- and output data."""
import math
import os
from itertools import product
from pathlib import Path
from typing import List, Union

import geopandas as gpd
import numpy as np
import xarray as xr
from affine import Affine
from PIL import Image
from pyproj import Transformer

from .merge import merge_multi_dataarrays

__all__ = ["create_topobathy_tiles", "downscale_floodmap_webmercator"]


[docs]def downscale_floodmap_webmercator( zsmax: Union[np.array, xr.DataArray], index_path: str, topobathy_path: str, floodmap_path: str, hmin: float = 0.05, zoom_range: Union[int, List[int]] = [0, 13], fmt_in: str = "bin", fmt_out: str = "png", merge: bool = True, # FIXME: this is not implemented yet ): """Create a downscaled floodmap for (model) region in webmercator tile format Parameters ---------- zsmax : Union[np.array, xr.DataArray] DataArray with maximum water level (m) for each cell index_path : str Directory with index files topobathy_path : str Directory with topobathy files floodmap_path : str Directory where floodmap files will be stored hmin : float, optional Minimum water depth considered as "flooded", by default 0.05 m zoom_range : Union[int, List[int]], optional Range of zoom levels, by default [0, 13] fmt_in : str, optional Format of the index and topobathy tiles, by default "bin" fmt_out : str, optional Format of the floodmap tiles to be created, by default "png" merge : bool, optional Merge floodmap tiles with existing floodmap tiles (this could for example happen when there is overlap between models), by default True """ # if zsmax is an xarray, convert to numpy array if isinstance(zsmax, xr.DataArray): zsmax = zsmax.values zsmax = zsmax.flatten() # if only one zoom level is specified, create tiles up to that zoom level (inclusive) if isinstance(zoom_range, int): zoom_range = [0, zoom_range] for izoom in range(zoom_range[0], zoom_range[1] + 1): index_zoom_path = os.path.join(index_path, str(izoom)) if not os.path.exists(index_zoom_path): continue # list the available x-folders x_folders = [f.path for f in os.scandir(index_zoom_path) if f.is_dir()] # loop over x-folders for x_folder in x_folders: x = os.path.basename(x_folder) # list the available y-files with fmt_in extension y_files = [] # Iterate directory for file in os.listdir(x_folder): # check only text files if file.endswith(fmt_in): y_files.append(file) # loop over y-files for y_file in y_files: # read the index file index_fn = os.path.join(x_folder, y_file) if fmt_in == "bin": ind = np.fromfile(index_fn, dtype="i4") elif fmt_in == "png": ind = png2int(index_fn) # read the topobathy file dep_fn = os.path.join(topobathy_path, str(izoom), x, y_file) if fmt_in == "bin": dep = np.fromfile(dep_fn, dtype="f4") elif fmt_in == "png": dep = png2elevation(dep_fn) # create the floodmap hmax = zsmax[ind] hmax = hmax - dep hmax[hmax < hmin] = np.nan hmax = hmax.reshape(256, 256) # save the floodmap if np.isnan(hmax).all(): # only nans in this tile continue if not os.path.exists(os.path.join(floodmap_path, str(izoom), x)): os.makedirs(os.path.join(floodmap_path, str(izoom), x)) floodmap_fn = os.path.join( floodmap_path, str(izoom), x, y_file.replace(fmt_in, fmt_out) ) if fmt_out == "bin": # And write indices to file fid = open(floodmap_fn, "wb") fid.write(hmax) fid.close() elif fmt_out == "png": elevation2png(hmax, floodmap_fn)
[docs]def create_topobathy_tiles( root: Union[str, Path], region: gpd.GeoDataFrame, datasets_dep: List[dict], index_path: Union[str, Path] = None, zoom_range: Union[int, List[int]] = [0, 13], z_range: List[int] = [-20000.0, 20000.0], fmt="bin", ): """Create webmercator topobathy tiles for a given region. Parameters ---------- root : Union[str, Path] Directory where the topobathy tiles will be stored. region : gpd.GeoDataFrame GeoDataFrame defining the region for which the tiles will be created. datasets_dep : List[dict] List of dictionaries containing the bathymetry dataarrays. index_path : Union[str, Path], optional Directory where index tiles are stored, by default None zoom_range : Union[int, List[int]], optional Range of zoom levels for which tiles are created, by default [0, 13] z_range : List[int], optional Range of valid elevations, by default [-20000.0, 20000.0] format : str, optional The desired output format of the topobathy tiles, by default "bin". Also "png" and "tif" are supported. """ # TODO change the order of the zoom_levels # basing large scale zoom levels on the high-resolution ones prevents memory errors assert len(datasets_dep) > 0, "No DEMs provided" topobathy_path = os.path.join(root, "topobathy") npix = 256 # for binary format, use .dat extension if fmt == "bin": extension = "dat" # for net, tif and png extension and format are the same else: extension = fmt # if only one zoom level is specified, create tiles up to that zoom level (inclusive) if isinstance(zoom_range, int): zoom_range = [0, zoom_range] # get bounding box of region minx, miny, maxx, maxy = region.total_bounds transformer = Transformer.from_crs(region.crs.to_epsg(), 3857) # axis order is different for geographic and projected CRS if region.crs.is_geographic: minx, miny = map( max, zip(transformer.transform(miny, minx), [-20037508.34] * 2) ) maxx, maxy = map(min, zip(transformer.transform(maxy, maxx), [20037508.34] * 2)) else: minx, miny = map( max, zip(transformer.transform(minx, miny), [-20037508.34] * 2) ) maxx, maxy = map(min, zip(transformer.transform(maxx, maxy), [20037508.34] * 2)) for izoom in range(zoom_range[0], zoom_range[1] + 1): print("Processing zoom level " + str(izoom)) zoom_path = os.path.join(topobathy_path, str(izoom)) for transform, col, row in tile_window(izoom, minx, miny, maxx, maxy): # transform is a rasterio Affine object # col, row are the tile indices file_name = os.path.join(zoom_path, str(col), str(row) + "." + extension) if index_path: # Only make tiles for which there is an index file (can be .dat or .png) index_file_name_dat = os.path.join( index_path, str(izoom), str(col), str(row) + ".dat" ) index_file_name_png = os.path.join( index_path, str(izoom), str(col), str(row) + ".png" ) if not os.path.exists(index_file_name_dat) and not os.path.exists( index_file_name_png ): continue x = np.arange(0, npix) + 0.5 y = np.arange(0, npix) + 0.5 x3857, y3857 = transform * (x, y) zg = np.float32(np.full([npix, npix], np.nan)) da_dep = xr.DataArray( zg, coords={"y": y3857, "x": x3857}, dims=["y", "x"], ) da_dep.raster.set_crs(3857) # get subgrid bathymetry tile da_dep = merge_multi_dataarrays( da_list=datasets_dep, da_like=da_dep, ) if np.isnan(da_dep.values).all(): # only nans in this tile continue if ( np.nanmax(da_dep.values) < z_range[0] or np.nanmin(da_dep.values) > z_range[1] ): # all values in tile outside z_range continue if not os.path.exists(os.path.join(zoom_path, str(col))): os.makedirs(os.path.join(zoom_path, str(col))) if fmt == "bin": # And write indices to file fid = open(file_name, "wb") fid.write(da_dep.values) fid.close() elif fmt == "png": elevation2png(da_dep, file_name) elif fmt == "tif": da_dep.raster.to_raster(file_name)
def deg2num(lat_deg, lon_deg, zoom): """Convert lat/lon to webmercator tile number""" lat_rad = math.radians(lat_deg) n = 2**zoom xtile = int((lon_deg + 180.0) / 360.0 * n) ytile = int((1.0 - math.asinh(math.tan(-lat_rad)) / math.pi) / 2.0 * n) return (xtile, ytile) def num2deg(xtile, ytile, zoom): """Convert webmercator tile number to lat/lon""" n = 2**zoom lon_deg = xtile / n * 360.0 - 180.0 lat_rad = math.atan(math.sinh(math.pi * (1 - 2 * ytile / n))) lat_deg = math.degrees(-lat_rad) return (lat_deg, lon_deg) def rgba2int(rgba): """Convert rgba tuple to int""" r, g, b, a = rgba return (r * 256**3) + (g * 256**2) + (b * 256) + a def int2rgba(int_val): """Convert int to rgba tuple""" r = (int_val // 256**3) % 256 g = (int_val // 256**2) % 256 b = (int_val // 256) % 256 a = int_val % 256 return (r, g, b, a) def elevation2rgb(val): """Convert elevation to rgb tuple""" val += 32768 r = np.floor(val / 256) g = np.floor(val % 256) b = np.floor((val - np.floor(val)) * 256) return (r, g, b) def rgb2elevation(r, g, b): """Convert rgb tuple to elevation""" val = (r * 256 + g + b / 256) - 32768 return val def png2int(png_file): """Convert png to int array""" # Open the PNG image image = Image.open(png_file) # Convert the image to RGBA mode if it's not already in RGBN mode if image.mode != "RGBA": image = image.convert("RGBA") # Get the pixel data from the image pixel_data = list(image.getdata()) # Convert RGBA values to unique integers val = [] for rgba in pixel_data: val.append(rgba2int(rgba)) return val def int2png(val, png_file): """Convert int array to png""" # Convert index integers to RGBA values rgba = np.zeros((256 * 256, 4), "uint8") r, g, b, a = int2rgba(val) rgba[:, 0] = r.flatten() rgba[:, 1] = g.flatten() rgba[:, 2] = b.flatten() rgba[:, 3] = a.flatten() rgba = rgba.reshape([256, 256, 4]) # Create PIL Image from RGB values and save as PNG img = Image.fromarray(rgba) img.save(png_file) def png2elevation(png_file): """Convert png to elevation array based on terrarium interpretation""" img = Image.open(png_file) arr = np.array(img.convert("RGB")) # Convert RGB values to elevation values elevations = np.apply_along_axis(rgb2elevation, 2, arr) return elevations def elevation2png(val, png_file): """Convert elevation array to png using terrarium interpretation""" rgb = np.zeros((256 * 256, 3), "uint8") r, g, b = elevation2rgb(val) rgb[:, 0] = r.values.flatten() rgb[:, 1] = g.values.flatten() rgb[:, 2] = b.values.flatten() rgb = rgb.reshape([256, 256, 3]) # Create PIL Image from RGB values and save as PNG img = Image.fromarray(rgb) img.save(png_file) def tile_window(zl, minx, miny, maxx, maxy): """Window generator for a given zoom level and bounding box""" dxy = (20037508.34 * 2) / (2**zl) # Origin displacement odx = np.floor(abs(-20037508.34 - minx) / dxy) ody = np.floor(abs(20037508.34 - maxy) / dxy) # Set the new origin minx = -20037508.34 + odx * dxy maxy = 20037508.34 - ody * dxy # Create window generator lu = product(np.arange(minx, maxx, dxy), np.arange(maxy, miny, -dxy)) for l, u in lu: col = int(odx + (l - minx) / dxy) row = int(ody + (maxy - u) / dxy) yield Affine(dxy / 256, 0, l, 0, -dxy / 256, u), col, row