hydromt.data_catalog.sources.DataSource#
- class hydromt.data_catalog.sources.DataSource(*, name: str, uri: str, data_adapter: ~hydromt.data_catalog.adapters.data_adapter_base.DataAdapterBase, driver: ~hydromt.data_catalog.drivers.base_driver.BaseDriver, uri_resolver: ~hydromt.data_catalog.uri_resolvers.uri_resolver.URIResolver = <factory>, root: str | None = None, version: str | int | float | None = None, provider: str | None = None, metadata: ~hydromt._typing.metadata.SourceMetadata = <factory>)[source]#
A DataSource is a parsed section of a DataCatalog.
The DataSource, specific for a data type within HydroMT, is responsible for validating the input from the DataCatalog, to ensure the workflow fails as early as possible. A DataSource has information on the driver that the data should be read with, and is responsible for initializing this driver.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- __init__(**data: Any) None#
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
Methods
__init__(**data)Create a new model by parsing and validating input data from keyword arguments.
construct([_fields_set])copy(*[, include, exclude, update, deep])Returns a copy of the model.
dict(*[, include, exclude, by_alias, ...])from_orm(obj)json(*[, include, exclude, by_alias, ...])model_construct([_fields_set])Creates a new instance of the Model class with validated data.
model_copy(*[, update, deep])!!! abstract "Usage Documentation"
model_dump(*[, mode, include, exclude, ...])!!! abstract "Usage Documentation"
model_dump_json(*[, indent, include, ...])!!! abstract "Usage Documentation"
model_json_schema([by_alias, ref_template, ...])Generates a JSON schema for a model class.
model_parametrized_name(params)Compute the class name for parametrizations of generic classes.
model_post_init(context, /)This function is meant to behave like a BaseModel method to initialise private attributes.
model_rebuild(*[, force, raise_errors, ...])Try to rebuild the pydantic-core schema for the model.
model_validate(obj, *[, strict, ...])Validate a pydantic model instance.
model_validate_json(json_data, *[, strict, ...])!!! abstract "Usage Documentation"
model_validate_strings(obj, *[, strict, ...])Validate the given object with string data against the Pydantic model.
parse_file(path, *[, content_type, ...])parse_obj(obj)parse_raw(b, *[, content_type, encoding, ...])schema([by_alias, ref_template])schema_json(*[, by_alias, ref_template])summary()Return a summary of the DataSource.
update_forward_refs(**localns)validate(value)Attributes
full_uriJoin root with uri.
model_computed_fieldsmodel_configConfiguration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
model_extraGet extra fields set during validation.
model_fieldsmodel_fields_setReturns the set of fields that have been explicitly set on this model instance.
nameuridata_adapterdriveruri_resolverdata_typerootversionprovidermetadata