hydromt_delft3dfm.workflows.compute_meteo_forcings#
- hydromt_delft3dfm.workflows.compute_meteo_forcings(df_meteo: ~pandas.core.frame.DataFrame = None, fill_value: float = 0.0, is_rate: bool = True, meteo_location: tuple = None, logger=<Logger hydromt_delft3dfm.workflows.boundaries (WARNING)>) DataArray [source]#
Compute meteo forcings.
- Parameters:
df_meteo (pd.DataFrame, optional) –
pd.DataFrame containing the meteo timeseries values. If None, uses
fill_value
.Required variables: [“precip”]
meteo_value (float, optional) – Constant value to use for global meteo if
df_meteo
is None and to fill in missing data indf_meteo
. By default 0.0 mm/day.is_rate (bool, optional) – Specify if the type of meteo data is direct “rainfall” (False) or “rainfall_rate” (True). By default True for “rainfall_rate”. Note that Delft3DFM 1D2D Suite 2022.04 supports only “rainfall_rate”. If rate, unit is expected to be in mm/day and else mm.
meteo_location (tuple) – Global location for meteo timeseries
logger – Logger to log messages.
- Returns:
da_meteo – xr.DataArray containing the meteo timeseries values. If None, uses
df_meteo
.Required variables if netcdf: [
precip
]
- Return type:
xr.DataArray