{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Retrieve DDL measurements"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import ddlpy\n",
"\n",
"# enabling debug logging so we can see what happens in the background\n",
"import logging\n",
"logging.basicConfig()\n",
"logging.getLogger(\"ddlpy\").setLevel(logging.DEBUG)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Get a list of all known locations\n",
"The method locations gets a list of all known measurement locations by sending a request. "
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"DEBUG:ddlpy.ddlpy:Requesting at https://waterwebservices.rijkswaterstaat.nl/METADATASERVICES_DBO/OphalenCatalogus with request: {\"CatalogusFilter\": {\"Eenheden\": true, \"Grootheden\": true, \"Hoedanigheden\": true, \"Groeperingen\": true, \"Parameters\": true, \"Compartimenten\": true}}\n"
]
}
],
"source": [
"locations = ddlpy.locations()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"locations.to_json(r'locations.json', orient='records')"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Locatie_MessageID | \n",
" Coordinatenstelsel | \n",
" X | \n",
" Y | \n",
" Naam | \n",
" Parameter_Wat_Omschrijving | \n",
" Compartiment.Code | \n",
" Compartiment.Omschrijving | \n",
" Eenheid.Code | \n",
" Eenheid.Omschrijving | \n",
" Grootheid.Code | \n",
" Grootheid.Omschrijving | \n",
" Hoedanigheid.Code | \n",
" Hoedanigheid.Omschrijving | \n",
" Parameter.Code | \n",
" Parameter.Omschrijving | \n",
" Groepering.Code | \n",
" Groepering.Omschrijving | \n",
" Code | \n",
"
\n",
" \n",
" Code | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" ROTTMPT3 | \n",
" 9486 | \n",
" 25831 | \n",
" 735924.084551 | \n",
" 5.941073e+06 | \n",
" Rottumerplaat 3 km uit de kust | \n",
" Korrelgroottefractie Bodem/Sediment diameter g... | \n",
" BS | \n",
" Bodem/Sediment | \n",
" % | \n",
" procent | \n",
" KGF | \n",
" Korrelgroottefractie | \n",
" Dg0016dg | \n",
" diameter groter dan 16 um / drooggewicht | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" Niet van toepassing | \n",
" ROTTMPT3 | \n",
"
\n",
" \n",
" SCHOUWN10 | \n",
" 9510 | \n",
" 25831 | \n",
" 534120.858324 | \n",
" 5.729921e+06 | \n",
" Schouwen 10 km uit de kust | \n",
" Korrelgroottefractie Bodem/Sediment diameter g... | \n",
" BS | \n",
" Bodem/Sediment | \n",
" % | \n",
" procent | \n",
" KGF | \n",
" Korrelgroottefractie | \n",
" Dg0016dg | \n",
" diameter groter dan 16 um / drooggewicht | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" Niet van toepassing | \n",
" SCHOUWN10 | \n",
"
\n",
" \n",
" TERSLG235 | \n",
" 9518 | \n",
" 25831 | \n",
" 509938.998556 | \n",
" 6.113888e+06 | \n",
" Terschelling 235 km uit de kust | \n",
" Korrelgroottefractie Bodem/Sediment diameter g... | \n",
" BS | \n",
" Bodem/Sediment | \n",
" % | \n",
" procent | \n",
" KGF | \n",
" Korrelgroottefractie | \n",
" Dg0016dg | \n",
" diameter groter dan 16 um / drooggewicht | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" Niet van toepassing | \n",
" TERSLG235 | \n",
"
\n",
" \n",
" WALCRN2 | \n",
" 9526 | \n",
" 25831 | \n",
" 528394.396027 | \n",
" 5.710854e+06 | \n",
" Walcheren 2 km uit de kust | \n",
" Korrelgroottefractie Bodem/Sediment diameter g... | \n",
" BS | \n",
" Bodem/Sediment | \n",
" % | \n",
" procent | \n",
" KGF | \n",
" Korrelgroottefractie | \n",
" Dg0016dg | \n",
" diameter groter dan 16 um / drooggewicht | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" Niet van toepassing | \n",
" WALCRN2 | \n",
"
\n",
" \n",
" GOERE6 | \n",
" 9542 | \n",
" 25831 | \n",
" 560056.490959 | \n",
" 5.746818e+06 | \n",
" Goeree 6 km uit de kust | \n",
" Korrelgroottefractie Bodem/Sediment diameter g... | \n",
" BS | \n",
" Bodem/Sediment | \n",
" % | \n",
" procent | \n",
" KGF | \n",
" Korrelgroottefractie | \n",
" Dg0016dg | \n",
" diameter groter dan 16 um / drooggewicht | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" Niet van toepassing | \n",
" GOERE6 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Locatie_MessageID Coordinatenstelsel X Y \\\n",
"Code \n",
"ROTTMPT3 9486 25831 735924.084551 5.941073e+06 \n",
"SCHOUWN10 9510 25831 534120.858324 5.729921e+06 \n",
"TERSLG235 9518 25831 509938.998556 6.113888e+06 \n",
"WALCRN2 9526 25831 528394.396027 5.710854e+06 \n",
"GOERE6 9542 25831 560056.490959 5.746818e+06 \n",
"\n",
" Naam \\\n",
"Code \n",
"ROTTMPT3 Rottumerplaat 3 km uit de kust \n",
"SCHOUWN10 Schouwen 10 km uit de kust \n",
"TERSLG235 Terschelling 235 km uit de kust \n",
"WALCRN2 Walcheren 2 km uit de kust \n",
"GOERE6 Goeree 6 km uit de kust \n",
"\n",
" Parameter_Wat_Omschrijving \\\n",
"Code \n",
"ROTTMPT3 Korrelgroottefractie Bodem/Sediment diameter g... \n",
"SCHOUWN10 Korrelgroottefractie Bodem/Sediment diameter g... \n",
"TERSLG235 Korrelgroottefractie Bodem/Sediment diameter g... \n",
"WALCRN2 Korrelgroottefractie Bodem/Sediment diameter g... \n",
"GOERE6 Korrelgroottefractie Bodem/Sediment diameter g... \n",
"\n",
" Compartiment.Code Compartiment.Omschrijving Eenheid.Code \\\n",
"Code \n",
"ROTTMPT3 BS Bodem/Sediment % \n",
"SCHOUWN10 BS Bodem/Sediment % \n",
"TERSLG235 BS Bodem/Sediment % \n",
"WALCRN2 BS Bodem/Sediment % \n",
"GOERE6 BS Bodem/Sediment % \n",
"\n",
" Eenheid.Omschrijving Grootheid.Code Grootheid.Omschrijving \\\n",
"Code \n",
"ROTTMPT3 procent KGF Korrelgroottefractie \n",
"SCHOUWN10 procent KGF Korrelgroottefractie \n",
"TERSLG235 procent KGF Korrelgroottefractie \n",
"WALCRN2 procent KGF Korrelgroottefractie \n",
"GOERE6 procent KGF Korrelgroottefractie \n",
"\n",
" Hoedanigheid.Code Hoedanigheid.Omschrijving \\\n",
"Code \n",
"ROTTMPT3 Dg0016dg diameter groter dan 16 um / drooggewicht \n",
"SCHOUWN10 Dg0016dg diameter groter dan 16 um / drooggewicht \n",
"TERSLG235 Dg0016dg diameter groter dan 16 um / drooggewicht \n",
"WALCRN2 Dg0016dg diameter groter dan 16 um / drooggewicht \n",
"GOERE6 Dg0016dg diameter groter dan 16 um / drooggewicht \n",
"\n",
" Parameter.Code Parameter.Omschrijving Groepering.Code \\\n",
"Code \n",
"ROTTMPT3 NVT Waarde is niet van toepassing NVT \n",
"SCHOUWN10 NVT Waarde is niet van toepassing NVT \n",
"TERSLG235 NVT Waarde is niet van toepassing NVT \n",
"WALCRN2 NVT Waarde is niet van toepassing NVT \n",
"GOERE6 NVT Waarde is niet van toepassing NVT \n",
"\n",
" Groepering.Omschrijving Code \n",
"Code \n",
"ROTTMPT3 Niet van toepassing ROTTMPT3 \n",
"SCHOUWN10 Niet van toepassing SCHOUWN10 \n",
"TERSLG235 Niet van toepassing TERSLG235 \n",
"WALCRN2 Niet van toepassing WALCRN2 \n",
"GOERE6 Niet van toepassing GOERE6 "
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"## also add code as a variable\n",
"locations['Code'] = locations.index\n",
"locations.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Validate\n",
"Check if data is in the domain of the Netherlands. It also includes data of the North Sea."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABBYAAAK1CAYAAAB8em3QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+6klEQVR4nO3df5RVdb0//teZAQYLZhIEhWZEBX+mmBmaAoWG+StCW5p6+4GpaYUGki3tU+btJ1ZKulZeU5nFXO+9hdlKCyy1zN9SoNbNbmaAIYxKkiSDlgPM7O8ffmdiYGaY8545Z87MPB5rnVVnzz57v86ZzSzfz/N+v3Yuy7IsAAAAABKU9XYBAAAAQN8lWAAAAACSCRYAAACAZIIFAAAAIJlgAQAAAEgmWAAAAACSCRYAAACAZIIFAAAAIJlgAQAAAEgmWAAAAACS9Vqw8NBDD8WMGTNi7Nixkcvl4s4778z7GFmWxTXXXBMHHHBAVFRUxFvf+tb4+te/3vPFAgAAAO0a1Fsnfu211+Lwww+P8847Lz74wQ8mHWPOnDlx7733xjXXXBOHHXZYbNy4MTZu3NjDlQIAAAAdyWVZlvV6Eblc3HHHHXHaaae1bmtsbIwvfOEL8YMf/CBeeeWVOPTQQ+Ob3/xmTJs2LSIinn766Zg4cWL84Q9/iAMPPLB3CgcAAIABrmR7LFx88cWxbNmyWLx4cfz+97+PM888M0466aRYuXJlREQsWbIk9ttvv1i6dGnsu+++sc8++8QFF1xgxgIAAAAUUUkGC2vXro1FixbF7bffHlOnTo3x48fHZZddFlOmTIlFixZFRMSzzz4bzz33XNx+++1x6623Rl1dXTzxxBNxxhln9HL1AAAAMHD0Wo+Fzjz11FPR1NQUBxxwQJvtjY2NMXLkyIiIaG5ujsbGxrj11ltb96utrY0jjzwynnnmGcsjAAAAoAhKMlh49dVXo7y8PJ544okoLy9v87Nhw4ZFRMSYMWNi0KBBbcKHgw8+OCLemPEgWAAAAIDCK8lg4YgjjoimpqZ46aWXYurUqe3uM3ny5Ni2bVusXr06xo8fHxERf/7znyMiYty4cUWrFQAAAAayXrsrxKuvvhqrVq2KiDeChAULFsRxxx0XI0aMiL333js+8pGPxKOPPhrXXnttHHHEEbFhw4a47777YuLEiXHqqadGc3NzTJo0KYYNGxbXXXddNDc3x+zZs6OysjLuvffe3nhLAAAAMOD0WrDwwAMPxHHHHbfT9lmzZkVdXV1s3bo1vva1r8Wtt94azz//fOyxxx7xrne9K7785S/HYYcdFhERL7zwQlxyySVx7733xpvf/OY4+eST49prr40RI0YU++0AAADAgNRrwQIAAADQ95Xk7SYBAACAvkGwAAAAACQr+l0hmpub44UXXojhw4dHLpcr9ukBAACAXciyLDZv3hxjx46NsrLO5yQUPVh44YUXoqamptinBQAAAPK0bt26qK6u7nSfogcLw4cPj4g3iqusrCz26QEAAIBdaGhoiJqamtYxfGeKHiy0LH+orKwULAAAAEAJ60oLA80bAQAAgGSCBQAAACCZYAEAAABIJlgAAAAAkuUVLOyzzz6Ry+V2esyePbtQ9QEAAAAlLK+7QqxYsSKamppan//hD3+IE044Ic4888weLwwAAAAofXkFC6NGjWrz/Oqrr47x48fHe97znh4tCgAAAOgbknssbNmyJf77v/87zjvvvC7d1xIAAADof/KasbC9O++8M1555ZU499xzO92vsbExGhsbW583NDSknhIAAAAoMckzFmpra+Pkk0+OsWPHdrrf/Pnzo6qqqvVRU1OTekoAAACgxOSyLMvyfdFzzz0X++23X/z4xz+OmTNndrpvezMWampqYtOmTVFZWZl/xQAAAEBBNTQ0RFVVVZfG7klLIRYtWhSjR4+OU089dZf7VlRUREVFRcppAAAAgBKX91KI5ubmWLRoUcyaNSsGDUpu0QAAAAD0A3kHC7/85S9j7dq1cd555xWiHgAAAKAPyXvKwfve975IaMsAAAAA9EPJd4UAAAAAECwAAAAAyQQLAAAAQDLBAgAAAJBMsAAAAAAkEywAAAAAyQQLAAAAQDLBAlDSjjrqqBg0aFAcddRRvV0KAADQjkG9XQBAe8aMGRPr169vfb5ixYrI5XKRZVkvVgUAAOzIjAWg5ORyuTahwvYKOXPhkEMOibKysjjkkEMKdg4AAOhvzFgASsqYMWM6/fmTTz5ZkPPmcrnW///000+bHQEAAF1kxgJQUjqaqdDiHe94R4+fs6MZCmYuAADArgkWgJKy1157dfrz5cuX9/g5//SnP+W1HQAA+BfBAlBSXnzxxXa3T5o0qWBLEw466KC8tgMAAP+ixwJQcrIsa70rxF577dVh2NBT/vjHP7bpsbD9dgAAoHNmLAAl6cUXX4wsywoeKrTIsiwOPvjgyOVycfDBB2vcCAAAXWTGAsD/zwwFAADInxkLAAAAQDLBAgAAAJBMsAAAAAAkEywAAAAAyQQLAAAAQDLBAgAAAJBMsAAAAAAkEywAAAAAyQQLAAAAQDLBAgAAAJBMsAAAAAAkEywAAAAAyQQLAAAAQDLBAgAAAJBMsAAAAAAkEywAAAAAyQQLAAAAQDLBAgAAAJBMsAAAAAAkEywAAAAAyQQLAAAAQDLBAgAAAJBMsAAAAAAkEywAAAAAyQQLQFFNnTo1hgwZElOnTu3tUgAAgB4wqLcLAAaOXC7X+v8feeSRyOVykWVZL1YEAAB0lxkLQFF0NEPBzAUAAOjbBAtAUfzmN7/JazsAANA3CBaAHrGr3glHH310XtsBAIC+IZcVeYFzQ0NDVFVVxaZNm6KysrKYpwYKZPveCS3a+9PS1f0AAIDelc/Y3YwFoFvy6Z2QZVlMmTIlBg8eHFOmTBEqAABAP2DGAtAtQ4YMia1bt+60ffDgwbFly5ZeqAgAAOguMxaAotE7AQAABjYzFoBu0zsBAAD6FzMWgKLSOwEAAAauQb1dANA/PPzww71dQlGNHDkyNm7cGCNGjIiXX365t8sBAIBeI1gAyNP2Sz82btwYuVzOLA0AAAYsSyEA8jBy5Mi8tgMAQH8nWADIw8aNG/PaDgAA/Z1gASAPI0aMyGs7AAD0d4IFgDx01KhRA0cAAAYqwQJAnrIsa52hMGLECI0bAQAY0NwVAiCBGQoAAPAGMxYAAACAZIIFAPqVurq6mDlzZtTV1fV2KQAAA0IuK/Li4IaGhqiqqopNmzZFZWVlMU8NQKJcLtf6/0u5p8T2dUZEjB8/PlatWtVL1QAA9F35jN3NWACgUzsO1nd8Xiraq2v16tVmLgAAFJhgAYAOdRQi5HK51kcp2H333Tv82fXXX1/ESgAABh7BAgDdUgrhwiuvvNLbJfQZpRYKAQB9n2ABgG7r7UHqW97ylg5/NmfOnOIVUuL6yrIWAKBvESwA0KFSbtS4vb///e/tbh8/fnyce+65xS2mwFJnHHS2rAUAoDsECwB0qhTDhfYG11mWtc5cKCsri0WLFvW7O0KYcQAAlKJBvV0AAKVv+3ChvcFsMcOH9gbXLefvaOZCf9DZjINSDH8AgIHDjAUAWnVlmv2Og9jeDBV2tZ1/6ej3JJQAALpLsABAROQ3zT7LstZHf9Lf75jQm6FQqRk5cmTkcrkYOXJkb5cCAH1e3sHC888/Hx/5yEdi5MiRsdtuu8Vhhx0Wjz/+eCFqA6DAKioqOh1I99cBdntKvX9BT8046K+hUGf233//yOVysf/++0fEG7/bjRs3RkTExo0bS+53DQB9TV49Fv7+97/H5MmT47jjjouf//znMWrUqFi5cmXsvvvuhaoPgALpi4OpLMsK0uOhEP0Ldmws2RN2fP/9KRwo1Pva/rirVq3q8Hc9cuTIePnll4teHwD0B3kFC9/85jejpqYmFi1a1Lpt33337fGiACisioqK3i4hWV8YXHfWYLK7SvH9dlehPq+WGQpd0TKDoT27qq/Ur0cAKLS8lkL89Kc/jXe+851x5plnxujRo+OII46IW265pdPXNDY2RkNDQ5sHAL1ry5YtXdqvVAdJPTmdf8yYMT1Q0b+kLCsZMmRI5HK5GDJkyE6v6c89HyIK25Az39uNnn322V2uo2V7qS+hAYBiyCtYePbZZ+PGG2+M/fffP+6555741Kc+FZ/5zGfiP//zPzt8zfz586Oqqqr1UVNT0+2iAeieHQew7SnVUKGnrV+/vsOfFeMzyOVysXXr1oiI2Lp1qwFrD5owYUJe+992221RXl7e5f27EoqMHj06crlcjB49Oq9aIt6YFZrL5cwOBaDk5bI8/qtpyJAh8c53vjMee+yx1m2f+cxnYsWKFbFs2bJ2X9PY2BiNjY2tzxsaGqKmpiY2bdoUlZWV3SgdgO7oaFBUyoFCIaacjxkzpt1wYa+99ooXX3wx7+Plc6vOIUOGtIYKXdXR++6r0/Hz+bx66vhZlsXIkSM7XP5w1llnxeLFi3dZX2c66gcyZMiQdmcMDRo0qM21UIheIgCQj4aGhqiqqurS2D2vGQtjxoyJQw45pM22gw8+ONauXdvhayoqKqKysrLNA4DSVarfjBfqG/yOwoOUUCEiv7s35BsqdCTfz2b7JRa5XC7Kynrv7tOdfV473s0h9fgtMxcmTJjQer6XX365w+bT99577y7r29VsiI5+Bx0tQ9q2bdsul760/KxlJkNH+w6EJTSFsmLFiliwYEGsWLGit0sB6FPy+i+JyZMnxzPPPNNm25///OcYN25cjxYFQO8qtQFJoW+HuePgsbvfDHf1eIMHD+7WeSLy/2w6+ia8vcFodwaoXQkFdjWIbumR0HI3h45q2/5x6KGHxn777Rcf+9jHor6+PiIiVq5cGVmWxcqVK6OsrKx137///e/tnvvvf//7Lt97vv0betKaNWvaPN/xM+jsZy3BRFVVVeRyuaiqqipi5aXt3HPPjaOOOio++9nPxlFHHRXnnntub5cE0GfktRRixYoVceyxx8aXv/zl+NCHPhTLly+PT3ziE3HzzTfHhz/84S4dI5/pFAAUTlcGi6Uy9bq3pst3RV1dXdxxxx1x+umnJw1EOhvod6WmfD6bng6Mtp/WX1NTE3vssUd85StfiRkzZnT6uo7eXyEMGjQotm3bFkOHDo3XX3+9KOfs7xYtWhTTp09v0zerVP5WpFqxYkUcddRRO21fvnx5TJo0qRcqAuh9+Yzd8woWIiKWLl0an//852PlypWx7777xrx58+ITn/hEQYoDoLD6SrhQyGChO8eeMGFCrF69uvX5+PHjk77Jbum1MHjw4DZT5dvrm1BRURFbtmyJIUOGRGNjY68GC7C9UvhbkWrBggXx2c9+dqft3/nOd2Lu3LnFLwigBBSsx0JExPvf//546qmn4vXXX4+nn346r1ABgN6zdOnS+PSnPx1Lly5t3dZTA4FCr+nOp29BsdTV1bUJFSIiVq9eHXV1dXkfa8uWLZFl2U7r73e8rWYul2vdZ8uWLZHL5Tr8DObMmRNz5861Vpyi6cvB1dSpU9vdPnny5CJXAtA35T1jobvMWAAovsmTJ7e5o8+xxx4bjz76aOvz7nxrX4zu9eXl5dHc3LzT9rKysmhqaurWsVPf+8yZM+OnP/3pTttPO+20mDlzZlx33XURETF37tweWavdMlMhVVlZWbufIfSkvjxr4dxzz21zC/VZs2YlBYUA/UVBl0J0l2ABoLiWLl3a7pr3JUuWxPvf//7W5ykBQaF7H3TlPD1xvnzfe1VVVTQ0NHT5+O0tkSgrK2vtNdDRgL8vfwPMwNSXg4WIN3otPProozF58mS9FYABr6BLIQDoW372s5+1u/3uu+9u87yn74zQk7pyO8RiDcJzuVxeoULEzksktl/CsGMjww984AMxfPhwoUKBFPtzLSsri+rq6i7vX15eXsBqCquU/makmjRpUsydO1eoAJAnwQJAP3fKKae0u/2kk07aaduOa/pLxciRI7u0Xy6X22VPgZEjR0Yul2s95ujRo9vdr73tHd2aryvBx09+8pNO9y0rK4uysrJYsmRJvPrqq7s8HruWy+WioqIiIiKGDh0aWZbFT3/60/jUpz4VS5YsiXXr1nUYNIwYMaL138K1114bI0eOjKFDh8awYcMil8vFwQcfHEuWLIlp06Z1+DvN5XJx8803x7p169r829r+sXDhwtYwoby8PG666aZYuHBhp+9r4cKFHR6vvUcxlNrfDACKy1IIgAFgVz0WuqMQPRa6+61yy9rompqaqK+vj+rq6k4HkR3pybsqDB06NP75z3+aidAHHHvssW3+vXTF2972ttZZQMuWLYuIiGOOOaZLsxXq6+tj1apVMWHChHjxxRfj4YcfjgMOOKDdJUxXXnllzJgxI8aMGRMrV66M3/72t/Hggw/Ge97zntZzHXvssXnNkuiKurq6+PjHP976fPDgwXH00UfHww8/3KPnAaB06LEAwE6WLl0ad999d5x00klteiv0hPZui9gTx+pNo0aNivLy8li/fn2PHrezOznQt02aNCk+/elP79Sss76+vjWoaBn0L1iwIK6//vqIiDj99NNj7733jvvuu6/N0qVZs2a1aSa4vc6uo1wuF7fcckucf/75Xa69vr4+Vq5cGfvvv3+PhxIA9E2CBQBKVmchRKmECtAd2zfrrK2tjU984hNtbhn65je/ueDLXcrLy2PNmjVdCglqa2vjwgsvjObm5igrK4ubb745r1ACgP5J80YAimL06NGRy+U67FPQ4uyzz44RI0bsFBwIEuiPWpp11tfXtwkVIt4I04rRQ6OpqSmWLl0aCxYsiFwut9OjRX19fWuoEBHR3NwcF110UdTX1/dIHfX19XH//ff32PEAKE2DersAAPqm7QcnGzZs6HBqdnl5eYe3U2w5jqUB9Dfb9yPoLZ/61Kc6/Fkul4uzzjorLrroop3+fTY1NcWqVas6ne3QlaUTZkIADBxmLAD0c12dVZDvMbuy/eyzz+40VNhRRwHDqFGjul4c0CW33XZbvPe9793prhbl5eUxYcKEDl9XW1sb48aNi+OPPz7GjRsXtbW1O+1T6JkQAJQWwQJQcKbCFkZ705rb22fDhg0R8a9ZBZ1p71aM7YUSLcfcUcv2lrpuu+22Lr2Xt7/97a2v21GWZfHSSy+Z1UC/MWzYsA5/ts8++xSvkHjj39cRRxyx0y0vO5qF0NXAYOXKlR3OhACg/xEsAAXVlW+2yF9XehV0Nqtg8ODBkcvlYvDgwW2OsXHjxoiI2LhxY6ehREczCEaNGpXUN+F///d/O3xdy3b9GOgPDjzwwNi8eXNce+21MW7cuNhnn31izpw58Z3vfCeWL1/eI+cYOnRoXvs/++yzsWbNmrj//vtjzZo1nS5X6GpgsP/+++c9EwKAvkuwABSMqbA9r7MZCjtu72xWwbZt2yIiYtu2bW1mKHT1/LuasdDThAr0Fx/60IciImLevHmxZs2a+Mtf/hLXXXddzJ07NyZNmhQzZ87s9jn++c9/xqxZs7q8/5QpU2LlypUxYcKEXd5FoquBQXV1ddx8881dngkBQN/mdpNAwdx///1x/PHHt7t92rRpxS+oj+vK4Hr7P+mjR48u2EC/xahRo2LDhg2t/wt0bNiwYbF58+Zd7jd06NBobGxs92fb/xvf8W/CjsdfsWJFPProo3HppZd2eK6WsDCfBou1tbVx0UUXRVNTU2tg0NFr6uvrY9WqVV0KLehZXWmwCdAZt5sESoKpsD0n5Rv7l156qQCVtLVhw4bIskyoAB248sor49BDD40rr7yyS6FCRMTrr78ec+bM2anfwvahQm1tbevf17Kysli4cOFOx580aVKcccYZ8atf/SrWrVsXWZZFlmVx1llnxe677x4zZsxoDRUiuj6r7Pzzz+/y0onq6uqYNm2agW2RWYYIFJsZC0BB5fPNFh3Ld7ZCi86++QQKa+HChQX5e1dfXx/jxo1r0+ugvLw81qxZ02YAv6vbPZpV1j919foA2BUzFoCSkc83W6TrKCMWKkDvueCCCwrSU6YrDRS70uPGrLL+yR05gN4gWAAKzlTY7usoOGiZ2tyRioqKTo87aNAgt3GEAvqv//qvHj9mZ4FAy+19H3vssV0OLjVY7J8ERkBvECwA9BE7BgBdCQRef/31Do+VZVls3bq19fmUKVNi8ODBMWXKlBgxYkTe9VB4WZbFunXrYvz48e3+rNR/J1mWtQ5iB4pnnnmmx4/ZUSBwzz33tK6rP+ecc3ZaQtXe4DJ1VllLgOEuP6VHYAT0BsECQB/SMnjMZwCZZVnrzIWKiooOX/vwww/Hli1b4uGHH46XX3653X1agoeWY5T6QLYvOu+889rd3vJZV1dXx6pVq9pcC9v/Hnbcvm7durj//vtj3bp1ceWVV7Y7sB86dGjr/580aVJkWRZLliyJ2bNnx6JFi+Kkk06KUaNGxXnnnRdZlsXChQvbDFoWLly4y1k1LT/ftm1brFu3rs0+S5Ys6fQzGTduXAwZMqTTfUrVGWecUZDj7hgInHjiiTstfcjlcq3fXHc2uMx3VpnGgKXPMkSg2DRvBKBDI0eOjI0bN8aIESM6DBsi0u5aQfu+853vxNy5c3u7jF3q6DaCRx11VDz55JPxjne8I5YvX97l49XW1sYFF1yw0/bly5fHpEmTIuKN2yceddRR3S++SI499th49NFHi3Kujhox/vCHP4xRo0b12O0eUxoDuu0hQN+keSMAPeLll1+OLMs6DRUidv6WfMefdcV3vvOdWL58+U6D0YMOOminfSsrK+PQQw/t0nFL1SmnnNLu9smTJxe5kjQdfcu9fPny2LZtW16hQsQb37CuW7cupk2bFpWVlXHWWWdFlmWtoULEG7MpRo0a1SP1F9Ipp5wSS5YsKVqoENHxuvpjjjmmR3vcdLUxYMtSiWuuucbsBoABQLAAQI/bMWTY/vmOA86W7XPnzo1Jkya1TsVveTz99NM7BRebNm2Kp556KrIsa03QKysrW4//7ne/u9P6ysrKdgo85syZs9N5urLsZNiwYW32fdOb3tTp/u985ztj+fLlcdddd8WsWbPa/GzWrFltBtIDTXV1ddx///2xadOmWLx4cbv7vPTSSx2+ftasWXH44YcXqrxWnYUmWZbFXXfdFe9///sLXsf2irWuviuNAbdfKvG5z32u3TtTtNejoSt9GwZyb4eB/N6B0mcpBAD92vbLNCZMmBArV64seg0rVqyIRx99NCZPnrxTcNDZz+jY6NGjY8OGDTF48OCYNWtWXHjhhTFp0qQYMmRIa1PSFIMGDYpt27Z1+PPt/7Np+2urVPqNdLREpSfV1tbGRRddFE1NTVFWVhZXX311fO5zn2s9/45LJXZ02WWXxYIFC6K5uTnKysri5ptvjoho7RHRsm3HvgC1tbXxiU98IrIsi1wuF7fccsuA6R1QW1u7y88HoKflM3YXLAAA/cZb3vKW2LRpU96vmzNnTlx33XUREbFgwYL47Gc/u9M+faX/RTFcc801cfnll+800O2o10OL8vLyaG5ubhPEdLRt+74N9fX1sffee+8U7Kxdu7bf921I6WsB0BP0WAAABqQvfelLu9yn5e4o2z9aQoWIiKlTp7b7ur7S/6LQ6uvrW0OFiLZLHNpbKtGivLw8Lr300p1mdzQ1NbW7bfu+DY899li7/VuWLVvWpXr78hKCrva1AOhNggUAoN+YN29ehw0eL7nkksiyLF5//fVOjzFp0iT9LzrR2UC3vV4P3/rWt1pvezhnzpx2ezTseGeZHfs2pOrqrTFLOXzoSl8LuqeUf//QV1gKAQD0OzsuZ1i3bl3e08b1v2hfV6bmd9brYfseDS1NJiNip23b9xBobylEWVlZPPfcc53e5rIrSwh6qn/B9rfVjIgevcVme5+ZHgs9Q/+K4nDb2b5JjwUAAAqmuwPd9oKHXTWezPecHfV7uP/++2PatGmt5+xu/4L6+vq4/vrrWxtStsy+yLKsRweq238+ET0bXAxU+lcUh/Cm7xIsAABQUMW4A0V3ztmVQWNXwofObH+nio709EDVIK3ndPf3z64Jb/o2zRsBANil7qwtr66ujmnTphV1cJDPOdvr93DTTTe1eW13+hfU19fHhRdeuMtbjfZko8WWc7bXOJP86V9ReJqPDhyCBQCAAairjQ37svPPPz/WrFnT2jxyx2/2uxI+dKS9AVN7enKgmjJI05iwY935/dM1wpuBw1IIAIABxvTktlKWdbT3GUZEmx4LPd1oMd/fm2UTXdMby3oGEs1H+y49FgAA6NAPf/jDOOuss3babm15frYfMJWVlcW8efNizpw5EREFG6h2dZAmPKKUCG/6JsECAADt2v5b7O0ZdKYp1SaWHTUmvOyyy+Lb3/52oUsE+gHBAgAAO+lo+n6hpsl3du9697UvrM5+188995zPHIqor/69c1cIAAB20lHDwcWLF/d4qNBZc8iB0Diyt1VXV8e8efN22t7c3KwjPxTRQPl7Z8YCAMAAUax1952dJyKs/e+i7n7LWV9fH3vvvXebW2L6rKF4+nqvEzMWAADYSbFur9fZbRHd175reuJbzurq6rjlllvcThF6yUD6e2fGAgDAAFPohoNmLHRPT3/LqSM/9A4zFgAA6Leqq6tj2rRpBfsP285mRhRr1kRf1tPfchb69w20byD9vTNjAQCAgujsm3Lfonesr3/LCbTVV//eud0kAAD0YbW1tXHRRRdFU1NT67ecPX3nDoDOCBYAAKCP66vfcgL9Qz5j90FFqgkAAMhDS08KgFKneSMAAACQTLAAAAAAJBMsAAAAAMkECwAAQL9WX18f999/f9TX1/d2KdAvCRYAAIB+q7a2NsaNGxfHH398jBs3Lmpra3u7JOh33G4SAADol+rr62PcuHHR3Nzcuq28vDzWrFnjjhuwC/mM3c1YAAAA+qWVK1e2CRUiIpqammLVqlW9VBH0T4IFAACgX9p///2jrKztkKe8vDwmTJjQSxVB/yRYAAAA+qXq6uq4+eabo7y8PCLeCBVuuukmyyCgh+mxAAAA9Gv19fWxatWqmDBhglABuiifsfugItUEAADQK6qrqwUKUECWQgAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkCyvYOHf//3fI5fLtXkcdNBBhaoNAAAAKHGD8n3B2972tvjlL3/5rwMMyvsQAAAAQD+RdyowaNCg2GuvvQpRCwAAANDH5N1jYeXKlTF27NjYb7/94sMf/nCsXbu20/0bGxujoaGhzQMAAADoH/IKFo4++uioq6uLu+++O2688cb4y1/+ElOnTo3Nmzd3+Jr58+dHVVVV66OmpqbbRQMAAAClIZdlWZb64ldeeSXGjRsXCxYsiPPPP7/dfRobG6OxsbH1eUNDQ9TU1MSmTZuisrIy9dQAAABAgTQ0NERVVVWXxu7d6rz4lre8JQ444IBYtWpVh/tUVFRERUVFd04DAAAAlKi8eyxs79VXX43Vq1fHmDFjeqoeAAAAoA/JK1i47LLL4sEHH4w1a9bEY489FqeffnqUl5fHOeecU6j6AAAAgBKW11KI+vr6OOecc+Lll1+OUaNGxZQpU+LXv/51jBo1qlD1AQAAACUsr2Bh8eLFhaoDAAAA6IO61WMBAAAAGNgECwAAAEAywQIAAACQTLAAAAAAJBMsAAAAAMkECwAAAEAywQIAAACQTLAAAAAAJBMsAAAAAMkECwAAAEAywQIAAACQTLAAAAAAJBMsAAAAAMkECwAAAEAywQIAAACQTLAAAAAAJBMsAAAAAMkECwAAAEAywQIAAACQTLAAAAAAJBMsAAAAAMkECwAAAEAywQIAAACQTLAAAAAAJBMsAAAAAMkECwAAAEAywQIAAACQTLAAAAAAJBMsAAAAAMkECwAAAEAywQIAAACQTLAAAAAAJBMsAAAAAMkECwAAAEAywQIAAACQTLAAAAAAJBMsAAAAAMkECwAAAEAywQIAAACQTLAAAAAAJBMsAAAAAMkECwAAAEAywQIAAACQTLAAAAAAJBMsAAAAAMkECwAAAEAywQIAAACQTLAAAAAAJBMsAAAAAMkECwAAAEAywQIAAACQTLAAAAAAJBMsAAAAAMkECwAAAEAywQIAAACQTLAAAAAAJBMsAAAAAMkECwAAAEAywQIAAACQTLAAAAAAJBMsAAAAAMkECwAAAEAywQIAAACQTLAAAAAAJBMsAAAAAMkECwAAAEAywQIAAACQTLAAAAAAJBMsAAAAAMkECwAAAEAywQIAAACQrFvBwtVXXx25XC7mzp3bQ+UAAAAAfUlysLBixYq46aabYuLEiT1ZDwAAANCHJAULr776anz4wx+OW265JXbfffeergkAAADoI5KChdmzZ8epp54a06dP7+l6AAAAgD5kUL4vWLx4cTz55JOxYsWKLu3f2NgYjY2Nrc8bGhryPSUAAABQovKasbBu3bqYM2dO/M///E8MHTq0S6+ZP39+VFVVtT5qamqSCgUAAABKTy7LsqyrO995551x+umnR3l5eeu2pqamyOVyUVZWFo2NjW1+FtH+jIWamprYtGlTVFZW9sBbAAAAAHpSQ0NDVFVVdWnsntdSiPe+973x1FNPtdn28Y9/PA466KC4/PLLdwoVIiIqKiqioqIin9MAAAAAfURewcLw4cPj0EMPbbPtzW9+c4wcOXKn7QAAAED/l3RXCAAAAICIhLtC7OiBBx7ogTIAAACAvsiMBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGR5BQs33nhjTJw4MSorK6OysjKOOeaY+PnPf16o2gAAAIASl1ewUF1dHVdffXU88cQT8fjjj8fxxx8fM2fOjP/7v/8rVH0AAABACctlWZZ15wAjRoyIb3/723H++ed3af+GhoaoqqqKTZs2RWVlZXdODQAAABRAPmP3QaknaWpqittvvz1ee+21OOaYYzrcr7GxMRobG9sUBwAAAPQPeTdvfOqpp2LYsGFRUVERn/zkJ+OOO+6IQw45pMP958+fH1VVVa2PmpqabhUMAAAAlI68l0Js2bIl1q5dG5s2bYof/ehHsXDhwnjwwQc7DBfam7FQU1NjKQQAAACUqHyWQnS7x8L06dNj/PjxcdNNN/V4cQAAAEDx5TN2z3spxI6am5vbzEgAAAAABo68mjd+/vOfj5NPPjn23nvv2Lx5c3z/+9+PBx54IO65555C1QcAAACUsLyChZdeeik+9rGPxYsvvhhVVVUxceLEuOeee+KEE04oVH0AAABACcsrWKitrS1UHQAAAEAf1O0eCwAAAMDAJVgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGR5BQvz58+PSZMmxfDhw2P06NFx2mmnxTPPPFOo2gAAAIASl1ew8OCDD8bs2bPj17/+dfziF7+IrVu3xvve97547bXXClUfAAAAUMJyWZZlqS/esGFDjB49Oh588MF497vf3aXXNDQ0RFVVVWzatCkqKytTTw0AAAAUSD5j90HdOdGmTZsiImLEiBEd7tPY2BiNjY1tigMAAAD6h+Tmjc3NzTF37tyYPHlyHHrooR3uN3/+/Kiqqmp91NTUpJ4SAAAAKDHJSyE+9alPxc9//vN45JFHorq6usP92puxUFNTYykEAAAAlKiCL4W4+OKLY+nSpfHQQw91GipERFRUVERFRUXKaQAAAIASl1ewkGVZXHLJJXHHHXfEAw88EPvuu2+h6gIAAAD6gLyChdmzZ8f3v//9+MlPfhLDhw+P9evXR0REVVVV7LbbbgUpEAAAAChdefVYyOVy7W5ftGhRnHvuuV06httNAgAAQGkrWI+FxD6PAAAAQD+VfLtJAAAAAMECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACTLO1h46KGHYsaMGTF27NjI5XJx5513FqAsAAAAoC/IO1h47bXX4vDDD48bbrihEPUAAAAAfcigfF9w8sknx8knn1yIWgAAAIA+Ro8FAAAAIFneMxby1djYGI2Nja3PGxoaCn1KAAAAoEgKPmNh/vz5UVVV1fqoqakp9CkBAACAIil4sPD5z38+Nm3a1PpYt25doU8JAAAAFEnBl0JUVFRERUVFoU8DAAAA9IK8g4VXX301Vq1a1fr8L3/5S/zud7+LESNGxN57792jxQEAAAClLe9g4fHHH4/jjjuu9fm8efMiImLWrFlRV1fXY4UBAAAApS/vYGHatGmRZVkhagEAAAD6mII3bwQAAAD6L8ECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJBAsAAABAMsECAAAAkEywAAAAACQTLAAAAADJkoKFG264IfbZZ58YOnRoHH300bF8+fKergsAAADoA/IOFm677baYN29eXHXVVfHkk0/G4YcfHieeeGK89NJLhaivJJxwwgmx2267xQknnNDbpQAAdEldXV3MnDkz6urqersUAPq5XJZlWT4vOProo2PSpEnx3e9+NyIimpubo6amJi655JK44oordvn6hoaGqKqqik2bNkVlZWVa1UWUy+V22pbnRwYAUFQTJkyI1atXtz4fP358rFq1qhcrAqCvyWfsnteMhS1btsQTTzwR06dP/9cByspi+vTpsWzZsnZf09jYGA0NDW0efUVHMxTMXAAASlVdXV2bUCEiYvXq1WYuAFAweQULf/vb36KpqSn23HPPNtv33HPPWL9+fbuvmT9/flRVVbU+ampq0qstskceeSSv7QAAve2OO+5od/tPfvKTIlcCwEBR8LtCfP7zn49Nmza1PtatW1foU/aYKVOm5LUdAKC3nX766e1unzlzZpErAWCgyCtY2GOPPaK8vDz++te/ttn+17/+Nfbaa692X1NRURGVlZVtHn3FL37xi7y2AwD0tnPPPTfGjx/fZtv48ePj3HPP7Z2CAOj38goWhgwZEkceeWTcd999rduam5vjvvvui2OOOabHiysFWZbF9OnTY+jQoTF9+nSNGwGAkrdq1apYtGhRnHbaabFo0SKNGwEoqLzvCnHbbbfFrFmz4qabboqjjjoqrrvuuvjhD38Yf/rTn3bqvdCevnZXCAAAABho8hm7D8r34GeddVZs2LAhvvSlL8X69evj7W9/e9x9991dChUAAACA/iXvGQvdZcYCAAAAlLZ8xu4FvysEAAAA0H8JFgAAAIBkggUAAAAgmWABAAAASCZYAAAAAJIJFgAAAIBkggUAAAAgmWABAAAASCZYAAAAAJIJFgAAAIBkggUAAAAgmWABAAAASCZYAAAAAJIJFgAAAIBkggUAAAAgmWABAAAASCZYAAAAAJIJFgAAAIBkggUAAAAgmWABAAAASDao2CfMsiwiIhoaGop9agAAAKALWsbsLWP4zhQ9WNi8eXNERNTU1BT71AAAAEAeNm/eHFVVVZ3uk8u6Ej/0oObm5njhhRdi+PDhkcvlinnqPq2hoSFqampi3bp1UVlZ2dvlQMG55hloXPMMNK55BiLXPX1JlmWxefPmGDt2bJSVdd5FoegzFsrKyqK6urrYp+03Kisr/RFiQHHNM9C45hloXPMMRK57+opdzVRooXkjAAAAkEywAAAAACQTLPQRFRUVcdVVV0VFRUVvlwJF4ZpnoHHNM9C45hmIXPf0V0Vv3ggAAAD0H2YsAAAAAMkECwAAAEAywQIAAACQTLAAAAAAJBMslIgbbrgh9tlnnxg6dGgcffTRsXz58g73veWWW2Lq1Kmx++67x+677x7Tp0/vdH8oVflc99tbvHhx5HK5OO200wpbIPSwfK/5V155JWbPnh1jxoyJioqKOOCAA+JnP/tZkaqF7sv3mr/uuuviwAMPjN122y1qamri0ksvjddff71I1UL3PPTQQzFjxowYO3Zs5HK5uPPOO3f5mgceeCDe8Y53REVFRUyYMCHq6uoKXicUgmChBNx2220xb968uOqqq+LJJ5+Mww8/PE488cR46aWX2t3/gQceiHPOOSfuv//+WLZsWdTU1MT73ve+eP7554tcOaTL97pvsWbNmrjsssti6tSpRaoUeka+1/yWLVvihBNOiDVr1sSPfvSjeOaZZ+KWW26Jt771rUWuHNLke81///vfjyuuuCKuuuqqePrpp6O2tjZuu+22+H//7/8VuXJI89prr8Xhhx8eN9xwQ5f2/8tf/hKnnnpqHHfccfG73/0u5s6dGxdccEHcc889Ba4Uep7bTZaAo48+OiZNmhTf/e53IyKiubk5ampq4pJLLokrrrhil69vamqK3XffPb773e/Gxz72sUKXCz0i5bpvamqKd7/73XHeeefFww8/HK+88kqXvg2AUpDvNf+9730vvv3tb8ef/vSnGDx4cLHLhW7L95q/+OKL4+mnn4777ruvddtnP/vZ+M1vfhOPPPJI0eqGnpDL5eKOO+7odHbl5ZdfHnfddVf84Q9/aN129tlnxyuvvBJ33313EaqEnmPGQi/bsmVLPPHEEzF9+vTWbWVlZTF9+vRYtmxZl47xj3/8I7Zu3RojRowoVJnQo1Kv+6985SsxevToOP/884tRJvSYlGv+pz/9aRxzzDExe/bs2HPPPePQQw+Nb3zjG9HU1FSssiFZyjV/7LHHxhNPPNG6XOLZZ5+Nn/3sZ3HKKacUpWYotmXLlrX5NxIRceKJJ3Z5DAClZFBvFzDQ/e1vf4umpqbYc88922zfc889409/+lOXjnH55ZfH2LFjd/rDBKUq5bp/5JFHora2Nn73u98VoULoWSnX/LPPPhu/+tWv4sMf/nD87Gc/i1WrVsWnP/3p2Lp1a1x11VXFKBuSpVzz//Zv/xZ/+9vfYsqUKZFlWWzbti0++clPWgpBv7V+/fp2/400NDTEP//5z9htt916qTLInxkLfdzVV18dixcvjjvuuCOGDh3a2+VAQWzevDk++tGPxi233BJ77LFHb5cDRdHc3ByjR4+Om2++OY488sg466yz4gtf+EJ873vf6+3SoCAeeOCB+MY3vhH/8R//EU8++WT8+Mc/jrvuuiu++tWv9nZpAOyCGQu9bI899ojy8vL461//2mb7X//619hrr706fe0111wTV199dfzyl7+MiRMnFrJM6FH5XverV6+ONWvWxIwZM1q3NTc3R0TEoEGD4plnnonx48cXtmjohpS/9WPGjInBgwdHeXl567aDDz441q9fH1u2bIkhQ4YUtGbojpRr/sorr4yPfvSjccEFF0RExGGHHRavvfZaXHjhhfGFL3whysp8H0b/stdee7X7b6SystJsBfocf6F72ZAhQ+LII49s06ioubk57rvvvjjmmGM6fN23vvWt+OpXvxp33313vPOd7yxGqdBj8r3uDzrooHjqqafid7/7XevjAx/4QGsX5ZqammKWD3lL+Vs/efLkWLVqVWuIFhHx5z//OcaMGSNUoOSlXPP/+Mc/dgoPWoI1vcbpj4455pg2/0YiIn7xi190OgaAkpXR6xYvXpxVVFRkdXV12R//+MfswgsvzN7ylrdk69evz7Isyz760Y9mV1xxRev+V199dTZkyJDsRz/6Ufbiiy+2PjZv3txbbwHylu91v6NZs2ZlM2fOLFK10H35XvNr167Nhg8fnl188cXZM888ky1dujQbPXp09rWvfa233gLkJd9r/qqrrsqGDx+e/eAHP8ieffbZ7N57783Gjx+ffehDH+qttwB52bx5c/bb3/42++1vf5tFRLZgwYLst7/9bfbcc89lWZZlV1xxRfbRj360df9nn302e9Ob3pR97nOfy55++unshhtuyMrLy7O77767t94CJLMUogScddZZsWHDhvjSl74U69evj7e//e1x9913tzZzWbt2bZsE/8Ybb4wtW7bEGWec0eY4V111Vfz7v/97MUuHZPle99DX5XvN19TUxD333BOXXnppTJw4Md761rfGnDlz4vLLL++ttwB5yfea/+IXvxi5XC6++MUvxvPPPx+jRo2KGTNmxNe//vXeeguQl8cffzyOO+641ufz5s2LiIhZs2ZFXV1dvPjii7F27drWn++7775x1113xaWXXhrXX399VFdXx8KFC+PEE08seu3QXbksM7cMAAAASOPrQAAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAoI956KGHYsaMGTF27NjI5XJx55135n2MLMvimmuuiQMOOCAqKirirW99a3z961/P+ziD8n4FAAAA0Ktee+21OPzww+O8886LD37wg0nHmDNnTtx7771xzTXXxGGHHRYbN26MjRs35n2cXJZlWVIFAAAAQK/L5XJxxx13xGmnnda6rbGxMb7whS/ED37wg3jllVfi0EMPjW9+85sxbdq0iIh4+umnY+LEifGHP/whDjzwwG6d31IIAAAA6GcuvvjiWLZsWSxevDh+//vfx5lnnhknnXRSrFy5MiIilixZEvvtt18sXbo09t1339hnn33iggsuSJqxIFgAAACAfmTt2rWxaNGiuP3222Pq1Kkxfvz4uOyyy2LKlCmxaNGiiIh49tln47nnnovbb789br311qirq4snnngizjjjjLzPp8cCAAAA9CNPPfVUNDU1xQEHHNBme2NjY4wcOTIiIpqbm6OxsTFuvfXW1v1qa2vjyCOPjGeeeSav5RGCBQAAAOhHXn311SgvL48nnngiysvL2/xs2LBhERExZsyYGDRoUJvw4eCDD46IN2Y8CBYAAABggDriiCOiqakpXnrppZg6dWq7+0yePDm2bdsWq1evjvHjx0dExJ///OeIiBg3blxe53NXCAAAAOhjXn311Vi1alVEvBEkLFiwII477rgYMWJE7L333vGRj3wkHn300bj22mvjiCOOiA0bNsR9990XEydOjFNPPTWam5tj0qRJMWzYsLjuuuuiubk5Zs+eHZWVlXHvvffmVYtgAQAAAPqYBx54II477ridts+aNSvq6upi69at8bWvfS1uvfXWeP7552OPPfaId73rXfHlL385DjvssIiIeOGFF+KSSy6Je++9N9785jfHySefHNdee22MGDEir1oECwAAAEAyt5sEAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABIJlgAAAAAkgkWAAAAgGSCBQAAACCZYAEAAABI9v8B1VTUS03CxKAAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"## Create a spatial plot\n",
"fig, ax = plt.subplots(figsize=(13, 8))\n",
"ax.plot(locations.X, locations.Y, 'k.')"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Locatie_MessageID | \n",
" Coordinatenstelsel | \n",
" X | \n",
" Y | \n",
" Naam | \n",
" Parameter_Wat_Omschrijving | \n",
" Compartiment.Code | \n",
" Compartiment.Omschrijving | \n",
" Eenheid.Code | \n",
" Eenheid.Omschrijving | \n",
" Grootheid.Code | \n",
" Grootheid.Omschrijving | \n",
" Hoedanigheid.Code | \n",
" Hoedanigheid.Omschrijving | \n",
" Parameter.Code | \n",
" Parameter.Omschrijving | \n",
" Groepering.Code | \n",
" Groepering.Omschrijving | \n",
" Code | \n",
"
\n",
" \n",
" Code | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" RIEDBG | \n",
" 11039 | \n",
" 25831 | \n",
" 1.133985e+06 | \n",
" 5.460049e+06 | \n",
" Riedenburg | \n",
" Waterhoogte Oppervlaktewater t.o.v. plaatselij... | \n",
" OW | \n",
" Oppervlaktewater | \n",
" cm | \n",
" centimeter | \n",
" WATHTE | \n",
" Waterhoogte | \n",
" PLAATSLR | \n",
" t.o.v. plaatselijk referentievlak | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" Niet van toepassing | \n",
" RIEDBG | \n",
"
\n",
" \n",
" BAMBG | \n",
" 13481 | \n",
" 25831 | \n",
" 1.066035e+06 | \n",
" 5.555525e+06 | \n",
" Bamberg | \n",
" Waterhoogte Oppervlaktewater t.o.v. plaatselij... | \n",
" OW | \n",
" Oppervlaktewater | \n",
" cm | \n",
" centimeter | \n",
" WATHTE | \n",
" Waterhoogte | \n",
" PLAATSLR | \n",
" t.o.v. plaatselijk referentievlak | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" Niet van toepassing | \n",
" BAMBG | \n",
"
\n",
" \n",
" STEINBCH | \n",
" 11103 | \n",
" 25831 | \n",
" 9.715529e+05 | \n",
" 5.559332e+06 | \n",
" Steinbach | \n",
" Waterhoogte Oppervlaktewater t.o.v. plaatselij... | \n",
" OW | \n",
" Oppervlaktewater | \n",
" cm | \n",
" centimeter | \n",
" WATHTE | \n",
" Waterhoogte | \n",
" PLAATSLR | \n",
" t.o.v. plaatselijk referentievlak | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" Niet van toepassing | \n",
" STEINBCH | \n",
"
\n",
" \n",
" KONSZ | \n",
" 13512 | \n",
" 25831 | \n",
" 9.642014e+05 | \n",
" 5.295846e+06 | \n",
" Konstanz | \n",
" Waterhoogte Oppervlaktewater t.o.v. plaatselij... | \n",
" OW | \n",
" Oppervlaktewater | \n",
" cm | \n",
" centimeter | \n",
" WATHTE | \n",
" Waterhoogte | \n",
" PLAATSLR | \n",
" t.o.v. plaatselijk referentievlak | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" Niet van toepassing | \n",
" KONSZ | \n",
"
\n",
" \n",
" SPEYER | \n",
" 11067 | \n",
" 25831 | \n",
" 8.958191e+05 | \n",
" 5.477785e+06 | \n",
" Speyer | \n",
" Waterhoogte Oppervlaktewater t.o.v. plaatselij... | \n",
" OW | \n",
" Oppervlaktewater | \n",
" cm | \n",
" centimeter | \n",
" WATHTE | \n",
" Waterhoogte | \n",
" PLAATSLR | \n",
" t.o.v. plaatselijk referentievlak | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" Niet van toepassing | \n",
" SPEYER | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Locatie_MessageID Coordinatenstelsel X Y \\\n",
"Code \n",
"RIEDBG 11039 25831 1.133985e+06 5.460049e+06 \n",
"BAMBG 13481 25831 1.066035e+06 5.555525e+06 \n",
"STEINBCH 11103 25831 9.715529e+05 5.559332e+06 \n",
"KONSZ 13512 25831 9.642014e+05 5.295846e+06 \n",
"SPEYER 11067 25831 8.958191e+05 5.477785e+06 \n",
"\n",
" Naam Parameter_Wat_Omschrijving \\\n",
"Code \n",
"RIEDBG Riedenburg Waterhoogte Oppervlaktewater t.o.v. plaatselij... \n",
"BAMBG Bamberg Waterhoogte Oppervlaktewater t.o.v. plaatselij... \n",
"STEINBCH Steinbach Waterhoogte Oppervlaktewater t.o.v. plaatselij... \n",
"KONSZ Konstanz Waterhoogte Oppervlaktewater t.o.v. plaatselij... \n",
"SPEYER Speyer Waterhoogte Oppervlaktewater t.o.v. plaatselij... \n",
"\n",
" Compartiment.Code Compartiment.Omschrijving Eenheid.Code \\\n",
"Code \n",
"RIEDBG OW Oppervlaktewater cm \n",
"BAMBG OW Oppervlaktewater cm \n",
"STEINBCH OW Oppervlaktewater cm \n",
"KONSZ OW Oppervlaktewater cm \n",
"SPEYER OW Oppervlaktewater cm \n",
"\n",
" Eenheid.Omschrijving Grootheid.Code Grootheid.Omschrijving \\\n",
"Code \n",
"RIEDBG centimeter WATHTE Waterhoogte \n",
"BAMBG centimeter WATHTE Waterhoogte \n",
"STEINBCH centimeter WATHTE Waterhoogte \n",
"KONSZ centimeter WATHTE Waterhoogte \n",
"SPEYER centimeter WATHTE Waterhoogte \n",
"\n",
" Hoedanigheid.Code Hoedanigheid.Omschrijving Parameter.Code \\\n",
"Code \n",
"RIEDBG PLAATSLR t.o.v. plaatselijk referentievlak NVT \n",
"BAMBG PLAATSLR t.o.v. plaatselijk referentievlak NVT \n",
"STEINBCH PLAATSLR t.o.v. plaatselijk referentievlak NVT \n",
"KONSZ PLAATSLR t.o.v. plaatselijk referentievlak NVT \n",
"SPEYER PLAATSLR t.o.v. plaatselijk referentievlak NVT \n",
"\n",
" Parameter.Omschrijving Groepering.Code \\\n",
"Code \n",
"RIEDBG Waarde is niet van toepassing NVT \n",
"BAMBG Waarde is niet van toepassing NVT \n",
"STEINBCH Waarde is niet van toepassing NVT \n",
"KONSZ Waarde is niet van toepassing NVT \n",
"SPEYER Waarde is niet van toepassing NVT \n",
"\n",
" Groepering.Omschrijving Code \n",
"Code \n",
"RIEDBG Niet van toepassing RIEDBG \n",
"BAMBG Niet van toepassing BAMBG \n",
"STEINBCH Niet van toepassing STEINBCH \n",
"KONSZ Niet van toepassing KONSZ \n",
"SPEYER Niet van toepassing SPEYER "
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# CHECK See what the data in the east is.\n",
"# These is a reference river for water quality near Chernobyl. \n",
"locations.sort_values('X', ascending=False).head(n=5)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Locatie_MessageID | \n",
" Coordinatenstelsel | \n",
" X | \n",
" Y | \n",
" Naam | \n",
" Parameter_Wat_Omschrijving | \n",
" Compartiment.Code | \n",
" Compartiment.Omschrijving | \n",
" Eenheid.Code | \n",
" Eenheid.Omschrijving | \n",
" Grootheid.Code | \n",
" Grootheid.Omschrijving | \n",
" Hoedanigheid.Code | \n",
" Hoedanigheid.Omschrijving | \n",
" Parameter.Code | \n",
" Parameter.Omschrijving | \n",
" Groepering.Code | \n",
" Groepering.Omschrijving | \n",
" Code | \n",
"
\n",
" \n",
" Code | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" HOEKVHLD | \n",
" 10399 | \n",
" 25831 | \n",
" 576917.669784 | \n",
" 5.759136e+06 | \n",
" Hoek van Holland | \n",
" Waterhoogte Oppervlaktewater t.o.v. Normaal Am... | \n",
" OW | \n",
" Oppervlaktewater | \n",
" cm | \n",
" centimeter | \n",
" WATHTE | \n",
" Waterhoogte | \n",
" NAP | \n",
" t.o.v. Normaal Amsterdams Peil | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" Niet van toepassing | \n",
" HOEKVHLD | \n",
"
\n",
" \n",
" SCHEVNGN | \n",
" 10406 | \n",
" 25831 | \n",
" 586550.994421 | \n",
" 5.772806e+06 | \n",
" Scheveningen | \n",
" Waterhoogte Oppervlaktewater t.o.v. Normaal Am... | \n",
" OW | \n",
" Oppervlaktewater | \n",
" cm | \n",
" centimeter | \n",
" WATHTE | \n",
" Waterhoogte | \n",
" NAP | \n",
" t.o.v. Normaal Amsterdams Peil | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" Niet van toepassing | \n",
" SCHEVNGN | \n",
"
\n",
" \n",
" IJMDBTHVN | \n",
" 10414 | \n",
" 25831 | \n",
" 605633.035699 | \n",
" 5.813598e+06 | \n",
" IJmuiden buitenhaven | \n",
" Waterhoogte Oppervlaktewater t.o.v. Normaal Am... | \n",
" OW | \n",
" Oppervlaktewater | \n",
" cm | \n",
" centimeter | \n",
" WATHTE | \n",
" Waterhoogte | \n",
" NAP | \n",
" t.o.v. Normaal Amsterdams Peil | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" Niet van toepassing | \n",
" IJMDBTHVN | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Locatie_MessageID Coordinatenstelsel X Y \\\n",
"Code \n",
"HOEKVHLD 10399 25831 576917.669784 5.759136e+06 \n",
"SCHEVNGN 10406 25831 586550.994421 5.772806e+06 \n",
"IJMDBTHVN 10414 25831 605633.035699 5.813598e+06 \n",
"\n",
" Naam \\\n",
"Code \n",
"HOEKVHLD Hoek van Holland \n",
"SCHEVNGN Scheveningen \n",
"IJMDBTHVN IJmuiden buitenhaven \n",
"\n",
" Parameter_Wat_Omschrijving \\\n",
"Code \n",
"HOEKVHLD Waterhoogte Oppervlaktewater t.o.v. Normaal Am... \n",
"SCHEVNGN Waterhoogte Oppervlaktewater t.o.v. Normaal Am... \n",
"IJMDBTHVN Waterhoogte Oppervlaktewater t.o.v. Normaal Am... \n",
"\n",
" Compartiment.Code Compartiment.Omschrijving Eenheid.Code \\\n",
"Code \n",
"HOEKVHLD OW Oppervlaktewater cm \n",
"SCHEVNGN OW Oppervlaktewater cm \n",
"IJMDBTHVN OW Oppervlaktewater cm \n",
"\n",
" Eenheid.Omschrijving Grootheid.Code Grootheid.Omschrijving \\\n",
"Code \n",
"HOEKVHLD centimeter WATHTE Waterhoogte \n",
"SCHEVNGN centimeter WATHTE Waterhoogte \n",
"IJMDBTHVN centimeter WATHTE Waterhoogte \n",
"\n",
" Hoedanigheid.Code Hoedanigheid.Omschrijving Parameter.Code \\\n",
"Code \n",
"HOEKVHLD NAP t.o.v. Normaal Amsterdams Peil NVT \n",
"SCHEVNGN NAP t.o.v. Normaal Amsterdams Peil NVT \n",
"IJMDBTHVN NAP t.o.v. Normaal Amsterdams Peil NVT \n",
"\n",
" Parameter.Omschrijving Groepering.Code \\\n",
"Code \n",
"HOEKVHLD Waarde is niet van toepassing NVT \n",
"SCHEVNGN Waarde is niet van toepassing NVT \n",
"IJMDBTHVN Waarde is niet van toepassing NVT \n",
"\n",
" Groepering.Omschrijving Code \n",
"Code \n",
"HOEKVHLD Niet van toepassing HOEKVHLD \n",
"SCHEVNGN Niet van toepassing SCHEVNGN \n",
"IJMDBTHVN Niet van toepassing IJMDBTHVN "
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"bool_stations = locations.index.isin(['HOEKVHLD', 'IJMDBTHVN','SCHEVNGN'])\n",
"bool_grootheid = locations['Grootheid.Code'].isin(['WATHTE']) # measured (WATHTE) versus computed/astro\n",
"bool_groepering = locations['Groepering.Code'].isin(['NVT']) # timeseries (NVT) versus extremes\n",
"bool_hoedanigheid = locations['Hoedanigheid.Code'].isin(['NAP']) # vertical reference (NAP/MSL)\n",
"selected = locations.loc[bool_stations & bool_grootheid & bool_groepering & bool_hoedanigheid]\n",
"selected"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Locatie_MessageID | \n",
" Coordinatenstelsel | \n",
" X | \n",
" Y | \n",
" Naam | \n",
" Parameter_Wat_Omschrijving | \n",
" Compartiment.Code | \n",
" Compartiment.Omschrijving | \n",
" Eenheid.Code | \n",
" Eenheid.Omschrijving | \n",
" Grootheid.Code | \n",
" Grootheid.Omschrijving | \n",
" Hoedanigheid.Code | \n",
" Hoedanigheid.Omschrijving | \n",
" Parameter.Code | \n",
" Parameter.Omschrijving | \n",
" Groepering.Code | \n",
" Groepering.Omschrijving | \n",
" Code | \n",
"
\n",
" \n",
" Code | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" ROTTMPT3 | \n",
" 9486 | \n",
" 25831 | \n",
" 735924.084551 | \n",
" 5.941073e+06 | \n",
" Rottumerplaat 3 km uit de kust | \n",
" Korrelgroottefractie Bodem/Sediment diameter g... | \n",
" BS | \n",
" Bodem/Sediment | \n",
" % | \n",
" procent | \n",
" KGF | \n",
" Korrelgroottefractie | \n",
" Dg0016dg | \n",
" diameter groter dan 16 um / drooggewicht | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" Niet van toepassing | \n",
" ROTTMPT3 | \n",
"
\n",
" \n",
" SCHOUWN10 | \n",
" 9510 | \n",
" 25831 | \n",
" 534120.858324 | \n",
" 5.729921e+06 | \n",
" Schouwen 10 km uit de kust | \n",
" Korrelgroottefractie Bodem/Sediment diameter g... | \n",
" BS | \n",
" Bodem/Sediment | \n",
" % | \n",
" procent | \n",
" KGF | \n",
" Korrelgroottefractie | \n",
" Dg0016dg | \n",
" diameter groter dan 16 um / drooggewicht | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" Niet van toepassing | \n",
" SCHOUWN10 | \n",
"
\n",
" \n",
" TERSLG235 | \n",
" 9518 | \n",
" 25831 | \n",
" 509938.998556 | \n",
" 6.113888e+06 | \n",
" Terschelling 235 km uit de kust | \n",
" Korrelgroottefractie Bodem/Sediment diameter g... | \n",
" BS | \n",
" Bodem/Sediment | \n",
" % | \n",
" procent | \n",
" KGF | \n",
" Korrelgroottefractie | \n",
" Dg0016dg | \n",
" diameter groter dan 16 um / drooggewicht | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" Niet van toepassing | \n",
" TERSLG235 | \n",
"
\n",
" \n",
" WALCRN2 | \n",
" 9526 | \n",
" 25831 | \n",
" 528394.396027 | \n",
" 5.710854e+06 | \n",
" Walcheren 2 km uit de kust | \n",
" Korrelgroottefractie Bodem/Sediment diameter g... | \n",
" BS | \n",
" Bodem/Sediment | \n",
" % | \n",
" procent | \n",
" KGF | \n",
" Korrelgroottefractie | \n",
" Dg0016dg | \n",
" diameter groter dan 16 um / drooggewicht | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" Niet van toepassing | \n",
" WALCRN2 | \n",
"
\n",
" \n",
" GOERE6 | \n",
" 9542 | \n",
" 25831 | \n",
" 560056.490959 | \n",
" 5.746818e+06 | \n",
" Goeree 6 km uit de kust | \n",
" Korrelgroottefractie Bodem/Sediment diameter g... | \n",
" BS | \n",
" Bodem/Sediment | \n",
" % | \n",
" procent | \n",
" KGF | \n",
" Korrelgroottefractie | \n",
" Dg0016dg | \n",
" diameter groter dan 16 um / drooggewicht | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" Niet van toepassing | \n",
" GOERE6 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Locatie_MessageID Coordinatenstelsel X Y \\\n",
"Code \n",
"ROTTMPT3 9486 25831 735924.084551 5.941073e+06 \n",
"SCHOUWN10 9510 25831 534120.858324 5.729921e+06 \n",
"TERSLG235 9518 25831 509938.998556 6.113888e+06 \n",
"WALCRN2 9526 25831 528394.396027 5.710854e+06 \n",
"GOERE6 9542 25831 560056.490959 5.746818e+06 \n",
"\n",
" Naam \\\n",
"Code \n",
"ROTTMPT3 Rottumerplaat 3 km uit de kust \n",
"SCHOUWN10 Schouwen 10 km uit de kust \n",
"TERSLG235 Terschelling 235 km uit de kust \n",
"WALCRN2 Walcheren 2 km uit de kust \n",
"GOERE6 Goeree 6 km uit de kust \n",
"\n",
" Parameter_Wat_Omschrijving \\\n",
"Code \n",
"ROTTMPT3 Korrelgroottefractie Bodem/Sediment diameter g... \n",
"SCHOUWN10 Korrelgroottefractie Bodem/Sediment diameter g... \n",
"TERSLG235 Korrelgroottefractie Bodem/Sediment diameter g... \n",
"WALCRN2 Korrelgroottefractie Bodem/Sediment diameter g... \n",
"GOERE6 Korrelgroottefractie Bodem/Sediment diameter g... \n",
"\n",
" Compartiment.Code Compartiment.Omschrijving Eenheid.Code \\\n",
"Code \n",
"ROTTMPT3 BS Bodem/Sediment % \n",
"SCHOUWN10 BS Bodem/Sediment % \n",
"TERSLG235 BS Bodem/Sediment % \n",
"WALCRN2 BS Bodem/Sediment % \n",
"GOERE6 BS Bodem/Sediment % \n",
"\n",
" Eenheid.Omschrijving Grootheid.Code Grootheid.Omschrijving \\\n",
"Code \n",
"ROTTMPT3 procent KGF Korrelgroottefractie \n",
"SCHOUWN10 procent KGF Korrelgroottefractie \n",
"TERSLG235 procent KGF Korrelgroottefractie \n",
"WALCRN2 procent KGF Korrelgroottefractie \n",
"GOERE6 procent KGF Korrelgroottefractie \n",
"\n",
" Hoedanigheid.Code Hoedanigheid.Omschrijving \\\n",
"Code \n",
"ROTTMPT3 Dg0016dg diameter groter dan 16 um / drooggewicht \n",
"SCHOUWN10 Dg0016dg diameter groter dan 16 um / drooggewicht \n",
"TERSLG235 Dg0016dg diameter groter dan 16 um / drooggewicht \n",
"WALCRN2 Dg0016dg diameter groter dan 16 um / drooggewicht \n",
"GOERE6 Dg0016dg diameter groter dan 16 um / drooggewicht \n",
"\n",
" Parameter.Code Parameter.Omschrijving Groepering.Code \\\n",
"Code \n",
"ROTTMPT3 NVT Waarde is niet van toepassing NVT \n",
"SCHOUWN10 NVT Waarde is niet van toepassing NVT \n",
"TERSLG235 NVT Waarde is niet van toepassing NVT \n",
"WALCRN2 NVT Waarde is niet van toepassing NVT \n",
"GOERE6 NVT Waarde is niet van toepassing NVT \n",
"\n",
" Groepering.Omschrijving Code \n",
"Code \n",
"ROTTMPT3 Niet van toepassing ROTTMPT3 \n",
"SCHOUWN10 Niet van toepassing SCHOUWN10 \n",
"TERSLG235 Niet van toepassing TERSLG235 \n",
"WALCRN2 Niet van toepassing WALCRN2 \n",
"GOERE6 Niet van toepassing GOERE6 "
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"names = 'uit de kust'\n",
"selected = locations[locations.Naam.str.contains(names)].head()\n",
"selected"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Locatie_MessageID | \n",
" Coordinatenstelsel | \n",
" X | \n",
" Y | \n",
" Naam | \n",
" Parameter_Wat_Omschrijving | \n",
" Compartiment.Code | \n",
" Compartiment.Omschrijving | \n",
" Eenheid.Code | \n",
" Eenheid.Omschrijving | \n",
" Grootheid.Code | \n",
" Grootheid.Omschrijving | \n",
" Hoedanigheid.Code | \n",
" Hoedanigheid.Omschrijving | \n",
" Parameter.Code | \n",
" Parameter.Omschrijving | \n",
" Groepering.Code | \n",
" Groepering.Omschrijving | \n",
" Code | \n",
"
\n",
" \n",
" Code | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" SCHEVNGN | \n",
" 10406 | \n",
" 25831 | \n",
" 586550.994421 | \n",
" 5.772806e+06 | \n",
" Scheveningen | \n",
" Waterhoogte berekend Oppervlaktewater t.o.v. N... | \n",
" OW | \n",
" Oppervlaktewater | \n",
" cm | \n",
" centimeter | \n",
" WATHTBRKD | \n",
" Waterhoogte berekend | \n",
" NAP | \n",
" t.o.v. Normaal Amsterdams Peil | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" GETETBRKD2 | \n",
" Getijextreem berekend | \n",
" SCHEVNGN | \n",
"
\n",
" \n",
" SCHEVNGN | \n",
" 10406 | \n",
" 25831 | \n",
" 586550.994421 | \n",
" 5.772806e+06 | \n",
" Scheveningen | \n",
" Waterhoogte berekend Oppervlaktewater t.o.v. N... | \n",
" OW | \n",
" Oppervlaktewater | \n",
" cm | \n",
" centimeter | \n",
" WATHTBRKD | \n",
" Waterhoogte berekend | \n",
" NAP | \n",
" t.o.v. Normaal Amsterdams Peil | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" Niet van toepassing | \n",
" SCHEVNGN | \n",
"
\n",
" \n",
" SCHEVNGN | \n",
" 10406 | \n",
" 25831 | \n",
" 586550.994421 | \n",
" 5.772806e+06 | \n",
" Scheveningen | \n",
" Waterhoogte Oppervlaktewater t.o.v. Normaal Am... | \n",
" OW | \n",
" Oppervlaktewater | \n",
" cm | \n",
" centimeter | \n",
" WATHTE | \n",
" Waterhoogte | \n",
" NAP | \n",
" t.o.v. Normaal Amsterdams Peil | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" GETETM2 | \n",
" Getijextremen | \n",
" SCHEVNGN | \n",
"
\n",
" \n",
" SCHEVNGN | \n",
" 10406 | \n",
" 25831 | \n",
" 586550.994421 | \n",
" 5.772806e+06 | \n",
" Scheveningen | \n",
" Waterhoogte Oppervlaktewater t.o.v. Normaal Am... | \n",
" OW | \n",
" Oppervlaktewater | \n",
" cm | \n",
" centimeter | \n",
" WATHTE | \n",
" Waterhoogte | \n",
" NAP | \n",
" t.o.v. Normaal Amsterdams Peil | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" Niet van toepassing | \n",
" SCHEVNGN | \n",
"
\n",
" \n",
" SCHEVNGN | \n",
" 10406 | \n",
" 25831 | \n",
" 586550.994421 | \n",
" 5.772806e+06 | \n",
" Scheveningen | \n",
" Waterhoogte astronomisch Oppervlaktewater t.o.... | \n",
" OW | \n",
" Oppervlaktewater | \n",
" cm | \n",
" centimeter | \n",
" WATHTEASTRO | \n",
" Waterhoogte astronomisch | \n",
" NAP | \n",
" t.o.v. Normaal Amsterdams Peil | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" Niet van toepassing | \n",
" SCHEVNGN | \n",
"
\n",
" \n",
" SCHEVNGN | \n",
" 10406 | \n",
" 25831 | \n",
" 586550.994421 | \n",
" 5.772806e+06 | \n",
" Scheveningen | \n",
" Levendigheid Oppervlaktewater cm2 | \n",
" OW | \n",
" Oppervlaktewater | \n",
" cm2 | \n",
" vierkante centimeter | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" niet van toepassing | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" Niet van toepassing | \n",
" SCHEVNGN | \n",
"
\n",
" \n",
" SCHEVNGN | \n",
" 10406 | \n",
" 25831 | \n",
" 586550.994421 | \n",
" 5.772806e+06 | \n",
" Scheveningen | \n",
" Getijextreemtype Oppervlaktewater | \n",
" OW | \n",
" Oppervlaktewater | \n",
" DIMSLS | \n",
" dimensieloos | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" niet van toepassing | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" GETETBRKD2 | \n",
" Getijextreem berekend | \n",
" SCHEVNGN | \n",
"
\n",
" \n",
" SCHEVNGN | \n",
" 10406 | \n",
" 25831 | \n",
" 586550.994421 | \n",
" 5.772806e+06 | \n",
" Scheveningen | \n",
" Getijextreemtype Oppervlaktewater | \n",
" OW | \n",
" Oppervlaktewater | \n",
" DIMSLS | \n",
" dimensieloos | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" niet van toepassing | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" GETETM2 | \n",
" Getijextremen | \n",
" SCHEVNGN | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Locatie_MessageID Coordinatenstelsel X Y \\\n",
"Code \n",
"SCHEVNGN 10406 25831 586550.994421 5.772806e+06 \n",
"SCHEVNGN 10406 25831 586550.994421 5.772806e+06 \n",
"SCHEVNGN 10406 25831 586550.994421 5.772806e+06 \n",
"SCHEVNGN 10406 25831 586550.994421 5.772806e+06 \n",
"SCHEVNGN 10406 25831 586550.994421 5.772806e+06 \n",
"SCHEVNGN 10406 25831 586550.994421 5.772806e+06 \n",
"SCHEVNGN 10406 25831 586550.994421 5.772806e+06 \n",
"SCHEVNGN 10406 25831 586550.994421 5.772806e+06 \n",
"\n",
" Naam Parameter_Wat_Omschrijving \\\n",
"Code \n",
"SCHEVNGN Scheveningen Waterhoogte berekend Oppervlaktewater t.o.v. N... \n",
"SCHEVNGN Scheveningen Waterhoogte berekend Oppervlaktewater t.o.v. N... \n",
"SCHEVNGN Scheveningen Waterhoogte Oppervlaktewater t.o.v. Normaal Am... \n",
"SCHEVNGN Scheveningen Waterhoogte Oppervlaktewater t.o.v. Normaal Am... \n",
"SCHEVNGN Scheveningen Waterhoogte astronomisch Oppervlaktewater t.o.... \n",
"SCHEVNGN Scheveningen Levendigheid Oppervlaktewater cm2 \n",
"SCHEVNGN Scheveningen Getijextreemtype Oppervlaktewater \n",
"SCHEVNGN Scheveningen Getijextreemtype Oppervlaktewater \n",
"\n",
" Compartiment.Code Compartiment.Omschrijving Eenheid.Code \\\n",
"Code \n",
"SCHEVNGN OW Oppervlaktewater cm \n",
"SCHEVNGN OW Oppervlaktewater cm \n",
"SCHEVNGN OW Oppervlaktewater cm \n",
"SCHEVNGN OW Oppervlaktewater cm \n",
"SCHEVNGN OW Oppervlaktewater cm \n",
"SCHEVNGN OW Oppervlaktewater cm2 \n",
"SCHEVNGN OW Oppervlaktewater DIMSLS \n",
"SCHEVNGN OW Oppervlaktewater DIMSLS \n",
"\n",
" Eenheid.Omschrijving Grootheid.Code Grootheid.Omschrijving \\\n",
"Code \n",
"SCHEVNGN centimeter WATHTBRKD Waterhoogte berekend \n",
"SCHEVNGN centimeter WATHTBRKD Waterhoogte berekend \n",
"SCHEVNGN centimeter WATHTE Waterhoogte \n",
"SCHEVNGN centimeter WATHTE Waterhoogte \n",
"SCHEVNGN centimeter WATHTEASTRO Waterhoogte astronomisch \n",
"SCHEVNGN vierkante centimeter NVT Waarde is niet van toepassing \n",
"SCHEVNGN dimensieloos NVT Waarde is niet van toepassing \n",
"SCHEVNGN dimensieloos NVT Waarde is niet van toepassing \n",
"\n",
" Hoedanigheid.Code Hoedanigheid.Omschrijving Parameter.Code \\\n",
"Code \n",
"SCHEVNGN NAP t.o.v. Normaal Amsterdams Peil NVT \n",
"SCHEVNGN NAP t.o.v. Normaal Amsterdams Peil NVT \n",
"SCHEVNGN NAP t.o.v. Normaal Amsterdams Peil NVT \n",
"SCHEVNGN NAP t.o.v. Normaal Amsterdams Peil NVT \n",
"SCHEVNGN NAP t.o.v. Normaal Amsterdams Peil NVT \n",
"SCHEVNGN NVT niet van toepassing NVT \n",
"SCHEVNGN NVT niet van toepassing NVT \n",
"SCHEVNGN NVT niet van toepassing NVT \n",
"\n",
" Parameter.Omschrijving Groepering.Code \\\n",
"Code \n",
"SCHEVNGN Waarde is niet van toepassing GETETBRKD2 \n",
"SCHEVNGN Waarde is niet van toepassing NVT \n",
"SCHEVNGN Waarde is niet van toepassing GETETM2 \n",
"SCHEVNGN Waarde is niet van toepassing NVT \n",
"SCHEVNGN Waarde is niet van toepassing NVT \n",
"SCHEVNGN Waarde is niet van toepassing NVT \n",
"SCHEVNGN Waarde is niet van toepassing GETETBRKD2 \n",
"SCHEVNGN Waarde is niet van toepassing GETETM2 \n",
"\n",
" Groepering.Omschrijving Code \n",
"Code \n",
"SCHEVNGN Getijextreem berekend SCHEVNGN \n",
"SCHEVNGN Niet van toepassing SCHEVNGN \n",
"SCHEVNGN Getijextremen SCHEVNGN \n",
"SCHEVNGN Niet van toepassing SCHEVNGN \n",
"SCHEVNGN Niet van toepassing SCHEVNGN \n",
"SCHEVNGN Niet van toepassing SCHEVNGN \n",
"SCHEVNGN Getijextreem berekend SCHEVNGN \n",
"SCHEVNGN Getijextremen SCHEVNGN "
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# multiple parameters avaialble per location, each combination is a row\n",
"selected = locations.loc['SCHEVNGN']\n",
"selected"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Locatie_MessageID | \n",
" Coordinatenstelsel | \n",
" X | \n",
" Y | \n",
" Naam | \n",
" Parameter_Wat_Omschrijving | \n",
" Compartiment.Code | \n",
" Compartiment.Omschrijving | \n",
" Eenheid.Code | \n",
" Eenheid.Omschrijving | \n",
" Grootheid.Code | \n",
" Grootheid.Omschrijving | \n",
" Hoedanigheid.Code | \n",
" Hoedanigheid.Omschrijving | \n",
" Parameter.Code | \n",
" Parameter.Omschrijving | \n",
" Groepering.Code | \n",
" Groepering.Omschrijving | \n",
" Code | \n",
"
\n",
" \n",
" Code | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" SCHEVNGN | \n",
" 10406 | \n",
" 25831 | \n",
" 586550.994421 | \n",
" 5.772806e+06 | \n",
" Scheveningen | \n",
" Waterhoogte Oppervlaktewater t.o.v. Normaal Am... | \n",
" OW | \n",
" Oppervlaktewater | \n",
" cm | \n",
" centimeter | \n",
" WATHTE | \n",
" Waterhoogte | \n",
" NAP | \n",
" t.o.v. Normaal Amsterdams Peil | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" Niet van toepassing | \n",
" SCHEVNGN | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Locatie_MessageID Coordinatenstelsel X Y \\\n",
"Code \n",
"SCHEVNGN 10406 25831 586550.994421 5.772806e+06 \n",
"\n",
" Naam Parameter_Wat_Omschrijving \\\n",
"Code \n",
"SCHEVNGN Scheveningen Waterhoogte Oppervlaktewater t.o.v. Normaal Am... \n",
"\n",
" Compartiment.Code Compartiment.Omschrijving Eenheid.Code \\\n",
"Code \n",
"SCHEVNGN OW Oppervlaktewater cm \n",
"\n",
" Eenheid.Omschrijving Grootheid.Code Grootheid.Omschrijving \\\n",
"Code \n",
"SCHEVNGN centimeter WATHTE Waterhoogte \n",
"\n",
" Hoedanigheid.Code Hoedanigheid.Omschrijving Parameter.Code \\\n",
"Code \n",
"SCHEVNGN NAP t.o.v. Normaal Amsterdams Peil NVT \n",
"\n",
" Parameter.Omschrijving Groepering.Code \\\n",
"Code \n",
"SCHEVNGN Waarde is niet van toepassing NVT \n",
"\n",
" Groepering.Omschrijving Code \n",
"Code \n",
"SCHEVNGN Niet van toepassing SCHEVNGN "
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# subset to a single location/measurement location (waterhoogte timeseries for Scheveningen)\n",
"bool_stations = locations.index.isin(['SCHEVNGN'])\n",
"# measured (WATHTE) versus computed/astro\n",
"bool_grootheid = locations['Grootheid.Code'].isin(['WATHTE'])\n",
"# timeseries (NVT) versus extremes\n",
"bool_groepering = locations['Groepering.Code'].isin(['NVT'])\n",
"selected = locations.loc[bool_stations & bool_grootheid & bool_groepering]\n",
"selected"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
" 0%| | 0/9 [00:00, ?it/s]DEBUG:ddlpy.ddlpy:Requesting at https://waterwebservices.rijkswaterstaat.nl/ONLINEWAARNEMINGENSERVICES_DBO/OphalenWaarnemingen with request: {\"AquoPlusWaarnemingMetadata\": {\"AquoMetadata\": {\"Compartiment\": {\"Code\": \"OW\"}, \"Eenheid\": {\"Code\": \"cm\"}, \"Grootheid\": {\"Code\": \"WATHTE\"}, \"Hoedanigheid\": {\"Code\": \"NAP\"}, \"Parameter\": {\"Code\": \"NVT\"}, \"Groepering\": {\"Code\": \"NVT\"}}}, \"Locatie\": {\"X\": 586550.994420996, \"Y\": 5772806.43069697, \"Code\": \"SCHEVNGN\"}, \"Periode\": {\"Begindatumtijd\": \"2019-05-01T00:00:00.000+00:00\", \"Einddatumtijd\": \"2019-06-01T00:00:00.000+00:00\"}}\n",
" 11%|█████████▎ | 1/9 [00:02<00:20, 2.52s/it]DEBUG:ddlpy.ddlpy:Requesting at https://waterwebservices.rijkswaterstaat.nl/ONLINEWAARNEMINGENSERVICES_DBO/OphalenWaarnemingen with request: {\"AquoPlusWaarnemingMetadata\": {\"AquoMetadata\": {\"Compartiment\": {\"Code\": \"OW\"}, \"Eenheid\": {\"Code\": \"cm\"}, \"Grootheid\": {\"Code\": \"WATHTE\"}, \"Hoedanigheid\": {\"Code\": \"NAP\"}, \"Parameter\": {\"Code\": \"NVT\"}, \"Groepering\": {\"Code\": \"NVT\"}}}, \"Locatie\": {\"X\": 586550.994420996, \"Y\": 5772806.43069697, \"Code\": \"SCHEVNGN\"}, \"Periode\": {\"Begindatumtijd\": \"2019-06-01T00:00:00.000+00:00\", \"Einddatumtijd\": \"2019-07-01T00:00:00.000+00:00\"}}\n",
" 22%|██████████████████▋ | 2/9 [00:05<00:17, 2.54s/it]DEBUG:ddlpy.ddlpy:Requesting at https://waterwebservices.rijkswaterstaat.nl/ONLINEWAARNEMINGENSERVICES_DBO/OphalenWaarnemingen with request: {\"AquoPlusWaarnemingMetadata\": {\"AquoMetadata\": {\"Compartiment\": {\"Code\": \"OW\"}, \"Eenheid\": {\"Code\": \"cm\"}, \"Grootheid\": {\"Code\": \"WATHTE\"}, \"Hoedanigheid\": {\"Code\": \"NAP\"}, \"Parameter\": {\"Code\": \"NVT\"}, \"Groepering\": {\"Code\": \"NVT\"}}}, \"Locatie\": {\"X\": 586550.994420996, \"Y\": 5772806.43069697, \"Code\": \"SCHEVNGN\"}, \"Periode\": {\"Begindatumtijd\": \"2019-07-01T00:00:00.000+00:00\", \"Einddatumtijd\": \"2019-08-01T00:00:00.000+00:00\"}}\n",
" 33%|████████████████████████████ | 3/9 [00:07<00:15, 2.53s/it]DEBUG:ddlpy.ddlpy:Requesting at https://waterwebservices.rijkswaterstaat.nl/ONLINEWAARNEMINGENSERVICES_DBO/OphalenWaarnemingen with request: {\"AquoPlusWaarnemingMetadata\": {\"AquoMetadata\": {\"Compartiment\": {\"Code\": \"OW\"}, \"Eenheid\": {\"Code\": \"cm\"}, \"Grootheid\": {\"Code\": \"WATHTE\"}, \"Hoedanigheid\": {\"Code\": \"NAP\"}, \"Parameter\": {\"Code\": \"NVT\"}, \"Groepering\": {\"Code\": \"NVT\"}}}, \"Locatie\": {\"X\": 586550.994420996, \"Y\": 5772806.43069697, \"Code\": \"SCHEVNGN\"}, \"Periode\": {\"Begindatumtijd\": \"2019-08-01T00:00:00.000+00:00\", \"Einddatumtijd\": \"2019-09-01T00:00:00.000+00:00\"}}\n",
" 44%|█████████████████████████████████████▎ | 4/9 [00:12<00:17, 3.55s/it]DEBUG:ddlpy.ddlpy:Requesting at https://waterwebservices.rijkswaterstaat.nl/ONLINEWAARNEMINGENSERVICES_DBO/OphalenWaarnemingen with request: {\"AquoPlusWaarnemingMetadata\": {\"AquoMetadata\": {\"Compartiment\": {\"Code\": \"OW\"}, \"Eenheid\": {\"Code\": \"cm\"}, \"Grootheid\": {\"Code\": \"WATHTE\"}, \"Hoedanigheid\": {\"Code\": \"NAP\"}, \"Parameter\": {\"Code\": \"NVT\"}, \"Groepering\": {\"Code\": \"NVT\"}}}, \"Locatie\": {\"X\": 586550.994420996, \"Y\": 5772806.43069697, \"Code\": \"SCHEVNGN\"}, \"Periode\": {\"Begindatumtijd\": \"2019-09-01T00:00:00.000+00:00\", \"Einddatumtijd\": \"2019-10-01T00:00:00.000+00:00\"}}\n",
" 56%|██████████████████████████████████████████████▋ | 5/9 [00:15<00:12, 3.15s/it]DEBUG:ddlpy.ddlpy:Requesting at https://waterwebservices.rijkswaterstaat.nl/ONLINEWAARNEMINGENSERVICES_DBO/OphalenWaarnemingen with request: {\"AquoPlusWaarnemingMetadata\": {\"AquoMetadata\": {\"Compartiment\": {\"Code\": \"OW\"}, \"Eenheid\": {\"Code\": \"cm\"}, \"Grootheid\": {\"Code\": \"WATHTE\"}, \"Hoedanigheid\": {\"Code\": \"NAP\"}, \"Parameter\": {\"Code\": \"NVT\"}, \"Groepering\": {\"Code\": \"NVT\"}}}, \"Locatie\": {\"X\": 586550.994420996, \"Y\": 5772806.43069697, \"Code\": \"SCHEVNGN\"}, \"Periode\": {\"Begindatumtijd\": \"2019-10-01T00:00:00.000+00:00\", \"Einddatumtijd\": \"2019-11-01T00:00:00.000+00:00\"}}\n",
" 67%|████████████████████████████████████████████████████████ | 6/9 [00:17<00:08, 2.89s/it]DEBUG:ddlpy.ddlpy:Requesting at https://waterwebservices.rijkswaterstaat.nl/ONLINEWAARNEMINGENSERVICES_DBO/OphalenWaarnemingen with request: {\"AquoPlusWaarnemingMetadata\": {\"AquoMetadata\": {\"Compartiment\": {\"Code\": \"OW\"}, \"Eenheid\": {\"Code\": \"cm\"}, \"Grootheid\": {\"Code\": \"WATHTE\"}, \"Hoedanigheid\": {\"Code\": \"NAP\"}, \"Parameter\": {\"Code\": \"NVT\"}, \"Groepering\": {\"Code\": \"NVT\"}}}, \"Locatie\": {\"X\": 586550.994420996, \"Y\": 5772806.43069697, \"Code\": \"SCHEVNGN\"}, \"Periode\": {\"Begindatumtijd\": \"2019-11-01T00:00:00.000+00:00\", \"Einddatumtijd\": \"2019-12-01T00:00:00.000+00:00\"}}\n",
" 78%|█████████████████████████████████████████████████████████████████▎ | 7/9 [00:20<00:05, 2.80s/it]DEBUG:ddlpy.ddlpy:Requesting at https://waterwebservices.rijkswaterstaat.nl/ONLINEWAARNEMINGENSERVICES_DBO/OphalenWaarnemingen with request: {\"AquoPlusWaarnemingMetadata\": {\"AquoMetadata\": {\"Compartiment\": {\"Code\": \"OW\"}, \"Eenheid\": {\"Code\": \"cm\"}, \"Grootheid\": {\"Code\": \"WATHTE\"}, \"Hoedanigheid\": {\"Code\": \"NAP\"}, \"Parameter\": {\"Code\": \"NVT\"}, \"Groepering\": {\"Code\": \"NVT\"}}}, \"Locatie\": {\"X\": 586550.994420996, \"Y\": 5772806.43069697, \"Code\": \"SCHEVNGN\"}, \"Periode\": {\"Begindatumtijd\": \"2019-12-01T00:00:00.000+00:00\", \"Einddatumtijd\": \"2020-01-01T00:00:00.000+00:00\"}}\n",
" 89%|██████████████████████████████████████████████████████████████████████████▋ | 8/9 [00:22<00:02, 2.77s/it]DEBUG:ddlpy.ddlpy:Requesting at https://waterwebservices.rijkswaterstaat.nl/ONLINEWAARNEMINGENSERVICES_DBO/OphalenWaarnemingen with request: {\"AquoPlusWaarnemingMetadata\": {\"AquoMetadata\": {\"Compartiment\": {\"Code\": \"OW\"}, \"Eenheid\": {\"Code\": \"cm\"}, \"Grootheid\": {\"Code\": \"WATHTE\"}, \"Hoedanigheid\": {\"Code\": \"NAP\"}, \"Parameter\": {\"Code\": \"NVT\"}, \"Groepering\": {\"Code\": \"NVT\"}}}, \"Locatie\": {\"X\": 586550.994420996, \"Y\": 5772806.43069697, \"Code\": \"SCHEVNGN\"}, \"Periode\": {\"Begindatumtijd\": \"2020-01-01T00:00:00.000+00:00\", \"Einddatumtijd\": \"2020-02-01T00:00:00.000+00:00\"}}\n",
"100%|████████████████████████████████████████████████████████████████████████████████████| 9/9 [00:25<00:00, 2.86s/it]\n",
"DEBUG:ddlpy.ddlpy:8 duplicated values dropped\n"
]
}
],
"source": [
"# if we pass one row to the measurements function you can get all the measurements\n",
"measurements = ddlpy.measurements(selected.iloc[0], \"2019-05-01\", \"2020-02-01\")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA/EAAAIgCAYAAADN1OmrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebxkRXk+/py+s7BDMGFTjBgXwBCCYhA3UIngGo0xGo1KJPgNQX9Bg1EUFJFNjQRF44aAKIgSWYRhX2bYhgEGZgVmY1Zm3+7MnZm7dZ/fH6frnPd9663q0/d239t35n0+H+g7p+pUvVWn6q13q6okTdMUBoPBYDAYDAaDwWAwGDoeldEmwGAwGAwGg8FgMBgMBkM5mBJvMBgMBoPBYDAYDAbDGIEp8QaDwWAwGAwGg8FgMIwRmBJvMBgMBoPBYDAYDAbDGIEp8QaDwWAwGAwGg8FgMIwRmBJvMBgMBoPBYDAYDAbDGIEp8QaDwWAwGAwGg8FgMIwRmBJvMBgMBoPBYDAYDAbDGIEp8QaDwWAwGAwGg8FgMIwRmBJvMBgMBoPBYDAYDAbDGEFblfhLLrkEb3zjG7H33nvjgAMOwIc+9CHMmzeP5TnxxBORJAn779/+7d9YnmXLluF973sf9thjDxxwwAH48pe/jMHBwXaSbjAYDAaDwWAwGAwGQ8dhXDsLnzJlCs4880y88Y1vxODgIL72ta/h3e9+N5599lnsueeeeb7TTz8dF1xwQf7vPfbYI/+7Wq3ife97Hw466CA89thjWLVqFT796U9j/PjxuPjii0vRUavVsHLlSuy9995IkqR1DTQYDAaDwWAwGAwGg0FBmqbYunUrDjnkEFQqLfSfpyOItWvXpgDSKVOm5M9OOOGE9D/+4z+C79xxxx1ppVJJV69enT/7yU9+ku6zzz5pX19fqXqXL1+eArD/7D/7z/6z/+w/+8/+s//sP/vP/rP/7L8R/W/58uVD1qE1tNUTL9Hd3Q0A2H///dnz6667Dr/5zW9w0EEH4QMf+ADOO++83Bs/depUHHXUUTjwwAPz/CeffDLOOOMMzJ07F8ccc4xXT19fH/r6+vJ/p2kKAFi+fDn22WeflrfLYDAYDAaDwWAwGAwGii1btuDQQw/F3nvv3dJyR0yJr9VqOOuss/CWt7wFf/mXf5k//8QnPoE///M/xyGHHIJZs2bhK1/5CubNm4ebbroJALB69WqmwAPI/7169Wq1rksuuQTf+ta3vOf77LOPKfEGg8FgMBgMBoPBYBgxtHpL94gp8WeeeSbmzJmDRx55hD3/3Oc+l/991FFH4eCDD8a73vUuLFq0CH/xF38xpLrOOeccfOlLX8r/7SwgBoPBYDAYDAaDwWAwjGWMyBVzn//853H77bfjwQcfxMte9rJo3uOOOw4AsHDhQgDAQQcdhDVr1rA87t8HHXSQWsbEiRNzr7t53w0Gg8FgMBgMBoPBsLOgrZ74NE3xhS98ATfffDMmT56Mww47rOE7M2bMAAAcfPDBAIDjjz8eF110EdauXYsDDjgAAHDvvfdin332wZFHHtkyWmu1Gvr7+1tWnsFg2LkwYcKE1p4qajAYDAaDwWAwDAFtVeLPPPNMXH/99bj11lux995753vY9913X+y+++5YtGgRrr/+erz3ve/FS17yEsyaNQtf/OIX8fa3vx1/9Vd/BQB497vfjSOPPBKf+tSn8N3vfherV6/GueeeizPPPBMTJ05sCZ39/f1YvHgxarVaS8ozGAw7HyqVCg477DBMmDBhtEkxGAwGg8FgMOzCSFJ3dHs7Cg9s4L/66qtx6qmnYvny5fjnf/5nzJkzB9u2bcOhhx6KD3/4wzj33HNZCPzSpUtxxhlnYPLkydhzzz3xmc98BpdeeinGjStng9iyZQv23XdfdHd3e6H1aZpi2bJlGBgYaP39fQaDYadArVbDypUrMX78eLz85S9v+eEkBoPBYDAYDIadDzE9dDhoqxLfKYh13sDAABYuXIhDDjkE++677yhRaDAYOh3d3d1YuXIlXvWqV2H8+PGjTY7BYDAYDAaDocPRLiV+l3c7V6tVALAQWYPBEIXjEY5nGAwGg8FgMBgMo4FdXol3sPBYg8EQg/EIg8FgMBgMBkMnwJR4g8FgMBgMBoPBYDAYxghMiTcYDAaDwWAwGAwGg2GMwJR4w06JJUuWIEkSzJgxY7RJaStOPPFEnHXWWaNNxqjj/PPPx1//9V+Xzr+rjA+DwWAwGAwGw84HU+LHKE499VQkSYJ/+7d/89LOPPNMJEmCU089tWX17WrKYk9PD8aPH48bbriBPf/4xz+OJEmwZMkS9vwVr3gFzjvvvBGksPWYPHkykiTB6173Ou/wtv322w/XXHPN6BBWAmeffTbuv//+0SbDYDAYDAaDwWBoO0yJH8M49NBDccMNN2DHjh35s97eXlx//fV4+ctfPoqUjRz6+/vbUu5ee+2FY489FpMnT2bPJ0+ejEMPPZQ9X7x4MZYuXYp3vvOdbaElTVMMDg62pWwNL7zwAq699toRq284cH2z11574SUveclok2MwGAwGg8FgMLQdpsSPYbz+9a/HoYceiptuuil/dtNNN+HlL385jjnmmPxZrVbDJZdcgsMOOwy77747jj76aPzf//0fK2vOnDl4z3veg7322gsHHnggPvWpT2H9+vUAMq//lClT8IMf/ABJkuSe6GOPPRb//d//nZfxoQ99COPHj0dPTw8AYMWKFUiSBAsXLgQA/PrXv8axxx6LvffeGwcddBA+8YlPYO3atfn71WoVp512Wk7na1/7WvzgBz9gdJ566qn40Ic+hIsuugiHHHIIXvva1wIAnnjiCRxzzDHYbbfdcOyxx+KZZ57x+ivWRg3veMc7mLL+3HPPobe3F2eccQZ7PnnyZEycOBHHH388Fi1ahL/7u7/DgQceiL322gtvfOMbcd9997FyG/WD84jfeeedeMMb3oCJEyfikUcewbZt2/DpT38ae+21Fw4++GB8//vf92ju6+vD2WefjZe+9KXYc889cdxxx3mGiEb4whe+gG9+85vo6+tT07VQ9M2bNyNJkrwu14a7774bxxxzDHbffXe8853vxNq1a3HnnXfiiCOOwD777INPfOIT2L59e15Oo7Ea6hstnP7KK6/EEUccgd122w2HH344/vd//zfY5mq1is9+9rM4/PDDsWzZsqb6y2AwGAwGg8FgGEmYEj/G8dnPfhZXX311/u+rrroK//Iv/8LyXHLJJbj22mvx05/+FHPnzsUXv/hF/PM//zOmTJkCIFPA3vnOd+KYY47BU089hbvuugtr1qzBP/7jPwIAfvCDH+D444/H6aefjlWrVmHVqlU49NBDccIJJ+RKW5qmePjhh7HffvvhkUceAQBMmTIFL33pS/GqV70KADAwMIBvf/vbmDlzJm655RYsWbKEhfzXajW87GUvw4033ohnn30W3/jGN/C1r30Nv//971l77r//fsybNw/33nsvbr/9dvT09OD9738/jjzySEyfPh3nn38+zj77bPZOozZqeMc73oF58+Zh1apVAIAHH3wQb33rW/HOd76TKcYPPvggjj/+eOy2227o6enBe9/7Xtx///145plncMopp+ADH/gAUwwb9YPDV7/6VVx66aV47rnn8Fd/9Vf48pe/jClTpuDWW2/FPffcg8mTJ+Ppp59m73z+85/H1KlTccMNN2DWrFn46Ec/ilNOOQULFiwItlPirLPOwuDgIK644orS74Rw/vnn40c/+hEee+wxLF++HP/4j/+Iyy+/HNdffz0mTZqEe+65h9XTaKw6yL6RuO666/CNb3wDF110EZ577jlcfPHFOO+88/CrX/3Ky9vX14ePfvSjmDFjBh5++OFdJorFYDAYDAaDwTA2MW60CehUfP3m2VizpXfE6jtwn91w0YePavq9f/7nf8Y555yDpUuXAgAeffRR3HDDDbmS2dfXh4svvhj33Xcfjj/+eADAK1/5SjzyyCP42c9+hhNOOAE/+tGPcMwxx+Diiy/Oy73qqqtw6KGHYv78+XjNa16DCRMmYI899sBBBx2U5znxxBPxy1/+EtVqFXPmzMGECRPwsY99DJMnT8Ypp5yCyZMn44QTTsjzf/azn83/fuUrX4kf/vCHeOMb34ienh7stddeGD9+PL71rW/leQ477DBMnToVv//975myveeee+LKK6/EhAkTAAA///nPUavV8Mtf/hK77bYbXve612HFihU444wz8nfKtFHiLW95CyZMmIDJkyfjn/7pn/L2vOENb8D69euxePFiHHbYYZgyZQpOO+00AMDRRx+No48+Oi/j29/+Nm6++Wb88Y9/xOc///lS/eBwwQUX4G//9m8BZHv0f/nLX+I3v/kN3vWudwEAfvWrX+FlL3tZnn/ZsmW4+uqrsWzZMhxyyCEAsr3id911F66++mrW9hj22GMPfPOb38TXvvY1nH766dh3331LvafhwgsvxFve8hYAwGmnnYZzzjkHixYtwitf+UoAwD/8wz/gwQcfxFe+8pVSY1XrGw3f/OY38f3vfx9///d/DyAbS88++yx+9rOf4TOf+Uyer6enB+973/vQ19eHBx98cFhtNRgMBoPBYDAYRgKmxAcwFIV6NPBnf/ZneN/73odrrrkGaZrife97H/70T/80T1+4cCG2b9/uKTz9/f15yP3MmTPx4IMPMgXSYdGiRaqCCwBve9vbsHXrVjzzzDN47LHHcMIJJ+DEE0/EpZdeCiDzxH/5y1/O8zsv+cyZM7Fp0ybUajUAmfJ55JFHAgB+/OMf46qrrsKyZcuwY8cO9Pf3e2HSRx11VK7AA8i9sbvttlv+zCmBDkNp4x577IE3vvGNuRLv2jNu3Di8+c1vxuTJk5GmKZYtW4Z3vOMdADKl8Pzzz8ekSZOwatUqDA4OYseOHcwTX6YfAODYY49lNPb39+O4447Ln+2///75dgIAmD17NqrVqteWvr6+pveLn3baafj+97+P73znO6WVfw3US37ggQdijz32yBV49+yJJ54AUG6sOtC+kdi2bRsWLVqE0047Daeffnr+fHBw0FPS/+mf/gkve9nL8MADD2D33XdvvoEGg8FgMBgMBsMIw5T4nQCf/exncy/vj3/8Y5bm9qdPmjQJL33pS1naxIkT8zwf+MAH8J3vfMcr++CDDw7Wu99+++Hoo4/G5MmTMXXqVPzt3/4t3v72t+NjH/sY5s+fjwULFuTe023btuHkk0/GySefjOuuuw5/9md/hmXLluHkk0/OD6e74YYbcPbZZ+P73/8+jj/+eOy999743ve+h2nTprF699xzz2a6Z1htfMc73oHf/e53mDt3Lnbs2IHXv/71AIATTjgBDz74IGq1GvbYY49cuT777LNx77334r//+7/xqle9Crvvvjv+4R/+IW9jmX4Yajt7enrQ1dWF6dOno6uri6VpxosYxo0bh4suuginnnpqPrYcKpVsF06apvmzgYEBtZzx48fnfydJwv7tnjkjRpmx6hDrG1fOL37xC2b0AOD1y3vf+1785je/wdSpU9t2MKHBYDAYDIbyOOXyh3DXWW8fbTIMho6GKfE7AU455RT09/cjSRKcfPLJLO3II4/ExIkTsWzZMhaOTPH6178ef/jDH/CKV7wC48bpQ2LChAnetWNAocw+8cQTuOiii7D//vvjiCOOwEUXXYSDDz449wo///zz2LBhAy699FIceuihAICnnnqKlfXoo4/izW9+M/793/89f7Zo0aKG7T/iiCPw61//Gr29vbk3/vHHH2+6jRre8Y534MILL8T111+Pt771rbkS+Pa3vx0///nPkaZpHnbv2nDqqafiwx/+MIBMoaTX0ZXpBw1/8Rd/gfHjx2PatGn5nu1NmzZh/vz5+Xc95phjUK1WsXbtWrztbW8r3cYQPvrRj+J73/se2+IAZNEfALBq1arcQ96K+9bLjNUyOPDAA3HIIYfghRdewCc/+clo3jPOOAN/+Zd/iQ9+8IOYNGnSsOo1GAwGg8EwfDy/eutok2AwdDzsYLudAF1dXXjuuefw7LPPep7GvffeG2effTa++MUv4le/+hUWLVqEp59+GldccUV+yNeZZ56JjRs34p/+6Z/w5JNPYtGiRbj77rvxL//yL7ni/opXvALTpk3DkiVLsH79+tx7euKJJ+Luu+/GuHHjcPjhh+fPrrvuOqYQvfzlL8eECRNwxRVX4IUXXsAf//hHfPvb32a0vvrVr8ZTTz2Fu+++G/Pnz8d5552HJ598smH7P/GJTyBJEpx++ul49tlncccdd7BT88u28Uc/+lG+39zhzW9+MyZOnIgrrriCtedv/uZvsHbtWtx66615KL1rw0033YQZM2Zg5syZ+MQnPpH3Vdl+0LDXXnvhtNNOw5e//GU88MADmDNnDk499dTcKw4Ar3nNa/DJT34Sn/70p3HTTTdh8eLFeOKJJ3DJJZdg0qRJDevQcOmll+Kqq67Ctm3b8me777473vSmN+UHy02ZMgXnnnvukMqnKDNWy+Jb3/oWLrnkEvzwhz/E/PnzMXv2bFx99dW47LLLvLxf+MIXcOGFF+L9739/fiijwWAwGAwGg8HQqTAlfifBPvvsg3322UdN+/a3v43zzjsPl1xyCY444giccsopmDRpEg477DAAwCGHHIJHH30U1WoV7373u3HUUUfhrLPOwn777ZcriWeffTa6urpw5JFH5iHgQLYvvlarMQX3xBNPRLVaxYknnpg/+7M/+zNcc801uPHGG3HkkUfi0ksv9RTt//f//h/+/u//Hh/72Mdw3HHHYcOGDcwrH8Jee+2F2267DbNnz8YxxxyDr3/9617YfJk2rl+/3vP877bbbnjTm96ErVu3svZMnDgxf06V+Msuuwx/8id/gje/+c34wAc+gJNPPjkPwS/bDyF873vfw9ve9jZ84AMfwEknnYS3vvWteMMb3sDyXH311fj0pz+N//zP/8RrX/tafOhDH8KTTz455BPX3/nOd+Kd73ynd0/9VVddhcHBQbzhDW/AWWedhQsvvHBI5Us0Gqtl8a//+q+48sorcfXVV+Ooo47CCSecgGuuuSZYzllnnYVvfetbeO9734vHHnusFU0xGAwGg8FgMBjagiSlG1t3UmzZsgX77rsvuru7PUW3t7c3P2WcHoxmMBgMFMYrDAaDwWBoP17x1UlYcun7RpsMg6EliOmhw4F54g0Gg8FgMBgMBoPBYBgjMCXeYNhF8J73vAd77bWX+t9wrpEzGAwGg8FgMBgMIwc7nd5g2EVw5ZVXYseOHWra/vvvP8LUGAwGg8FgMBgMhqHAlHiDYReBvHvdYDAYDAaDwWAwjD1YOH0du8D5fgaDYRgwHmEwGAwGg8Fg6ATs8kq8u1e9v79/lCkxGAydDMcjHM8wGAwGg8FgMBhGA7t8OP24ceOwxx57YN26dRg/fnx+Z7jBYDA41Go1rFu3DnvssQfGjdvl2abBYDAYDAaDYRSxy0ujSZLg4IMPxuLFi7F06dLRJsdgMHQoKpUKXv7ylyNJktEmxWAwGAwGg8GwC2OXV+IBYMKECXj1q19tIfUGgyGICRMmWKSOwWAwGAwGg2HUYUp8HZVKBbvttttok2EwGAwGg8FgMBgMBkMQ5lYyGAwGg8FgMBgMBoNhjMCUeIPBYDAYDAaDwWAwGMYITIk3GAwGg8FgMBgMBoNhjMCUeIPBYDAYDDsl0jTFtr7B0SbDYDAYDIaWwpR4g8FgMBgMOyUmz1uHv7novtEmw2AwGAyGlsKUeIPBYDAYDDsltvdXsa2/OtpkGAwGg8HQUpgSbzAYDAaDwWAwGAwGwxiBKfEGg8FgMBh2SiTJaFNgMBgMBkPrYUq8wWAwGAwGg8FgMBgMYwSmxBsMBoPBYNgpYY54g8FgMOyMMCXeYDAYDAaDwWAwGAyGMQJT4g0Gg8FgMOyUsD3xBoPBYNgZYUq8wWAwGAwGg8FgMBgMYwSmxBsMBoPBYDAYDAaDwTBGYEq8wWAwGAyGnRQWT28wGAyGnQ9tVeIvueQSvPGNb8Tee++NAw44AB/60Icwb948lqe3txdnnnkmXvKSl2CvvfbCRz7yEaxZs4blWbZsGd73vvdhjz32wAEHHIAvf/nLGBwcbCfpBoPBYDAYDAaDwWAwdBzaqsRPmTIFZ555Jh5//HHce++9GBgYwLvf/W5s27Ytz/PFL34Rt912G2688UZMmTIFK1euxN///d/n6dVqFe973/vQ39+Pxx57DL/61a9wzTXX4Bvf+EY7STcYDAaDwTDGYQfbGQwGg2FnxLh2Fn7XXXexf19zzTU44IADMH36dLz97W9Hd3c3fvnLX+L666/HO9/5TgDA1VdfjSOOOAKPP/443vSmN+Gee+7Bs88+i/vuuw8HHngg/vqv/xrf/va38ZWvfAXnn38+JkyY0M4mGAwGg8FgMBgMBoPB0DEY0T3x3d3dAID9998fADB9+nQMDAzgpJNOyvMcfvjhePnLX46pU6cCAKZOnYqjjjoKBx54YJ7n5JNPxpYtWzB37ly1nr6+PmzZsoX9ZzAYDAaDwWAwGAwGw1jHiCnxtVoNZ511Ft7ylrfgL//yLwEAq1evxoQJE7DffvuxvAceeCBWr16d56EKvEt3aRouueQS7Lvvvvl/hx56aItbYzAYDAaDodNh0fQGg8Fg2BkxYkr8mWeeiTlz5uCGG25oe13nnHMOuru78/+WL1/e9joNBoPBYDAYDAaDwWBoN9q6J97h85//PG6//XY89NBDeNnLXpY/P+igg9Df34/Nmzczb/yaNWtw0EEH5XmeeOIJVp47vd7lkZg4cSImTpzY4lYYDAaDwWAYS0jsZDuDwWAw7IRoqyc+TVN8/vOfx80334wHHngAhx12GEt/wxvegPHjx+P+++/Pn82bNw/Lli3D8ccfDwA4/vjjMXv2bKxduzbPc++992KfffbBkUce2U7yDQaDwWAwGAwGwwghTdPRJsFgGBNoqyf+zDPPxPXXX49bb70Ve++9d76Hfd9998Xuu++OfffdF6eddhq+9KUvYf/998c+++yDL3zhCzj++OPxpje9CQDw7ne/G0ceeSQ+9alP4bvf/S5Wr16Nc889F2eeeaZ52w0Gg8FgMARhfniDwWAw7IxoqxL/k5/8BABw4oknsudXX301Tj31VADA//zP/6BSqeAjH/kI+vr6cPLJJ+N///d/87xdXV24/fbbccYZZ+D444/Hnnvuic985jO44IIL2km6wWAwGAwGg8FgGEGYI95gKIe2KvFlQmJ22203/PjHP8aPf/zjYJ4///M/xx133NFK0gwGg8FgMBgMBoPBYBhzGNF74g0Gg8FgMBhGCnauncEwtmCOeIOhHEyJNxgMBoPBYDAYDAaDYYzAlHiDwWAwGAw7JSrmijcYxhTsdHqDoRxMiTcYDAaDwbBzwnR4g8FgGNPYuK0f1ZoZdyRMiTcYDAaDwbBTwjzxBsPYgqlqBonXf/te3P/cmtEmo+NgSrzBYDAYDB2EbX2Do03CToOK6fAGw5iCRdMbNAyaJ96DKfEGg8FgMHQQXvfNu0ebhJ0G5ok3GAyGsQ8z7vgwJd5gMBgMBsNOCVPhDYaxhdQC6g0KbFz4MCXeYDAYDAaDwWAwGAwdCfPE+zAl3mAwGAwGw84Jc8UbDFG84quTsKp7x2iTkcOUNYMGGxY+TIk3GAwGg8Gwc8IkP4OhIbb3V0ebBIMhitSsOx5MiTcYDAaDwWAwGHZRmIJkMIw9mBJvMBgMBoNh54SF0xsMDWE6vMEw9mBKvMFgMBgMBoPBsIuik67gNoOCQYONCx+mxBsMBoPBYDAYDLso7PouQ6fDxqgPU+INBoPBYDAYDIZdFJ3k5TRlzaChk8Zop8CUeIPBYDAYDLssHlmwHrNWbB5tMgyGUUPNNCTDCGOwWsM//nTqaJMxpmFKvMFgMBgMhp0TJXSTFZu2Y3V3b/tpMRg6FJ2kw3cSLYb2oZqmeGLJxtL5bVz4GDfaBBgMBoPBYDCMNOat3oo756zCgfvsZgG8hl0apiAZRhqVpLmrQ2yI+jBPvMFgMBgMhp0SMcFv1orNuPy+BVk+kxANuzA6JZz+6zfPRt9gbbTJMIwAmh1yaYeM0U6CKfEGg8FgMBh2OSR1T5DJhq3B759ajjkvdo82GYYhoFOmwHXTlmHHQHVI767Z0oufTF7UYooMnYJOGaMO5/9x7miTYEq8wWAwGAyGnRMxBb3Cojk7TUQce/je3fNw/3NrR5sMwxDQKZ54AGguyLrAc6u24Dt3Pd9SWgwdhM4ZogCAax5bMtokmBJvMBgMBoNh50TsuqpxXZU8TwfpMGMWXUmCqnXkmEQnfbahkpJE9liv3LwDt854cYglG9qBZq8StKsHfZgSbzAYDAaDYZeD88R3kgIzltFVSVCrWWeOTXTOd2u09/nXjy9Vn1eEDv9/01dgR38Wmv/IwvX4jxtmtII8Q5MIfa9mYXzahynxBoPBYDAYdkqUFfxMPhw+ksS8ZWMVaQrc8kxneKobzdnzbpmjPpennZ9940ws3bgNwNBD9A3DR+h7GYYPU+INBoPBYDDsskhhXp5WwfpxbCIFcNbvZow2GQCK/fmaRz7mpdei6V32WKi9YXTQ9On07SFjTMOUeIPBYDAYDDslTPAbOWSeeINheHA7MppV8pKIv91U+LGNJDEDoYZxo02AwWAwGAwGw0gjF/rT1MLAW4CYEmXoPKzu7s29152kIOWeeCWt/G0TIs1cloadEKbEGwwGg8Fg2CnR6JCsIl+bCdlFYP04dnDOTbOKGxo66MOlLJyea+YxKrWQ+Tyc3gxMYxoJ7LwNDWabUrBsw/bRJsFgMBgMBsMwERf6G+cxlIc82M5kqc5GkiS5kttJc6A2RJpinnjbEj+2QceqoYAp8Qre/r0HR5sEg8FgMBgMbQSV600+HD6knmSyVGcjU3qd13tUSWEoDrbz0+IH25mmPpZgB9sNH6bEGwwGg8Fg2DlRQvLrJAVmzMP6cgwhIV7vzvlwtVr9VzudPvKeejp9/Q1T8Mc2MntT54zRToEp8QaDwWAwGHYpdG8fYP/upD3BYxVJknSQKmhohOzE786Lp9eU9zKIqemmwo9t2M0XOkyJNxgMBoPBMGaRpim29Q3qaQHR7+gL7mHvG4YPU5TGFrLDwjJ00gzI7QpqOH34vejBdjY4h40Qjx0qmon+SGB74jWYEm8wGAwGg2HMYsr8dTjq/LvVtLjQ3yaCdmGYQWTsoFPv3i6umGuOuLgn3ib7cPG6b+o8dkSQGG/RYEq8wWAwGAyGMYunl27K9/Y2wmC15j1L0ZnKzJiD6UljChWy/aGTxn/0YLuIYh8zypnBrvMxWK0FFXX7fDpMiTcYDAaDwTBmsWOgGkyTMuGrvn4nevP8SZ6nkw72GsvoJGWwXdhZPIJ0T3wnjX9nkFMPthsimaYEdh7kt3z/FY/gjzNXqnltT7wOU+IDWNW9Y7RJMBgMBoNhVPGKr04abRJaDtsn2x7QPdY7Mw47547RJqEloPuMO8kuURgWmoMWMm9zfexg2cbt2NDTr6bZnngdpsQH0Dvgh9wZDAaDwWDoLLzmwL2DaZrcJ72OFk7fGtg1XmMMSTEXOmn419piWLCx2emoJEn0ZoJOGqOdAlPiA7DpbjAYDAZD5+OQ/XZn/z7q/LuxbmtfMH/unVOeGYYH68exgwT0JPjO+XC5Itf06fRK/g5R/d508f1YumHbaJMxbLRynMiSYgctJnawnQpT4g0Gg8FgaANe/fWdI+y20yFl9629g9jen12HpAl+8okJh61BFk5vfTlWkCQknL7+bENPH9540X2jRhNQKPFDvS9ew2gHiaze0ovN2wdGl4gWoOwBokNBVyXsiTfHqo62KvEPPfQQPvCBD+CQQw5BkiS45ZZbWPqpp56KJEnYf6eccgrLs3HjRnzyk5/EPvvsg/322w+nnXYaenp62km2wWAwGAzDxkB16BKPKZblEbsfWg2nL6HYG5rHaCtK7cJ373oe101bOtpktBya0WV7fzUaxTISiM7dJmeqFnUzWtgZeEw716VKkqAaUuJ3VuYyTLRVid+2bRuOPvpo/PjHPw7mOeWUU7Bq1ar8v9/+9rcs/ZOf/CTmzp2Le++9F7fffjseeughfO5zn2sn2QB23sXIYDAYDJ0P0+HLQw+jDaOsYg8An7nqCSxYs3VIdBl2Djy6aANmLe8ebTJaDha+3EEHwBVXzDV5T3z0irnRb9jOYJhtZQtcf9w5exW+ffuzqMTC6WFrooa2KvHvec97cOGFF+LDH/5wMM/EiRNx0EEH5f/9yZ/8SZ723HPP4a677sKVV16J4447Dm9961txxRVX4IYbbsDKlfo1BAaDwWAwjFXsDILeSEMTz/MTrqN7aBsL9lPmr8OLm+22mjLYWU+QHn31rz2gtwk4D/dIKLv/+NOp6N4RDi2vRaNomqurk4ZjO0PRRwrtmN9zV27BXXNWI0kSVEOdlDQfhTES2NDTh0/84vFRq3/U98RPnjwZBxxwAF772tfijDPOwIYNG/K0qVOnYr/99sOxxx6bPzvppJNQqVQwbdq0YJl9fX3YsmUL+89gMBgMhrGCzhNXxhZk/1396GLcVr+DWIbYZvfER8pq88f4yE8ea28FI4QOcHa2DZ2oQAwXCbl8eyTDzp9YshE7+qvB9FrEADfUrzAS7frXXz2Fjdv0K9IyjP0x1I55UKlkyntX5HT6TvXEb9rej8cWbWicsU0YVSX+lFNOwbXXXov7778f3/nOdzBlyhS85z3vQbWaTe7Vq1fjgAMOYO+MGzcO+++/P1avXh0s95JLLsG+++6b/3fooYc2TZt236TBYDAYDO1EJ54W3emI7Yl3gvMds1dh8rx19bQWagctwPSlm0avckNDtNM48Zmrnmhf4Q1A98SP9H3qlYj2kQ4xnF6d1mmKT49QH9/33Bqs72l8K8ZYRivb4IoaV0kwWEtRSYBawBOfJElHmkBGe5vGqCrxH//4x/HBD34QRx11FD70oQ/h9ttvx5NPPonJkycPq9xzzjkH3d3d+X/Lly9vuoyd2aJsMBgMhs5GJwosYwu8B7OTuOUzlzPe2zujF7Zd2FmNT+1q1pT569pTcBmQPchp/mhkhN9arXFaM2dXxPDQ/HUjJtMPRg4z3Rlnxtduno1N0eiDxnCfplIJH2zXqajsykq8xCtf+Ur86Z/+KRYuXAgAOOigg7B27VqWZ3BwEBs3bsRBBx0ULGfixInYZ5992H8Gg8FgMHQ6xpYI0xnQ5Kh8Xy0JE873/6qO+HDPxxQOA8fOOH53Vp9OgoTMiZH9cjFlrZXh9LlxYoQ+YuxavJCXeSxBNu/6acuwektvK0quXzGnp8bukB9NjKuYEp9jxYoV2LBhAw4++GAAwPHHH4/Nmzdj+vTpeZ4HHngAtVoNxx133GiRaTAYDAZDW9GJAstYgudhTEiYbiBvsKyWUrbzop2hpd+6bW7byi6DnXEMaHNipJTdagmPdSsjYEYqwmCgGrb47QxjqJXfRG7hqDTaE79T9GBr0VYlvqenBzNmzMCMGTMAAIsXL8aMGTOwbNky9PT04Mtf/jIef/xxLFmyBPfffz/+7u/+Dq961atw8sknAwCOOOIInHLKKTj99NPxxBNP4NFHH8XnP/95fPzjH8chhxzSTtINBoPBYBhxFEJ1ZwssvQNVXHH/gtEmA0DgdHoZTk9ySa9jikyg/P4989Tyd9YQ8XagXV119aNL2lNwCYz2vtd2gUan0GcjgcFIeEvsZonY+Go2/0gj5qUfK2hnHydA1NIR49GjBccapi/dhJnLN494/W1V4p966ikcc8wxOOaYYwAAX/rSl3DMMcfgG9/4Brq6ujBr1ix88IMfxGte8xqcdtppeMMb3oCHH34YEydOzMu47rrrcPjhh+Nd73oX3vve9+Ktb30rfv7zn7eTbIPBYDAYRhWdLu9t2t6P7987f7TJCKI4IJA8E79UN0sBXPHAQr2sVhO3k2Jn9pZ1+nwcCmiIct6+Tgg7TxvnaRoj1K4oxTvBGFLPKWhBwxp9amdIC/Ho0YKj+wf3L8DPHlo04vWPa2fhJ554YtSCfffddzcsY//998f111/fSrIMBsMoYMn6bVi2cTve/po/G21SDIYRx+wV3aimKf760P2i+caKnNdJN7iETqf/9eNLsf8eE+p5eBpQtKFhOP1Y+SijjJ3UYd1BI721oHviR5rzDEb2h8f2xEc9tQEVcyQRjRQYOTLaBk2nC7X5908uxwf/OhI13USHJKTuNE07MjpmNNaJjtoTbzAYdl7cOmMlzr5x5miTYTCMCn704AL8Twd7rptFJ8lQGi0pUpx3yxwm2Bf75MOCaFVVLnYG8XtksLMaPHbGCAPNsDVSzVy6YXswLXb+m/sOyzZsx1NLNpaub+TYVWSv/ygPodtmrozu2S+DZprwX3+YhbVbwlfuNVO+OlY7CKN1j70p8QF04iAxGMYyksREYcOui+zk3cYzQAsD70R0kA6vIr+mKraHk1wx55QD7Rt1+rfoFHSSYaeVSMjm8Z3pfISEaB4jrMPjxqfCVz/H9sQ7XP/EMnzp99wpEJvrI+W5jdE82nviv/DbZ7BxmNfBtaMJ+beJfqIkr3u0+5GCHs43GoY+U+ID2BmtrgbDaGK0LJUGQycgu6e8fP6OX4M6SGErS0quqDTZtR3+JQAAjy1a7z2bvnQTegeqLa1n3uqtWN8T9q6Nhb7a1TFYreHxFzYA7Iq57HekFKSYUp2H00ciZroqYVqXb9yOZcLTP1LsKtZ7nTA3hv15mz1sMBaZoGzmCBnJqBOoE/rRQYv0cujeMYA5L3a3tX5T4gMwZcNgaC3odTYGw66IMop5xyvvdVQ63O3q+pEeYidP/nctSNN4BMRYYFuf+MU079lHfvIYnlhcPuS4DD71y2m47vFlalpS95bNXtG9U9yJ7ZAoyu5YxqruXnz8548D8LeYjFT7/ulvDg2muSgabQi5R5Uk8caY+9fFdzyH826dw57FsK1vEAvXbi2RszFk/63d2otV3TsAdIYHebjri2pYGYE1izqBOqEfJbSbHibNWoX3X/FIW+s1Jd5gMIwIkiRhTO65VVtGjRaDYaRR2lvcxnD6NE2xaF1PS8rqJBW+TKgsv2LOTy+8PCMrpI41w2b0Lud6F3/gR49gwzDDdh0WresZfYPATmqA1vYZj5SCNL4rrH4UB9uFaUmSJLh3vqJsXYqxiEmzVuGkyx4KZ2gCkuZv3/5ccRZQBwyhweowlfgmjZyxA1DZzSENxh0NV++kqRjbrhEZ4i2DKfEBdNAYaTlkmJHBMFKgjPo9P3h4FCkxdBJ2FZ7UXDh967Gyuxfv+v6UlpTViacDUxTGEE0pb/xeo2djBY70wWoNL27eMezyGkdUNVbAmsG7vj8FSzZsa0lZQwUd6WN4KHigVwKOdKRBmfvetSxuXFUS3+BQpCXxE+4lWsjKZHXt4JKru3vRNzi0bTL6wZ3loX6TaP7G9dEt8WW+Vyd54iktkqyRiFYzJT6AndHq6vD27z042iQYdkFUhCfeYHDYFXhSs0pvO9agzla7h44y7eJex3o4facfedwCuLY+tmgD3nLpA8MurxLxgPKQ12FXlWO4isdwsbMeysrvic/+GCkFKVaLo6FWS7F2S6+apysyDrsSf8zEPMKtVLbSFHn4PH0GtC6i5+3ffRA3P/3ikN4dblP1K+aG364U8TUyYQfbDbu6YWHtlt58fLmxqlFuSvwoYmdk2AbDaCJJMPphkTsx6GFTm7b1j7rga/Ax2npia4XVzh5fMY+RJD1N06gncigt7ekbxI7+xt6yVnZj7Ju0qppE8YCyxDo6yVtWBr0DVWztHVDTqALh+nigWsPm7a3ZMjCakNt3Rs4TH67ILV1T5q/D31x8P3+v/quFzLO0/HaKEp7gMgSXRIoUx19SGMvaoccN1mqojtL8atoTH4u4qP+yrU6BvNSQNtq85W8uvh8PPr+2Tkv2LPvOnK6uiinxo4Yxtv4YDB2J7u2FUKQd/GFoHY698L787+MvvR+TZq8aRWqGDzd26Bgay2h6T3wbaBgBmaLjEN+vqeRXT8Ru/muced3TuHDSs02/NxzEDBCt+vb9gzX0DoTvmm7H3mpZ0vb+QfQPDu++a4nv3zMP//qrp9Q0zRP/uyeX493/05p91CONInyZKk8j7ImPVONoGFQM0e692NkMXTScPlAHXVcqTWhCDdcjUSGNTmlV1zZ70wnFcGlo13ajNI2vkQmpqBP0s4Fqxn8KWvxvMhI7zkyJD6IDRomhKWzrGxxtEnZ51GoptvcX3+HoC+7J/07GsBafpumYGl+9A7XSQm6ntuvoC+7Buq19bAyNVbg+biacsh2CylD3sVdrqedV7qSpHNs7q2X0PfGtF7Q37xgodYhUoxzNzE9VqSFKTyuwdmsfrnp0sZpG91i3E//6q6dw2b3zW1pm70ANPYG+1s4BqNZSbN4xtg2M7NquNhoPNUSvHiuhrFWUkHlNwQ+VcfQF9+TXLzYzN77yh1kYrPK1tX+wlu9Rl9VlB/q2tleHI0oN10ijt2V4ZZbpfnowcidFgbE98SJtJM6NMSWeYKBay5lCmqLl96sa2ovXffPu0SZhl8fts1fhHf89WU0by3viF6/fhh89uHC0yQiimX1qlK8tWLO1o+fNzrAlYOO2frzum3eXtsrnQlJblPihvXfDk8vw/is66yDKsutzfp0cEaaLZy4PURxaS2aOocgTG3r6gvMzTVOvzNh0aaU8+cZX/EmwjnaEZcuytvQOoKevUKBbIatVkjDN7Io5l7+SjHn+lHmJnQc+ezZSClLcE1/PE7kpoqsS9kZXKkBVlKGV5Tz9zShbgzW/pAsnPYsv/S47gT7mqW6dJ37ohQ2bhCYLiIfap+rf4fzZ72hNu2otzT3wDvme+FG6wcKUeIIzfjMdl9+XWXdTAIefd9foEtQi1Gqp7UU2jAh29A9izZa+YHroNNlORy0de3MoRO3h592FuSu7Aejhip2EsXJnegyD9c2ZUu6S3pyRwFD1uG19g1gr5vVoT93Dz7sLG+vXmJU5gZ6dMB6hvVU8SfZ1SJ4Y6j72x1/YiGMuuFfkDys9sYO9msHhB+2NIw7eh9eRphis1kbs4ER5uF4rZLWk0dV5Ikk7HX2sQFNapTLfbsTqKXuyvN//2b/ZHfIl5nqz41bWu2XHANbVz6SRc7Adc4IalZrFcPmbHvU0rCJL82aH0Zp3l907D/9+3dMA/AiW0dqpZko8wZotffndpmOUN6u4cNJzOOem2aNNhmEXgCYo0pOgtTDWsYA07WyBTSUtQu72emh0h98SNmbGRwyhQ3te9fU71fytPsl4OCiEXF9o7AT6ymwZoWMoFDKcpkQoa1DGSCI2Pbf3D2KH8EA3Cj9uBbS9yI8t2oA3XXI/C3ltJTzFKElabgBOIp54SkMhtHc48ywBqsy7po/cnvhwPdGoANf/kcWLhdPn9YVpaW4dTP2rxCrFeIydS9Gynm0wVmMYrpEm1j49f7kKU8S/A70nfrRksY3bBrBG3JbA1pcRpgcwJZ6BhYJ1gIAyXCzbsB2HnTMJa7f2YvmmXeMeZsMoQ2HC1FIp51UnK8YUKcaeQhnjYc5L0emC6Bjr8iiSEvdUveKrk/JbBtox3potMp+7IlTwFV+d1DqihoGqENQpZAgrFRBjfEcXUocauloiRDSS1uyeSq1d+T7hFmnxmrK7tXcA63va5wDxlKYE+enjrULsoLTQQWJjbU0A/Lmbt6H+2+p+DaGM4qcpnCnLp79f9uZIl9TsOuiPx8jWijacBTScKJDhjln94M9Y/gzPLNuE139bRg5lYN8r0Fnt2qrTDOjNHEVof5qnjQZMiSfIvkG5MJ4QHnx+Lf7uR4+0iqRhYfvAYHbiY6e72ww7DfTTnjNoew7HkgzUybQ26z3UFk8gE/DWbQ1vhxhpSCv+VY8sxpwXu0eJmuFBM2LNX7MVx17IBRt38ncnjLdinCge1g4gUG5x+dZtc/Hdu56v/yssbPp8yPeuDRetWHajpzVHDKbas1ZJAbotKiu9QrxlkpZTr34Cf5i+Ykh1yrK6Igr3UNFI15IOnp1BrKLezdje8XYgvie+sRyuyhqp/jcQXyOb+ZZZ1A4vjd5Z71I29PThFV+dxCOxWjRmK8M4nX7YB9upPKZxmVt6B/PtT0MBjQYbLeePdhRBcU+8cjr9CNBkSrxAI0tPIw/E+p4+zFxRCJmj6bFwJ25qA2/Oi9046bIpI0/UKKBvsNoxnqNdEYWl0mdyY8YTn449r4sjt3vHAF5zLg/dju3v76QDPWWfb+8fzE8BHivIBT5lRd+yo/BgevnbQUuTRdM9o504/ulBtADwwrptWLSuhz0rvG0UvpKQen+QtCG2vcx7zZT9+m/fi1XdOwDo3sMYP22VMV9TINiVZQES5q3eOuSIQD+cvvV7t2MHU2kGONmbY1XGkDLvSM3zMuH0+nvk75DXFsUwjPLTIRi4UkLf0g3bcNzF96FSoYaH7LePbPUpDCStQSxqpBGG74lXojmUZ7K+4XIf6YkfjfmmRSHRe+Jl19oVc2MQ2lUVo3UgFo2ek4xs8/YBLFzbM8IUjQ46UfiUePXX7xhtEloC/cCcrH3U6k/Txgo6eYuNFIjoYtM3WPX2DtciC2snGVY0Ujr8LL4otL2UoTztOPSx2TFMIza8QylbRNNwUBU0dVWSuAIQ8BJLxeA14ryCoXyKVkTRSna6cVs/tuwYLCoQqKX+WuJoaNWeeHqiOX0m65PoqiSlrtzT4BsNWr8nPnZ7SieE8rYS9KyL/FmeNkI0RNKK/ex+LhoJEfK2s73+gp9++caZuOnpFayeZuHe27LDHeTr92Nu2BKh/a2Q9Rqd3xDD8D3xyjeJFll8r9B7haIfZ1KjvSee8ohiLSloCfGkz17zJB5duL49NLWl1LEKdsjH0AaJK+Jbt80dNqMYLnJPfH3Cn3L5Q7kVv1ULuqE1GBiicNNpCCmFA9VU9eaNFYGoHeG27QT1HKmHDZZYWDsBmtGnk+iT+PXUJfjvu+epadp3iN1P3EnN1BTSTvgO/t7UwmheKCVurBce5EIQo2UVCn6/uDlgKE0t6/luVtao5udZKGXVea181lKonvjcFR/2ZitG3KGiLSfDR6wuWpJr8tduno1Js1a1lpY2g4aRS+V95A62a5wWvTKxYfm693va4o1YUHdgSYW7DNI0Zf3nflPBVBy/l3JPK2S94Xjihws1nD4yr8sq6K6IULOSEnnaDc2AWRNjQcPkeWuxok3nkpkSH8BQB4n7kA8vWI+5K7cA8L0FIwUaTg8Az6/eig0udNOU+FHFnBe78blrnxptMlqO+Omivqejk7y+jdDJ1+H5AmbhkdQMdsUhPJqC3zkY6v670cLMFd14bJGwuKfqnwCyvZQSbfX4NVlmIax26oLBJedKkgTXW+YtDnjw5N/DRTuHqvZNQodrveXSB1oYTu8L7Yn41aDtGS0L31gTj7gYCmLXdoUOtgOyc5DmrdnaWmJaiLvmrMYFtz2rpjmlhO+NHxnE1v7cENfA61vGsCiVeX442dBa697rIourPFOAKfhBioeGyjC2k7RjT3yJHQtRx2EZYwr1go/annhqCM5/w84S9l6baDIlXmC4Y4Na38reddkuUC+PtLZ2+qnUZfC/kxfilmdeHG0yhoQVm3bgnmfXjDYZIwJqtZbMd6wo8WnaWcotAPzX/83EjOWb2bMp89fhoknP1q3WhWITgu6J75yWekKa8qyTEBOuyupQ7ZwTzZbMlDVP8R39L1HGm6cp6FooZPFeuWeNUHaFbbboIsLGhxt7t81ciR89sKCeH3hx847WHWwHf4zz06U5nVqeZtHKskLQ1qc8TX02NmSoZ1dtwaTZK9kzqQhTb/GIeeIjacUVc+E85SNdOCpEqy7GcflvmZL3pKMMoDI2fdbaPh2OJ364xi/1BowhlkXndcMySJTVaG2p06KJKC1ehBLRB9ulCJoST0BDUIfriafhNcGrJ9qMgpaCnYz2dQitxN1z12Dqog1Nv/fdu57HtBf09y67dz4emr9uuKQ1xM66nUEbV7HTO0dfDSiwpXcAn7nqiWB6B+m2AIDfP7UC81dnHiBH25wXu/F/01cw638sZD6mCHQCpPDjwun/4SePjRJFcWj7avPvgOaEuU5Skjt1vfCM02qMufJIceFpSn+kiFIY7jfUPYvZ+I8Z4J5ashG310O8Wx9NHznYTtmrO2/1Vpxz06yMliHWORI8SdvuxaEndtq6IKHJGr63mOz1HbFw+nA98T3xoX8Qr6h2SANZ82Lll4Grh5075c2JcJTVcDGcMyGG+31j11jq9TUus0yejvDEQ9mSFROm6hispdje354DeU2JJ9DuKpy+dCMuv29+02VVFMV5pOEOTWJ7SVxap0plTYAaXWKQ3X/9E8s8D6bD/z21HE8t2Th84gw5osrkCN1JWwZbdgxgSsCAk6adGTUgaXJhpnSxaf4O3M5pp6pQpSmeWrppxGkpg0TRBOg3KtOzcm9lKzGcT9uJh1LGhcewsKkZE1t9aFIS2WMdw+X3zcf0pfE1KDT+i/2ZYUV7uNDD6RP2CxR9vGhdD377xPJh3XDgH6TX+vDU2J59eThZnYgxA2+8k3GClHsKO8GIS8+nCKWVHc9aFIfkA81eMZd74p2MrYwPemNDq7t0eOH0w6tbez+6J75k6+kc/7TiTKH8Y7RkFO0sDmakD0QM7Tmhi229aClNbSl1DENO7qeXbsaVDy/GFfcvwHOrtkTf/ffrpotTMetMcZQUlXzM0P1OTTDAy++bj+dXx9s8mhiqUKKFAzpUKuE9la1E5+4xHR6avfaokxTjRoatzqG0QKHvFfM6TVN+wFTUExPeE7+hpw9fv3l2iyluDq4Jz67cgivuX4CULJN9g1X8xw3PjBptOhRPfERQjA05Wc6Z1z09HMLqZTY3iqNK8jBpaQW0fbyepwT+mhfd/6tajpqnbajh1r98ZDGeWrIpTErEOFcl63tKemA49EjIiKozr3ua8RhJcy6GJMnQPZ+yTMrfWoRGe/bLVDdaUZcx6AeburTsb+2AO4cv/X4GdrTBixiXC/hvCJ5hkf4tZHm65slw/WZmBjX4sS2rgu8U495PGy6Gd7Dd8Khodt5FjV7i27jytWhY2ubREhu1SKPYFcrFe+2T902JJ9AicNw+qf+5bz6eWbY5+v4ds1eLa90yjNbBdhqaMSJfft8CzAx4rDsFpUJ1POtYWJioJAmqHeQd3hkQWyg7Z2b4Svx373oea7f2AsjGUAdNYwD6Hs5cKEO8b51hUQ+nz95c1d2L66YtawGlw0FGy8wVm/H9e7OIKNfk3v4abp2xMvTiqCC2yAND41cOk2aPrROwRwpfvnFm/rfmCebQhUC3TQNo3tMUQ5m3JC2NDm2TRonrpy3D08vqSv9IMCmhQE+avSrK28nB9UPGiDRLmbsktaAlN4r4qZ0UxUSRAvjxgwuxZP227N+MJ6XMgCHXlJuefhFbewdaT1ODMR4y1JRRvDPvtz7XaSTJ0MPpi7KK+lyalDeHVEUUo+mJjxkWy+DXU5dg1orNarmaE9SB9uNoHhYuv3NsTzxFu0g2JT4AZ3l01pWyVmQnRFTYKYbtHXDn/3Fu/veVD7+QX2VALfah8KHbZq6Mhu51imH5B/ctwKZt/ezZUHljJbJYj6uMzNUdqtBTr/fxFzbgrjmr205DM7jsnnnYUmIhb/agtNH2xF/58AtYvjGbL5L2/528CIvXbSNPOmQy1MGMjnRep40E0nhLRvKT/HTKIqzu7m1Iy7i6tJSmRPDq0GCWUNh5WU+oy7+6uxc/mbxIpA3Xi9JkfkVhkbQ8unA97h2lQzrTFLhx+grWrlzI8oR4xVMSeW+ksWzDdlz1yGIWsllGifnRAwsw+fm1LI3+PZSQ4Rgqic8/NE9TwdsjbvrSUPphqEUF0Kh7ShlkWkFIi+E+zffunodnlteNPXli8RsLYW+HHBjjRdWafr5IozLoWPcicnLFmxosXP7ykyNNU3bOj6svTxe/Gg3DRbN74h9duB731Xn0cGlo9mA7mf3y+xZ4nnaNf/uHZ46uJ/78P871DJgAPfPJB5lebVtXTIkXcN3cRfeTg+/HiIEe8FIcntFeXPPYkvzvCyc9h1kruj2aiN2Vpf34wYW4bWbYw9MphuX/uW8+lmzIFKruHQP4+UOLSl/bINuQJEl+yqVEpZKMWkico/Pmp1/Ezx9aFM88wvjhAwuxanNY2YohJkSOthJ/4aTn8vMRYss49dR1CtR9r3WPQNJAcA7doQsU36Sd52bMWrEZd89djUvvfB7PrupmNDE667+OlhSdY1jUoK0TmoASg8vz/Oot+M5dz7O0dnhRovlLeBlueHI5rnpk8ZBpGg583k4T2Q9L8/c1khVSnS9Dp1HD5Hlr8WT97BVX94wVm3HB7c/WlYxwhVIBo+HBUrlg+QV+9+QybOsbbJr2BH6kAA8d5oJ2QhXFpmsDK6utiPS7a8Nl987P5YMk50nxsQMA379nXuvoVLBgzVbcOkO/qYfvJea/xXpBFU2/Ee1Yp2Nlpkgbmzzr/f+rx5Zg3dY+nkTL8jy6SdRIVgY6j+DjnhmxWtx/lUpWftlx9YenV+CnUxYJuoYGbXtwnF/xtK5KgkF3hSArQ9Qjv5uSZyRxzWNL1PMN6BbloKLe+iGQw5R4glAoRx7aU6aMvKzWW980hCz1P52ySEwQacFyFsSw0hodlKMAR+bSDdtw8R3P55P6qkcWo3eg/J6t2OLQFemPGKYv3RQ88V6lQSGC7mfsREWlHSGlbjwuXNszat68WiHRlMvXIcjGf5ovzkAhRDfiV2W+yXB1+LVbe/F/01eoaTc9/WIugDihQPcAafytmCedBi0CQtuTXaqsJs+XKIOm9zPmxCj7astNm5Zh47Z+/P7J5ZwGzUMbMVDJNVlTwFo2yyNRST+ZvAjXPb6UpeWhuYl/ArJWBlfUs2c1MncbteMrf5iNNVuaN8xqYc7UeUEo5XmarqmAuh4O4UPNW70VDzyvrzONtiClaYof3r8A/YO1PH9ZXPHAwiZyN4/7n1+Lb9w6V03LvomU/4jikXK+pfV1iO/84qEXhuz0aLQGVQLOFmkU/eYf52LOi3VDcCRig/Ir6dFtdmxqCqZXozIXWyVPO0Na2XE1jpz1NGwlfoieeMevximOMm1dknmc4YKWOdLQtjDSrYkhutq5Ru6ySvxNT6+IWqFzGxrZ81Jm5LATKRVBYSSQIsWldxYeHMU5oaZJjLblS0LzMgDABbc/iw0i1J6imfW/MsRw+qseWYwfTx6e97xQnoZ+fUg7US4SJax4qAfs1MucNGsVzrtlzrDoGyrSFPjN40ujBwC5fJ0EJxywuZ4Qz0quzIQFoWi47jBXnqeXbsLZZL8yBRcaw8KFR0tatKYDdfiApb6eVpKhjuT2k0/9cprnxQrREjcKtX9yzFyxGf/1h1m8XjGOtVOiNUE99I0A6IrDEOildOVl1//57KoteLp+xo4Ucsvud6WKs5xLbP5HyhqK/qWFOWue/5i3sgzmvNiNZwJ7/Yd6SN4tM17E+X98Vk2jYdYSdOwMVMNGuTI0Pb1sU650OmzpHcCtM17Ek0s2DukwYfq9NcSjg1LGt5q5QuyiO57Dtv5Mjl6+cTsmz1tbnuhIVzlDdGx88vncWHl3/86UwSLtN8KY1ghpqhsBaTrQXkeMdkp6PD+JnmkHXSXK5AcLat+LR1/ILOzcgRHUqej4qCR+JELsO2jbLFqNXVaJ/9LvZ2LRuh4AwNbeAdwzN9uDHPwepUPB6B4ZwT3aAN175dJ8AUxdWAMElg1XHykUYWzIf+Wp+2UQ2y9cScInzM5Yvhkv1MeMX2jzNEgUJ552jid+4dqevM2llPj675NLNuZ7zcsp/6Pn6a6lKc69ZU5gPz/5e+RICuLmZwrPtnrWBcr1d+6ZUVJaF04ffp8K/bUm2GRKMnbC95DQvJQ0rLIMzUV/lBemy0K+//CC9XiwhOAdNfaOlDWlybbT/nM0FocR6UKkhkbnS4SgeXZd/Vt7B7Gszh8lKknhNdPXa4U+UT7N12qBN3YyfEIEpTwqIH+vuYHyv5MX4rL6YZah8H2guXV3fCXBYODk2kaRhy5lMHLdUBlSLrtnvnfWxbMrt+A/bpiBiyY9h6sfWdK4EAEZeXHLMy+SNMXA4tLo+5G5EVubB+qRCXfOWYX/77fPlKY51te11BmL4vPUM1S5MadEhIQiWEJrf5R2ue4m/nrGDWo8/3ARMzhpoI6h4V8xV553AvFvo/WLNEg6VBLle7cIt81ciYEAXzj3ljn62BFySExfip1cP1zssko8UAzmWSu68blfT29gBSqeDVZrwZCssiFxrYJWthbqFvNYhJDZITpHVJZeOSowxMjU75jVX4idDPz1m2fjqkcXq2mtiFpw74cWr9HApXc+j+/fUz8VvAma/uO3z+DGp7LQ1zJXnWmHJY0Uyixq1Po+mvji7wrPdiisNUUqDtb0y4mlxQ5qaQYxHqMpHppwUChfxbNOmRsatCYXi3x4DM1d2Z0fSBqbCe0wdL36gL2CabQ2OdY0waudmDjOF1c8QUoVsvw1T47/lPzt+njFpu2Yu5J7TJuBfgZI9vumV+6PE17zZ4x29l4Jr6orXj+oK/yeeBqsJ4agx5p5nhRhvxnFo0E041A8nl2VCgbIC1PmryMCesl2RfoYQMNtYZqxoFj7hzbH5fV4Z/1uBi9f5C+uxfLbrNUevy0hQ1el0lRofSxrLU2DBxBr/R+L+oiNk9h8CSFFqiuyYqyqsnmgzAfnrc23aZRBkugRQ9H8rj+GuX6qt3c0+JaN8tM1kr7H5lIbFeEv/PYZbIxF85bQL6jftkDh1LWD7doA1vkyjVn7uMC8dmsfPnvNU2qZziJHF4TR8jAWi71viS2DTtxz+tii9fxuziGUEROmGykeIb451PC++Wu25uGsdHGKGPtHFNVaLbdQhvrssUXrPeMQu4s1Uj61ZI/WFoJGi+Fji9YjRdo2JlwWmsIuvbY53ynhVXps0fpofcO92zTqvQVV3us0lRAO0pTsoe+QOUKhWdzl+So8f/b7pd/NxJUPLxbv+eW35ZToWFpEyGWeppZT5aNS8YmIK3dFWpLnd3kaK8m/eOgF/OfvZ9bb1xpl19G0+/gu1ShBaUWwXsdrqazh5lIqs5VShJtBIy+gvBWA0dlMRZSHiRe5Ale+1HFdfJ/1Z656gilyUWW1nhZTVGtpitOv1WVDB5VHkG86lDk+VE+yU/61yIYVm7Zj6Qb/SrpQWV1J+au/GkW3ZDJ340algV8t+kAbfZqHtQy0Q6vluRRunJWJGP2Xq58kRlwddL1udA2lBDWItMUTX8LIoynqsUMhaynYXBqqgassyrRBo51dMRfgcO1UpXZtJd79EbEeu4VH2+uogYUnicWsHXBMYfP2fizbEA5fLoQXhc6QYlqyzSOFFCk+8YtpxURqYIkdTk0aYqcGN+uJd4vGZ695ElfXvfuFV3pkrrkri0aUfOIX09AnrMja+B+ql7LVkHeUNurrT/xiGoCRo68stJB0GtLVSEjK2qUsyMj6qN1GPFdz9JRiRYks8147QXmthvAVcxmeW7UFfYP8IE5qJJbeZYpamqp37JZFGUMJT2ycNFxjT1lo2zukRx3KOJEKi5ZG+6DwUpLrZYeiWMW2k7B5Gp6DGuScoGXlhyyVNHQPVWEsM2eHOz9ZGHKknmZqSRRFk37vUGn0W7qTtWNnvERp0PLV/01DhptF7GT9greE8viRWxff8RzOrZ9TE2UR9Re6Kklp50Mjw1ixJ16fG1kZ5fiOprwOZezQd+Xc1aJdHWSURLDcBulODgGalxHpjRLDPxxVeZan+YnaYXTe8FcUYelcYfygDUt/o/FY0KDzj9hwtHD6NkFa4ZiMQIRiLy2CItS7ub2ew8XPH3oB//zLbJJ7J2dGNMxou0ZQsSoFIoxlv+UWPJlDLtUL1/awtBBiinrs7vkYaFixtsiMNrTFfaBayy30DtWaP5fKLBp0DpZdXOj3Ggo++KNH87/p+QP64lQsQKN92KCsno+dQphAKr15SlkRA2OaZn00XNUsptxVyP6J6MF2UiFGqnsdRxA/e+gFfOqqaWqaZoyS8/o9P3gYTyzeKN5LVD4gkdb4+G0WMc9u+fwZtEPU2gnFER8d2/QnSRIeqqmeep0Gy2wGlD/KsuiYDRrP64SGvnOhxLj88OaEpo66+tb39GFTPXR0KBEG6sF2xKAg66N5Gg0TthZHtgRxz3Fjmh20E8/LfBMgrKhwY2o5YmLnEA0pnD6yHzf+Xv2X0FScZRD+lhoq5AT0hnkjnmQnO4QU1VT5Xtpe6fx7eZEhSlmCtyxc2xPkaZos0OxNImmaenJMU06gEoaZUP7hMjj9MNy4PMFoUYwa2pYnX4+h0Z2tX2/KbBmRfwNkXNXbtWhdT/596fxqF3ZxJT77VfePKf8oZWWl1nHBYPoGq1jdPbS7tkNwJFGGpy2eRX43WcpZ6kdbcaHIhZek+JVKTBkkQpo46bIpvJ5QURFr2lAX34oyTkZ7Tzz1MmaCsxNus9+H5q/DCd+bHC2DMmru6eCgc7Bsi+X3Gg40QWFL74C6P2q0Z4Krv3egijVbepnylNJrTpA2FOrkUN3SO5AL9lB4RCtAxxVVMmLWdW+xT32j17a+QazvCZ+w3mrEjHn6DQe+gBIrM8ZH2mG4iCouilBcpI3sjND3eXPexL23BX3y1dT7pYoB+Rtp02Hgjj8ywbmOWprNg9Izq/761t4BbOjxt10BwmFAv1dAyP/i72bg67fM9vKXRSOjTVjxzgiORbFQ3s4NkYrikCudPv/eFNjfqhnby6xBXLnwnxU0NYZKA00rUYaGGE/yxjvRXdM0ZQ6bmFFjoFrDi5t3qLQ3cz1v1LGE7Ns2coxo0Vm0DCm38zEUVjqBbBzK6EKKmD5cGKULOmU93TsGFLkzjc4NCmoEKXWThULfUKHuiRe/LM1Txmka/6V/S4NQNjfat+bEtlXWJNOFP18c/3jX96dgVXcvTrpsypCNjc1g11biSzzULCmxb8G8xIJR3Pz0i3j7dx8cAqWNQRmeOpHcL2He2W8k5K9VxLUIjvayHhn5XikIRX1Vd7FgxULAmhX0tDLTen2jfTr9279Hx2jYG9K9fSC/ptElcQNLfKGkiClG7QTdIuHoveSO5/Fvv56O+sP8p1PsWb97cjn+9rIpzFBIF5k0jYf3Af6i++3bnsUZ102v568X1WK62biinoSAME6heU/c7w/uX4B/vlL3jLcDSUSY0BQBGmIq5xKNXJH9oHVHWU9XCEN93dG5bmtffgBTMeTaFyrIaNCMgEoej18RIcvBG2up8m2GKIG5sH9NyXtx0w4yD1Lyf124dfjuXfNw2q+eqqflb9Tf0/iAX3dRT/zQy0aIb8Gj9emK99u/9yB29FfZ2hqsR3iHi7TwmLt40nP4f45/C2hRBPQK1LhxgvMrTmc9T4lwcs3ASvnB0K79a07BYesFpFFVG0PZs4fmr8NbLn1ALUs7syKE2FZN53ENGZF1RdGlFbTLNU5rlrxBYfP2fuzo51udHJy8kx1sx8vU6mEh2PDzS9RSKXuFwe9Mb/zdhzvnKVy92/oG0b1jgKXFZY2UPNPzsagWMZfKHmTdDmhGhtC/AW1dMiW+LUhTYN7qrUyh1SabPG1SDtT1PX3FhCVKjPySKYD+wDUGQ0WxnlMLkRQC/QWvrJOtQ/QWgbA1rCyCC4j49/GXFAtW1DIsvndDz6BiFUprWX1Dvau+HaD70uRQ+9yvn8Ildz6XpaUpazO1hJfd89yMZ69lXkBlHtRqKQaUzX2hGvsGq95i1g7QkNnBmvMQcsWPCQyR2St5RDVNMVjl33n4V8yFofHaMl80BZ3z7v205Xw1hiwkt/i3HPfeKe65lzhiMKW8RQqkBMPez1jymZaWpsAJ33swv76KHwg2dLrKRlHE9sQ7hPRu92r+KCJ4ye0PzUQJAVyZCSqMylqijQ6XpZqmuZfTExDhyyiaklREeg3vpGqnhDK5h9Es5Q/3Hle26Nqq1kPK8MOXSX1KE+SZE5R26S0uc7Ad34oRrrd0OH2AR1DlrBlEo4MU3sJpKa/kdWmHS9bzdzWxXsSUGncuQKOohFhtfCsAXyOzZ/Vfx5vrtH/ql0/g8vvmq2VSeUfdslqH9JCXPbS3zFwcrNawaVu/Gl1RFs2Mr96BKjZv51Et7vULJz2HM37DDf9ayc7DHXMOpMrfWh9rBwq2CnEDi8LnUj8tH2seI2mfLLVLK/G1NMXJlz9UWPxYeA7/aLG9XsdeeB9eWL+N5dMOmGrCUFka0Tsz64hZ+GNop/VIw9begWg4ln/oYPxwIPIif69Bu+L71fR35LV1x154n5ene7uv6FHPgBYSOtrQLPRugRyo1tA3UPfKIWuzNl+K/fIZ6Hemh/mF2jxQreUef4dWRSow24ubpxV/UUpT/VoZALjy4cX4h5881hqCSiJXLjyBIeNrbgxpY05DReFXw0UjdlfKoh1VtgoBbCTni2wXnetO4eveMeDxY+ax88osuSe+De0MlUnHjpvOOwaq+cFeuQeuSSVXQuOVGlThT5EePaO78h41AMk80ujS7MnV+TWz2taKvKKwPBGK9Ajt7eV8IGVpWvk0FHco4ymp13PshfdhxaYdddo4TfSZBlnv1t4B7/52JkNpZeS/PDUzguv1dikGp1qaonv7QOmvrMoHJZSLtEQ9zY61/D3Vu+/LhsW/XX3u/aJd2mnbxZgLR8NoCn6Y3rAymSAzkoaUX/01X/YNyoSKLO+e9A1Wg2H0/dUa+gdrSFNajyZ/h0etHDu9A1X0DlQ92kO4a+5qHHfJ/fGoogBiV9+FcOXDL+D/u2EGL6de30C1ltOu9T9YiqhXsu009QiTugBbP9uwEMbPf6E0SP7h0yfRRn/Irq3E60JjmGnEBo434OBbu9t5iq9qCacMJmfQZZliPOSpHXjHf0/BzXUvjwZNeHGQi/aO/mrQINAoHDaEWMhamYPtjr7gnjxUK68mUSyVJS23IwHZxz19gznxlaQ4yCaubPHnJ11WfGe26JI8PURpv+qRxfiIUJIHmvC89g5Ug/m5dyh/qvd/4JP0D9awpXcEPPH1X+d50064zq8Mqn+4oy+4J88zSBZdzxOB5sLzQpDGlhC07RauXvq9pEJFBahRmyGR+ZnUV/Kjv3UPHn8hO7yuTHdqipiG4Z8srPF/vcyjL7hH9YD60R9DCwFuFmX2IGvbLgA6fhqvgyGeVBaxCJYy349vhak/I+nSwcCuXFW8jcV7Ln98/2cz9DW6bo3SRNc191a1lmJHfxUn/89D+L/pK3g9JCNVkLb1DUbX/thVVJWKcqhWLRvrsWiw2CFv9NvEvu/MFd15PRLDXe412unYKRQpf/zn5z4oa0KRB94zB3qVWml6lehQkgi3J14/7b6xDKsZsTRPvOftpeHcIo3vQxcym0JLGWPsV/4wC1+7qfz5FNVa6m1nanZ9aWZ939o7iOUb+T591y5qvI0V6X+bsCGI1xPu/3Yg/r24fAVQ+TbMcx3a6ZjbtZX4XLnO/q2GaDnPeqOyxGTWFpl2hKdqAoe2yPjPXMQAf15Y1tprPdKwaXs/q19CE9jc5Mo9u2mK3oEqPvijR/DbJ5bV3wszarWe4ESMHWxXTkCTYb+aACDD+mJ90m7INv/lN+9Wx7jrYn0u8Xm2afsAtvdzZU9e3/eX37w7/7t3oIZ1W3nIbaMDdGifnX7tU/jBfQuCeeWipnkWU4QNOF2VBO2O5u4dqAojT9gTD+j86mcPvYBP1W+wkAo0O2ARYHmawevId4tB40nu3//2m+n4n3vns2d5HhQREcNRRIaD2JkVVGDurYf0auF23var7CnLr7GT4TZZez1WpBTeU2hGR4SZZguhngCthJh74zhfm4kiJn/TVPV0y0O/yqDMOs+8NkrZ2hyMOPj8w7TIu56nOgkfglsGPHqsqE/SGVN23fi/6ekVOOUHD9XXhKr3gvwmU+avwxsuvFfUw+dU9ORz6J74LK3cYaDNKCwURaRBxmvpGsVeG8I3UaNUkNUR2toJUIcIVV6LZ6E2D1RreXvoulQWseidpE6DjG4sA52/iXlN0zwFsxhHIeNQGnpP1Bc1FNb/va1vMHcANHdlHC2lTP5ykV7ee4m/tbOmzLOYzKAdsBn6TjHjHP02NKlV8nHMuMGjU/T3NEMfnWftOpRv11bilUmdpwX+DpalKIpykWlHOH1en+JR5MIIT+Monh5+3l1FmeADW4a7jTS0/XcOTql7ZOF6vO+HD2Pt1j5s7Q17BWMWsxAaWepLTdE060d120WABvpNRho8RMgpHtTMnf0UjN73Cklm3JUkTPjO+iO+uOwQjHqwwUpE+2x9T39wz7q2N5vtvaLMO1BlV6X9kROHn3cXBmu+AUhez6YJyo60rb2DWLOFn3DtKSxK2lARk+m0sFvXho3biu+lL/acvhG2NcaNgKwffYEj/J4vMGvvtcNw0cx3zpQPKby3nKQc/SS0tZQnnqbR9TfhiWWiHXJjJdDU/GbrvFSeyJgt4/WNnXCd5ydjh44Pbzyljr7h3RkdXwe5YURCrnXb++s3bShKHZehst8s/LjGSpHKiXaNHCVeprhoMje+VDmH8auU/fI1PNyf9LriFBlPX7J+m8gTfD0OZUvRQLWGw8+7S1cuUj5OVAMj/DHn6DvrdzPw3bvnZfmHoJzEog3dWA9FN6rPlHLkOqGeqq7wsND4zedZSsdAkQZRjyp/i/6PbdHUUGz9DUcM6O/567uENu4151RK0srIDJp8662RipwlHTXaTU7z12xtmXwc7UVlnHjRGIohp4z8OFzs0kq8un/M/UqhWAnPoaALpCtTHsLQ7oOiXL2+BTw84eNKa5HavWMAr/r6ncOmczhQF3mXVv+jp3cQi9ZtY6HvMatpmXroe5SvUEEhO5CmUQuy/qf9qCpibbTaNQuNURfCrWKAUAZUvie+nsbvZs/6g3qOJHYbX/H225W9ysbRGz1N3NHihDIWMlW0PcSE6baCdkLbe+X6VPIybZ94V0U3Trj8rb6DVQ8b9fs4T3PvQeHDxBUcC4keKYRvqSAej7pMpF2x6PMyZfuVVu8wm6wLWeFCpZC7+/iufC7ykNz24DXn3lnq6h+9X4qH+fARDIsKn40E0LKKvDvYTuPjfIub/0zCtZ15z0Ueyt9i15+5N9nJ1vGmqIhHpIWjHbQQ56JMRYlM/DL4G7ws7iEMzU8fLG8KHHfx/Xhs0XovX+ikfEpDbIhoWz1ctM5wjcBahIFoFoO8C15TNFlZooR1W/ryAynlCe9l6Q2OIWQKfuiaVPUZkSckLZrhoigrxluK99xBezLiRfYxNTzwCA8+3wqdwJf/yqLMmHOg/RGq51VfvxPz12xlzzRDCnXYSDlJQ63I5BND4IxJ5ImfR8j0rYxSTcX3puDRdJw8xnO99agYA+1CW5X4hx56CB/4wAdwyCGHIEkS3HLLLSw9TVN84xvfwMEHH4zdd98dJ510EhYs4GGvGzduxCc/+Unss88+2G+//XDaaaehp6enJfQVHV0wMj0f/zBuIH3v7ufx1T/MYmnUUFYIojytXXB7m2IL9JAZbYuktNOvfQpXPvxCS8rSwsSKtIigES0z/J68nuaVX7uDl1qCm3penoDXZhT1EwZ+33v9GXVR1aEtkE6g0/c28TEaC8WrKFaXZqJCNMPWpFmr8P4rHhYKo6tP7//Q4tdVac6oMFSwsZPysVrGUEU9VFKBYPtIxZrbLMqEpWmfW16Tp9GQavlHGFo4fd9gFa/46iSxxUEu6GGa2XuRoT38NqsSelP1+UtCexc2OT/VxEh+TXaMtcs3iGW/h51zh/eOhpixvqwsIMmrKHO94J2aEhPjDTScvvnxRI0T2nVkxTj2x7+mUKUBXqYp9owGUVY1N3jEr2IM7R132LCt3zsQlCuFSrsCDgOK3MEDMtbcSffh10pB4/dyu2ioHjdi5Jog/85yuUlRFKY5wxoTHFb83FqkeYFD0MO4XRr/N82vzZHC4Jc9/L/pK/Cxnz+e50vhK3mFPKdvVQmtCfQ8kWamYkBsjKKMKC+3LWoHDnuGdZTb/69uDYKfFiqT3goTXROGiEcXZoa7hxesx4n/PVnQoq0XaSSN09fIcTgctFWJ37ZtG44++mj8+Mc/VtO/+93v4oc//CF++tOfYtq0adhzzz1x8skno7e3N8/zyU9+EnPnzsW9996L22+/HQ899BA+97nPtYQ+ugiG0hy4AJD9rtzciyUbttXzxz6RG/StF3Z844FvvdQs2rEJVbxIhPzISHECbBksXr8Nq7p7g+mOlM3b+/0y87b6/aidbyDDWW98ajn+5eonsmeKMOHeCyG2qJSdpN4+H/gKSzutds1C8ybp17f47/p9WxjL1FCkQAfGQrrKQPs263v6MH91Dwvrox5T/zuHZ3jsZP1WoiY0YE0p0fdl0Xa5tHD/D7cpsb7gh8AIAV0V3sPlj9KWeHWsqgJinqYIuYJvUwNhzAjbDsNFrETthGCNlnaO/9h1aDJ6RNvbmz3n+Xwhkvyd8oToIVwKaNBQmgKvPfdOrNwsTnFXlGwlUlZEO/B+KIyO/n5XPbqwyD8c5TGJvJ+Qp7oc4o+nFDyaQHQ/APotfd4n+7GrEg6njxkPqeykGQEk39EMMnJ+vv7b92JB3btZiX1fhX80A22M8qsS/fWM0qJ54rXICSpfeWlCbnnFVycFr/qLrZlunQrlia1T+fxSDE2aUaOMAta9YwBzX+xm74ai1rTD3jS+X9bAIqH1e9lw+uK9cP7YAd0O1Mjs9bH2vSQtNC0N5/ONj2H+3Qr86V4TAQDb+wexdIN+mF/iPCiUzoLC4DfMXmvPItlWJf4973kPLrzwQnz4wx/20tI0xeWXX45zzz0Xf/d3f4e/+qu/wrXXXouVK1fmHvvnnnsOd911F6688kocd9xxeOtb34orrrgCN9xwA1auXBmst6+vD1u2bGH/aYie1K4ORj5gaXi1NEjHTjNtF9KUDxa+tyn18jqEbAsJwrR/6pfTMGP5Zq+ssnSG6nOJA1WNuYaf+RPeXwBWbu7FnJVb6ot1mOiwhTisqbu++puL7vNO82RlC4GehquPlFBcBovXb8ObL7lfeEgE7SALFoqxxv9Q9jaxK4DIGI3QI9NCC9drz73T2/+uCThuu0VoQdGexYSOoXjif/34Upx948zS+fWrf1IvDeBCsc7LwggZuCiWrN+GN118f4DONGjUo3xSFyvl6dKSb6XBtJFCUg8B+uhPH8MjC9bXn9XT4PcfU0oa8A+AfEsl87APtmswxiW0ca2HPbfvW8SEVP26L55WCNOJzML+guDDcg9zWRRb6rLfPnJ7RaPDnYo0Pq9j18KF1pAwfY22ITRGUGZQFD8NUl6igWxsW5lcJyIOl1DbKS/Szq6hV6BSr/5R5xeHdCaKJqbVJmnYuK0fm+vrUeGJ17YSFWNuKN9E7ZcShgj3jK4XMo3Vw2gO1+MQiiqisrOXhqwfK0m8bIroWHO0KO2KrSTcqF98t+y/bI3j8kGabwVg77N6ImtyEx++7DzjFTTOL41X2nh0/+RrnUuLrRd+GUUev4YytwO00i96yH671XlFVug5N83G1Y8urlMUnktsHYyt/a0jlWHU9sQvXrwYq1evxkknnZQ/23fffXHcccdh6tSpAICpU6div/32w7HHHpvnOemkk1CpVDBt2rRg2Zdccgn23Xff/L9DDz1UzygWEs0DSj3cDnRhjU48MV9bNd4+9ctp+Z4tqjyl4Fb5GMrkCe1JArKQk7Vbwh71EGLXtNEJqd05GlPUZYncwMInWUxxa8QU4p74FGu39mHT9v54IQGolttRwrqtfVjZ3csZdT0tny9UyIooB5LhdgVCzmQZ9LRh2e0hAaBvsJZf4+egWU/hFoSIt8FvS+Dbi3+/+uvlwm6XbdiGp5duKpUX8PdlqR4FzbOi0ekJZ1TBCQupDt07BrA6MP/lfstv3TYXd8xeldP56q/fAS1knnnEFGEzp6/+bLTO2XS85cklm7CyewejifZ7LnDkSoLSx/S9qEjpyhyeKKC9nSINjtlBQTsdQ6G9sGXHf1lIQVFLc6C05DeWoKBf8iStnOEKXuz9fKxyBcnN3WMvvDdX8hwouyr2eWsRGpwf0PxUIY0fsDi08VTmmxSyUTGG1PU6FYoO4R8FbwhT7u0pjqyfWhQN9ywWkAfjhniS5sXm5fP1jxqFWhVZozVZnqgdU/w0BaSRnCQNyM3ILczIrCRm9OoFqoeGiT+YoUR8m0aGe5fOr1Ljs857Lbbukr7K+UErDbQl3qOyfNQoWk9b1b0Db//ug+p5P/pZYoo8l5fp3iO0SFmvIDQ4lzQ+N1z8bMoifO/u5xkNrl2zVmzGwrU9jBZN56CGbj8Kz3+v1Rg1JX716tUAgAMPPJA9P/DAA/O01atX44ADDmDp48aNw/7775/n0XDOOeegu7s7/2/58uVqPi0ELxVp9Fn+b8LkYtbxIr//bDh4eMF6rNgYEB4TePtetQFU/kRLsLIohjImy4YmdimdFRPY5FPNWFAX40B/mkEsBIyFKJZhqnlouX84nMOXb5yJ6ULJu+yeebh26pLSNLcC3r3QxKPgQBl0lgYvzSELxxSCpRIdQYUDP6Qr+/ezK7fgC799hqVpp7jLb+Ks/NxIQea8ssiEvqv0RGpRJBrGdVUwQGg95oJ78r/vmbsaXxZeeu0+3pDgFTrMMhSSmz2D9yyEGC+T3+quOavx/KoiGmqgmqpzlwpZIVrSNCwAv/+Kh6NRMK0CM/Z6PImsJZowJ8pi2yACSoKWf6gICVkD1RTLN27HB654hKVVIxv0tZPQgfLjvyzKbC/g49h/liQBz5E6/uVcogppeXqZdzNfG3g563v6sa2PK4tsTVDqDZ6aDdIeTaYpMb/KgM9dWUCkXsa3/DY4MCVBM/ZCV4zKXAOlQfP8x2QN30jhp/HyXRk+14sZKSVueGIZLr3zeTVN5cdiTeZ1FJVkcyMsh2TPyOCBvGaQzxf1PYFoOH2dvlAEjM7D5HjyadAO4gyduUDf064s9K7ZrPcflVXi525otDeejNp3LiXLs/zhfM4wvqq7F8vqa6msUp5nASC6PceLYNbypIU8VtCpfVOxqA4Ts17sxkPz1+c0UPpCt3hI+SN2sGPsfIlWYac8nX7ixInYZ5992H8a3MCjnkUHOjnlMx7ixoVitR4qqBG85dIHSrQmXqaDxqhjp/qWEUqoEFKGcbYUmjdUqTe0oKp7zYmhI8o2Q4uLokxSckNl/mzKIvzqsSVqWmYIcoIeEf7SFDdOX4FlG/kVNI8v3ohnlm3WCWwheLi/ozXx0+r54ydcRxZYKliKIpwyrh+ukv2u6t6B22byrTXOMrpwbQ8+fdUTuXX3Yz+bmp9myg6UyRf5op36/tvItx/CVBhfSTBIFJ5N5DClBWt7cP/za0X9lD5XM0+jiAvRLk/qp4k8GppJo3MjdgMDPV06NK9T8kzWM+fFLdi4bWhRMM0iFL5MlQuH2LatQuny+ygmwK7cvAMf/eljQyHdL7P+u3FbP2bX9346DAoJRTN4u0d/9+NH8xOrW4nooUnygeod0vqfz/nssCqXxvM1e5aNNt+cN4ve1OGPE68JqpdTm9ea4iBbrd2S4Mpfsn4bPnnl4/GGKVDlApGWamnuATHeuvzb+6s46bIpqseaGinl2jP3xW587tqnVGVZCugUVVK2NHLydulznrcrPNbcuULcix2WryRmvditnpqf0a4ZCLicpI0rNlaVDxZaC2ikY+wgzqCiroz/Ii3j/5ryzMqOfCNaty8H+jxMLZ/0DZc5U092cHKSdgClq0eNdiAfpVlPfJmIuXmrt+K0a55kdZbZEz9xXFg11IxSMRqKW1rq7ylrf6kzulh+nwaKsrrVHuO7MK7LlcH5Y4XN0wgtESOgtha0GqOmxB900EEAgDVr1rDna9asydMOOuggrF3LBdnBwUFs3LgxzzMcSCEkmC+Vky08AfmCxRm0rOfF+mE3zYKFinNKucVYoQVicA0HIav1ubfMxlNLNqrvNOzrJuqnzEAVeAG85wcP8zBd6At5XiYRDvy0MH30gDT3u3TDNnzt5tl4dNEGPP7CBgD+2FGt/8wT49Mwkqdyx7ZnaN4QrW+jV/LQRTCQh++RdmWmOOXyh9Tx5BaiNVt68dD8dXlUxrTFG9E36AwDrg00dNuf1/Q7tLzXI96Iroq/z557jHiaegCZJtinel9TlDHOxcagH9rvG0Jj4Y5osHjK78XSGlI+fFSC/Fca83gmzaObKmmx04rdsw09/XhyyaamaY8pGRrKnpSfpsDM5ZuxWZzq3Qq4uR5TxtlapygXkk1IIZwWXaPjUJRZBqqnSirxWsRG5HvXieW/CmpsPPH8WlmO1jVbevHowg3hgiVdgXWXrQkilemJYr2gPHfHQLUexhrfLifbsmzjdtzz7BpWvkOUX6nnPoTr85TCBsZUqfRoB8PG1s+cBkHXKZc/xBO9elMvSTNSJOB8ixl7At1G935rhuCivhBiB9tlNGjrPhCei7Q/NDlY9yD741jeqqOHf2trj7gdSvSj5hRr9hBjfVtTuJfXbu3NnAHK+NWRJe6/54RwDpVP8Tb7JRZ/qdG4jXifQCMZuKxupY3ZhCTKcaLJvKpMI3lf0qjfh45RU+IPO+wwHHTQQbj//uJwpC1btmDatGk4/vjjAQDHH388Nm/ejOnTp+d5HnjgAdRqNRx33HHDpoFexyKfaYq3ZHI0X7SeCCsbijc7dC+1XFxiViAuhOqMhDGvyOIk23fdtGVYsDZ8DWDQAhsJU6XvERkrKABV6onPrdrC97wJZuPRUsJCrKf5z17cvAPXT1smGLv/nntEPQIOsf137URCf/0u8lDmyiYNscWsGL++IaGWpnh+9db8vWseXYxbZ7zI6ssNJaQsV1Bx+FR8kdeeUXzkJ4/RYptCSEgB6ucGiI/P915J2vn7TJn0hMgGioP469YZL3pbOOS4vOC2Z/ODLlXh0S2G1BDhV+3TLs2Uqa54FentnxxuIace0MIAEdnvR58J3hkah957EYHZoXegin/6ue5VjXVPLFRTq44JL/mz1vd/WgOeX7012o8OMe+QZoiPHRbphLJmnSh0fcrrq/n1yXrZs5w+oghIOrV6KL/y5k54fakoZ9CEoPVjTD7gLzraFV4rpBFqpC+EaJ9OGhkp35N5VKNvRFmjkHRq0Pi5ahwW/LfMrKGRn0A2JxxixnPV8+nxH+2WHD+/jMajaRoVoQNfHb9z6yeF88DTLUaMdoX/pynvD5Zf9HXI0RV6TzpO0kiZlcTnP27Uaw6DZhEbQw5n3zgTL6zL5G+3LVWLXNFQxrigb0vg/9byx5058XoKJOy9VkLqS5p8pjn54gevht9rFdqqxPf09GDGjBmYMWMGgOwwuxkzZmDZsmVIkgRnnXUWLrzwQvzxj3/E7Nmz8elPfxqHHHIIPvShDwEAjjjiCJxyyik4/fTT8cQTT+DRRx/F5z//eXz84x/HIYccMmz6iNzFfmmag8bQ1DJT/2+NeTgMBpgcy1Ot5VejAdnEDCmhasSAYvmixookAU675knv7m1X1KevekKd+EHFNNIWud/vVNIuDbc88yL+MH1Flj+aky+U9DotqTgM9Q75iqbREsgwWLrghRbI4N7lQDVlDy4EgM9cFe/bGJKCwOjWDcnEaf87lFHis7+FoEG+qe+JL+gDgDtmr8aUeetYmibQy719Me8QpzN787dPLMOd9UPaAGD60k3RcNu7567Grx9fqqbFwgW1NquKuiKM0V/5Xj7+hSKQ5dNX1Cnz1+GPM/iWBZd30qxV+N2Ty/CrqUswpx6KXSb8WaNdjTTIx5XfHl1gDtfdKuT7HxH4JkLIjBku2BaJgFBG4dJid5H3DdYw9YVmvKqN64ulce9r6xGP+vDzpPCfyTmqlejxaKL8NLOfUc43oFBmqoTJFOPD5fUZUExgjtXNZRllrot2ydH0tZtnY8Wm4nyJTwfWktitHP4WN4XXujVZeZ/mjxkGpWFLm5ehLY1AEbHRyCgq683TEr9det1FYf4BWJRH6H1KI4D8NMUITr6tZzQg5bhX9XNSxDhRZOTYSeFhh01Wjzzzp0hLo30hy/ZoVww6Ua++0i/uTylzpWmkLLJuF1fCknbV85Y5C+EXD72Ah+avq6eJuUQ6u1rjcvT/TV+R72fP604KWb+p7UkKhnqwncabZN2qgVChMDbmhgoxdMLG0bw9qfee5B9lbyMZDtqqxD/11FM45phjcMwxxwAAvvSlL+GYY47BN77xDQDAf/3Xf+ELX/gCPve5z+GNb3wjenp6cNddd2G33XbLy7juuutw+OGH413vehfe+9734q1vfSt+/vOft4S+eOhHBnXR0BbKyCQDgG/cOkcdcIMlDgGqpikerCsorl4tfNYfQEVaUAmq57v/+bV5qPG81Vtx+X3zc3odI5EQ/C9HJQlfuSUX2MnzeNlyYb5j9ircNmtloF26olLQJya84llpbmJFlC4lmiNRmHfUy6YxR8VIU9aKOyXw3crBt+D6OXytRLMUy5Bc3v9UeOEo5N2wEYoLRvX6lLkoxw69BsrbE0/KuntucYBmmqa46ekVuPdZvgWo3hCVvsnz1uLGp4qDNc+87un875hRyEXb/OKhF/D0sk2sXZoCHFs8454g0Y8kP+2rEP+499nVuPmZF9FF5nx8jLN/sWebtg/gnJtmCa8BpzMlYl1skZf4jxueQf/g0I+z//frimgwJxDR20nk3kgKxjNS9iOEd5e/cT/GhJdYWhNdBqDRfdn+2CnJmppCbN+wNGZrvLPMezwt+3XzrNnoJ21cun5UD71T6IwphVqaHDuaUYhuc5HKi5RXrp+2DC+sK85jkTKA5O25IAs6thu3IQZNOU5pmshPPfESZbb/UHYcmya+d44qm5HxpCkH8hBihPuGbtnz0xR6xfhQoznomifWFCjrBasmH1c6vUAhpy7fuB2X3PFc/rxC1l2tLQV/DberkcFWHpQW4wOh9yk9Gg2UZkAangQtJLGMDHf9E8vw6EJ+6Bqjof47WKt5crRDRXzzpEHdsXpCeRoaBpQ2+9vKSJpidGxE03DgtSd3vvnbWqNGLFA5RZTZQmODRFuV+BNPPBFpmnr/XXPNNQCyTrrggguwevVq9Pb24r777sNrXvMaVsb++++P66+/Hlu3bkV3dzeuuuoq7LXXXi2hT/14+aIhGHXAs+gN8AATv3bqUmj25oHYpkNKF0FXhR7KxfOErjHyPRE+na5dM1dsxuX3LfDaIBEShLJ7wCOMIqR4UI9OPY17K7XFU0el4gsAZT1GwTITv605LcokTfI07fRgP78e2ilpUKSXNkCPTkm9NM1QIhE9CIgIB77ykz3QIj210/ALC7hoA6Fddr+mEFNh6baZq/L30rQwatCT4zWPgaOvSxxeN4l48ZMkbBTqqmS3Hfx0yiJMXRQ+T8FBClnU2EOryIQj0v9K3VJgrihDTh5CV6lo12j53hD1EJh6meu39uG3TyxnaVo0QkyIC/XnrTNWYsdAVU8sgTtmF8YcNz60u7u16A8tJFrSS3lTaL89rSeGmJc+dhhUmbkb8k7Eng0XIf5P07gCzHlnjQjzkq8Wv0QNE2O0UokfsCWhdUF+uJNyor8XOk/fI4XJr6MfVMd5BM/vyvHHKPW6yzQJWnRV9LUeAeDPeW5sEHM8r0eXuTw6nawQkWZl5BaF5nCIy3+CUPK3+u2VRV/yvrJGjWZQfBONJ5FykQgPqF+GJ6rRaC5l3Mqy5q7sxs8eeoG8X6QtXLsVP52yiJaOWpoyGU5vnzaXSLpI07aapN6//TKl/JGSsjz5rKKd2u87RBpt3cvyh/lvo6FA5WeXXxpGegeq+PrNs/X3haxHIZVWJrsp3ysyXbz+5kaX2McPJzUD/k3yh/mPz6/89UXXjfgvN/S1Fjvl6fRl4TMmP01blFSmrJWfM8DwhCjjiZcfn3mANOFF1K+VxRdd/l5MCGRlBUivJAiejK8J73maVlZFm8y+UCC/CD19vDhMCHWLdHgCNvJwxS2O/Jdft9b4O8cUYS2fxO2zVgYPFBwqKNOKIZZFLnhayJTqSYCfX75XHFCnM9z8fbFQaopwI3taijQ3NN1Y3+Lh6pHtd/V0KV7s/D3FKOT+7Qxh1KCgCuGKgOK1S/YHccWViUaKnhJcL2pcpVIYURRatLkhi3SnxMaiinj5Cu2xodqyhb9eFFO8CU+K1OsLccWcd0/KGEAb0dcMonNXOfjJX0PKKVtxGiJtLvFRYye711J4nRIT2ou1hAjAQmGJQdtn7J9O789hB36nMy2X/+ohnho9fn75nnYQVJm26gpwvT5x5SoT0JWypDLD+IDIqyn/lUifxs52GCSWtKgXUNAntzBl9Sivad838r1CSBBeSzSZjeVNdQWJz2tOsB5dyJVC+p5upMxSeweUrZr1tKeXbsaldz6P+59bg4cXrMu/uxYBRsFol31MaPLGjrI2quUr/E3WTRV1p4SqkTV1oor1WhCqISIr0/I1ucXRReUj9+u+5fb+Kq6btkx9L248cWUl+W9s25GMLNOvPAzXo6FVxmItcitmjKLI136Np4t+iB0SOVyMa0+xYwPNDARNOADgjTR1wVKeOch96GVpUQVlyEFZpMlnzdKpMpHAgtdor28ZuNfZNX6RlVUyO349hGNoSX0x80O51mzpxT3ProEWuu2g7UffvL0f/zd9RVRA0fpfA9ubl7fHF1RoGbfPWon3/1V2PsSPH1yEN77iT3DsK/YPV1ISVAH2BagC3iKThPNAeVaMuTBjjwkHmpVbDafP09yzgmA13Is3B2kKz1JMKlDoy367KpXguRfO0PT7J5fj+L94Sf7e5ffOw0H77oZqmqKrQpWR1Hvfo1cxRPLXskb4/eErYpR/aF4CikpSCMNlQlfzcjTDqfJNtG+jsc4yh8INF7mHVutHQkPMwwr5XuK/pyF2QJdDrJWu6FkrNmNVdy97FqsvR0AAHq5MVUuBrkCbpLf98Rc2YKD+8TUjluQDqmBZ4780hzybQSpdjdYwvo7Kcdy4fUxBUsaOd16EQrtL5gY00q48T/bXcYf5a0Z0HIn6mDITed8/qM7R6Svg2lxKU7/RBe8r1gKv3hrPw9JIH6cB4tU1T/2WjSeC+i3ps8B7lUSvE4gbuhOFeFpMkhRKaKh+TaaJyZIO1cCaQNdkR981jy3BPruNr8u3xFgqacnnfJzOfL1W1hAI2jU5JHReBNLUXw/rmbQr5lxfhRR8jXZXb2gsNDJEhGR/1u9KubExoNXn2hWbE1qazKfVV8ZhNlT09A3iN+KsIo+PJETHUXinRqffLn9dajV2KU/8r8UJy+rgkl4Gxeul778L11smnDIGr+w6U/jplEXqyJCW4kaLTWjhou9pFndpaXeIWVDLnGRMQ6vo/vriPf+dMuFvmSc9VZXkWSu6cd4tc3RPGor3ZT2L12/DhZOeU+mLhyIRRpHKtHBb5YmZNz/9Yv73c6u2qAfFDAVUIAobZML3eQNEYIsJ0xEJIGYZlX3MlSDZBl8IVA8djAgjNL3R+M3yEKav5PvJ5EU57f/1h1l4pL73rVpLccUDC+uHV/K5FOsrTcEP8Su66Ja7Xikr69qpS7C9fzB/RkGvxIsJKFRwC4XiaR441hZF2ZXRCu1ENj9TNjdK7Z+kY7T+iFrxpXBahs9pKJPnpqdfxPfvmcdo0ZDzfUVQYUKqKGXFpu24bSY/DDGGuOGC99mvpy7Fz6a8UE/j74eMWAmE8iR+s799/iGpKjO8VP6v8XhBu84fabli7KjjA6z8kJFe8srxXYooGOH7DvmBfTWl/wW92oGycd7uy16x+R07YD+mXGu0a5DeRma4E3Ty91wa4VeeA6TgAyFo2xRDEY+UlpxfUdlGEMwVljDtbA2Jmmt4intvyvx1mLuym9VDowhqaZpHmja+LUD2XgEmF+T5He2+8Tuk9Er6cjoV2dftew8ZbzVZLwZuEND4mxxDPu2udtdmGiWrDbUYVaEzRmhkcE/foKdnSfmlkUEsJlOWobMMVm3egUvvfF5Ny78X8XZo40s/OJv3kcZzW41dSon/zl3z2L/jXcpTueWr/ozl8idUaB8ulDzNwNVLB6G2aMcW+ZrCtaKhzaqSJv/IELs6SxNyJS698/m8Prb/33vPF3y1Po6eYZAz6jhNWdn+oqIKP3l+n844k/T/9pkHV6plP89duSVSQ/PQBFG6kBd06HmA+AnGse+mCXPFe8oCGaE9JG4wAQyp/5CkOUFI0qeVm4aLwmC1hu/c9XzO2FVDDrHs54uF8yYxukR9THjhwqbLxwUNePDCRet0fePWuXhx0w5Wj0NXpUKu0RLfhs3TtHgGIajD79BY2KeQU/wyvHYFk0rj148vzYVLdU1QFD/ZZp5Wf4/QJ+mcumgDFq7Nrk8q04QyeXRlS+HxnnGoQEwQfXjBenzht8/g/ufWYFV34zt7yxyOldNA1pfQGKe0a2uXDPFMU+QdJxVtLaorhqIfKd8XcyMwP2UZqudZlBkqv5BJwvU4lN1CJ6GGDos5G+t/9y7naTwty8/f54qAPz5i9UnQwxu9tUCpMI/iiLRr/pqtmCZuiOBRN452/hsDM3gK2suEKGteZlcuGS5eJAotq1hvy20JkEaGS+98Hjc8sTzbJlmv0J1lQPlq4WxReFKET3lGekVGJE0NeLH5+JVdS1iFItuHr5FrtGXK+16KcVSTlNQtLfVfKdc6Gn5TX8d8GsI8M2iAILLXso3bcd6tc7136fsZfbwM973ZYXJqKZyGoa7p7MBWOcYj/ENT7OmYk/SkZIC0SYfftZR4iZjwEgNncq4snkcT9nXluKmq6+X4wkFM8W6kzIQUCArtlOKQhzXzysVakOLmZ1boFkTx7yTxFwLKXIOLrkZnGu5vvp9Oz0SFRwe6j1e+r1uDG/dxLMJDnmhOu+aol+6LDx49/KsXgZDBSeRhi0y4/4u2u7J9NTS278wtRNOXbsSyDdkBTHJPmcZcYxZw+m0c6J5zrVVZiJ+mkPqIzfkN2/oLuvJ6pLBUjCtPOU78MSf7XxOKtegK9YAd8W9mSPDGY7Y1patCw+l5nqCXR/AwarTxLdqFYJXv01aGnHw2c/lmLKrfmTvcfXRpmuK8W+awsFZHFxWkvINv6s9V4Z3wbz9yJcM3/zgn37uozyFJZ6wNyrNw9uLgMqYw+u/Jct39xP/2m+m477m1kRpcWRH+IfqMeqhiBwvSu9nd2E8F8bE1qPgmze1hZsqaaEPMaOag8SROK59nIWOS+9WE78Zcu6RcFJEdFFmfKDFKUYow7Z9D5PMrB21Li5bm1+vS9LOGZD59/PMXfvP4Unz1ptksTYu0c8+qNC3U7YqhutTWJUXh9nmTchI3/LZyTzxPU+cSmbPZb11hI2sQPXwtLzstbmhp2L5Q3UjBo5+UQRDjA/X3pIErTQNKOOSazmmhxkBNofX2UZd2/vipNUG7M4i4awrPvWVOpMQGawj7m0fTxeaXqjeJNpQ1Epfhw/2DNUyatUpN29bnIgpJmW4tViI16LkDKTiP4esFpy9Pa0zukLGLK/H8V32W9z4RDhjz4KNJE4rdp2zWQuyXk6GiWuiyurWTSDX62D4wIRRo0A7gi4XXhMPps/xf/N1M3fIoBj89GMxncpSYMO1MwAY/LEwWFnNIaIpmF+1vMakZeYG0hDzlfZYGvnPYE7/b+ArGlQkpKAGm5HrfuVh0Q0oJha44NB5zUjA8+8ZZ+M20pTyNKLv+YSLI8xRCk0JL3gY/Me/NNPuPMmpqdPGFRpfmS17LN5KToNPAwlV/2FXxz4Sgwo7/beDV6y1AASXBo6EOzRNJaaml/LwIGa5H20dDV4PGMmjjirchSwsLL907BjDthQ34xh/n4sqHX/DyDQXFmpDkwktBE2mX915jYYS3mfNoLawyTij/52OL1mNr7wCjU6NBKzo6P/MDQykPzH67Kk5oD1+LxcsC7tOuboTvNaeRXrHzLKhAJVm354knPSM9K/R+7jKKrUZnEU1D1l1RFJunLn/q97FmgJPtcmUwZcuNNcUIpcomAUO8ogOVMk5oaZoxNZ9m8Me9qvx4S6SyDSLWTjIGcmNPPa13oIqH5q8TY5yPHealrz8bpxyVr60Jsv9oBIWENpeiypN8EOD7SZIElRJazz1z6Q0dCo9uMB7z98T7cg9yUpf56Lxj7YrwK0m7Nv4prSFlXCuL0yDHgCYTybYXBdHDlkNwa+SD89bm8jeVaSS9nL7s1zOQ0DEU6VsNxVj15642FyDyx/rTnYFAaYjSUmJNWbFpO868/mk17cB9dvMf8k+pGoBcWxsd5qodbFdi5R4Sdm0lXunoIk3J7wmw4fxsoYsOxhKEyrIVy6oWqhljcrrAxgUGOjnVsgK0xxThWKLmXcqssbw+jRkXDMIvI6Zg0nry/N77XDBiNKsMPk8l/xe0KHzUX9T8/ejymjtKT+xO92bBhSX36wtCMSGuKEvMGyEcAHELLrPi515YhZaA1EJvOJBRHfSQQ23/KaMHvO7Y3NO8Lg6VihsXvvIjvfvUGyG9EqFTrGW9mvFLLsgUcaXO739ZRoynyX7RvrtmzAOhqeircD2PLFiPj/38cYwjV/wNd27IMOsgHxb8ho5xGblC57z8ljQtdjBaI3ziF9Mw7QV+awUP/QsXGttzq3mcHZwOQ880iWFr3wD+9dqnAvXw76cdHqUJljHFW1sHCx5RlJHmv+F10CtbGwtuDtMzECQtKN5z0M6uUeenqMc94kZYvr7TOtV2RNIkTWzLiLK2AXxe06inYFlkXPnRPdo6H16nY+dMxIbnvNVb8emrnsjebaKs8eOKlsmxxuUB/m1icAZTCrmmPr96Czb09NVp8dcgWV9erWLY4fWk+NyvpwtqGtMeOquF8kJqlKZ9qzpbEBgTCglZGX67dHmsmJdFmv8MdbpD8puLTKNlu3YzBV+hQbbB8Yh/ufpJ9faI3Egf+F5ZGXlhnvFE54vhbxnagkflH21bjjauUgBPkpuUyjp/6PuN0GzkHZkK7FfSksKNVb8/vCg8ITO0A7u0El9VTqZ1kAyXL0DhxUIty5UxxKAKVQgXgg39RynhTF2AxMQPCBOydD8l7H3hjCzGMLLfSiXxrjnSvF4x+uSBW5p1Nr+KA75EGgvFyxV1xdKmKbv6N0m8NriFrvh30eaQJz7m3WwWpFRGE32ibevgQrGjUSnfWzw1GviLWlg3VXZDQggXpnkdjbxSbrtEikIocIiGe9G/I0putrBSL7ajyzcAxRVut1j4QohUVPi1dXRk+s9C9TkwZVCUmZC5IXmTZnzRlF0ZhcM8ppGFf3z9u3VVEu8u66HCM6IodOpRGT59RZq/yGsHAUnjSQyxAyRp/0seqMH3pFEFkNKuF0LPNBkqvPcTZVx445ILnYmgXRoG5JwsyvDTG0Fbn6LrVIBv0Rf5WqLPs+xZkT+f64IG9vcQ2kff88ZlhD/yW2GUj+pSKB8IjHv3bea82K3yDwn5vdW0fJwUZWlb3OD1f/wbqnIjOD1l+l+LcMz3ldcJ/Ocrp+H6fOsN50lMnhBla8ZmSlfKcoo8gTIBEX2AYjsgXRPcuUJ0T7z7FvE1VulPtoZwBVM/eyIMTzZkY5vnpXpCaOsZmDGQ94uGqOJHaVGvmNPL4mtJsGo1rRirBd9JUx6p5MhavnG7Z0yShruP/nQq59GiL8rIIa4/l2/cjo31bYoFIn2rOO3y6hS5XdvK6B1sp9HJ/h7mQhjALq3EO+j7QhVmLPLEvYDxweEwlHB6usjQZ7KKZpWnUgfhkfpqaYqFa3v8BTbRy6LvlUVXhSrhvlAg6SzSSBvIL10kFq7t8RZB6nVxiG2fiCmfmgFIjq9CReRer0LI4gxXXnMnlfihCMwbt/XnDLcZhCyVWVpYYKaIe/DrZTHGyftKuw4kp4EsviEFlQov2oGVZ5/82oIehIUC2f60lo0vxSbkew2VtIoygOMhoeBpitFRq0/jZUW1YYE0Z2mJ6xe/DQ68jwsBAKler+bhZkpWCSHEjYtx9NT8YS6i1EOb/UFp8h75c13tY1omb5dLq7BrBhvTqfVLTZSp0aBBu3EgVWgJyppJ2Ju/dMM29A82vmJVfm92Y4N2yFgqTraOKs4F/framDKeW2bpYoYSoYSycSLGBx8Lrl1++XFPMJlf9Xr8MzUIrZGvX2obhBDQaZkh2SFEu7L6ebxW8rn3X/EIVtYPToyt07FoENVAIJQtCi1SRlsTSA08jcpvSh+Ful2T+3wHg3KdKpSoj3xNLtZRb72IyFe01tgw8ehLEtRq3MBVbL3JKHLrdaWeV0I3Tmv55BzU6ONzj+YrPhdn3Gnqj/Esf91Qks+J1EvzjSL0fQ4qt+R7uJX8sfkl53ql0uAKSMGT1DTK3+DGDs9/+rVP4Qf3L2D1xL6XMzKVdZJIQ8Tp1z6Fy++bz/JE7CNsvsgy9ZujityZMYQY1ER/sPbR71Bi7RgKTIkn0BTgRh4xb5xRxi6FAqXOJvTZgk4mVPgLXjz0T1l03UCVocYNLI9pCpx02ZSg1U+lnVISWchdG+ieeO09f+GhaboA5co/6bIp2LLDP+BCgu/jzax+sW9Kx0CWhzKKcD35olFfeJjwKNLKlFcW59w0C/9540xOiyrwhamOWXdjJMYPZsx+WZREHVKY0xZI7dv4FtWCU3PPRZZ/r4njclpqacqYsSYUO/RVqzjpsincU13HQWQ/VrE/jfcjU8YDbc7ayoUxFK/pi2c9UXp7KeJCGf/OiTLZ4+ccFO953lCVds6v0rScIOS6qKuS5AfuDXcRVU+xVsaCrIYJ06lMKyiWZaXKe+U88T6aia7g7/EyueE6PP6LK43C56Oc8L3JeOB5fujd1t4Bz6Aow+LZ+BB5KD+gCqbc6yzXGYqirUnuxc95BNL8cM0QtFBx96xafFR/nVa6SfXeNjF3E4V/xPKztHCSl0dbf701gXy4vOwI30+0/AoG6iGVcUXd/fp5aiQi042faL+Iecrz+zyiyOP6yD+lvBbrEJeiTDTNgSKVLZrm05s954YLki//DXPbmLwZMiBT4xJVqNz5KrU0M15qB9vJtUGLkihK9GnhZfCytX6oiDGRyQKB+hSDX+FMCMjtgbFGnTL77zkh2C5d5vLX6TTlfDEWNVJGBtBoKWhPPL5WRtZjtIdJ8Pj4+K4KBpRzu8ogJE9oUY15GlPwXbsSr63aYXmthinxCAiDJQa4pjA6UJFBGgQa1d0oD5Wbvf0YAUtWbK+GzK+FmsiJSw9ZiS0WGkJlsvdKdExUwVQMEPxwCvEsMsno904BvO27D2KpJsiFmAG10EWkEu+gqET7XlwRoONOeumbQZoCq7p3NBj3QxUY+KKhLUCuzRt6+tA3WM3S6q2hURKyzFwoaOAtc+XHQuriBpbUGzPS6LVxWz96B6q8XQ0WLJlHKgD09aoYH2Xni+adC9VH85cxyGjhurE9evyQST0Pn5/ul77n+Kre6FXdO/K+ybw5nA8PVmtYu7VXfVdidXdv7i32rjqj9NF+FHMiNqdAxok0rGhGotA+bzp3tfq0aCbpjdNQ+kyUwJgOHU4lX3SK1HfvmofTfsX3xmvrhOxbbS+4HDvaes2MQyLN/U3H+Pb+Kt7+vQfz9FXdO3IlUpZNjWUxxU9uDWDtgo+Q0OnRDt0ARA1vZZRVNc0zKITzahFOsRBUKi/Jb8L7SL7nzxeZppGpbRmJrSUxJUauZ/SZaoSN8AgJqoAVtPAyqRLKt/jwsjy+pfDckNIv04pO9dtQXItKZUo+p1jEXJrmhr9Gh2LGIoGKsv0zGnTZhNJQ0Cnzy/dofa6NZeQlbYum18eK0Vfbs9+MIV7rD9mOEIJnBynjixlDVCMPn4/OQcLk8Hpi70DVC5X3ZMrEp97JjVt7B7C1dwBrtvT6h+42MEoX9BX5s/FLZRraZlcWI6WhTjQc7NJKfMhDS1EoCcUzzaIn39e8Zdp3HMoeZhpmox/IwX85ffyX/h3ytmdp/gSJHxykt4uHbalZWFqsXTx8Jc5+2HvKAhtbsGLGjdhBenTsBIXhBv0hhSQq7Mt3ZFpZuP44/pIHsKJ+DzgfHyEBSDlMUSk/Og5F/7/vh4/g11OXAsjatr6nz7vr1KVxSmg92vfiI59/G5knNKY55AmzH/zRI7j60SW8XUpZ9G5fOR/LCKIavP5QxqqjS4sSojTHBAepcLh+V+cpik7wFQl3wFGRWFRbLIeSppTSF5gvx1/yADtgJ/eu1V+4a+5qHHfx/Xn6+p6+IP/4ux8/gvufy05Nl0Y2rc2aJ17jMQ5sX63Iz2lKWX5J7vGXPID5a3pITr2enG8p9Onv+c98JSFsPKwkCXoHqlhPvOu9A1VsqZ+WXxXh8NU0xaCIofXCFuErWUV/FOOK8lXZ9aksQCnLfUsWNSIa+u7LHsIjC9fzsnNK/LmgGc18Ja/BfdJi7ad18j3xfDyyqA/yXjb+vWqgjwiwzozxEenxo+ugDJMOyUshRYUpCcr6GVrDVZ5BXnIHkPk8iazhskxWj1++fF8rK8Y/HDRlHHn/+3k0pbCgk3DbRB+P9B9ybVVIUOF54t24FDRn9NH55t73y/TmqfLMUcbHiTLXRdmaHOgfbKfUV1dCK5WwvKSN2Rg0xbSRPhJ65nhmzGiQPdNpp/k9B4pWXwL0DdTqtPjvybJ0GTF7+OupS/GBKx4htSk8U6HXPfvqH2bjq3+YjeMuvp8dpifrkWsj5Vf+d6DnMxVEhOY1bWurscsp8X2DVezod54+jkYTw1uIA4Ky8mIQ5fY4KhNSW7ggJikVixM5+NP8uXxWvEPoVBZdSVffYBXb+wfZIWMSIaaa06ws2r4g5JhBuXtdNYut+5WKmKaU8/2WnE7KyIos4Y/qLR6k7DLGIRmeyhZj4gVsFu41F3qsbhcQtDeaLzKteE8XJoAsNLLwZqc49sL7JBUA6P3VlBYxP1Va+L/VRZu8yeaNGGvSC9I7UMu9cjEvCB1zTuEo6JNz0B/jUiACiODbwOjlfmNCUjz0OkX39oG847XTeLVDhhyqyriSC54m0NM87m+dR8OvNM8PdG8fQLWWsm9y7IX3YdlGHlnTO1BF70AVa7b0oc954jUhXLSZpcFPk3Rqwre35zbyHsUOEQXC6hNl0rJiWyvkPfGaEEiVLQ21fB5n+N8HF+ITv3ic1SnnhEp7/d/Mk+wZFOrPEt4uydZ9DzLlqa5d/KAtDVv7Br19/dJQRdun77GOrHnafJHfUuHD7pvQbxMS2o+98D59jJZYS6QgGzvPQnpjXf5Yu4oxqtHuyhI0KMblqMNASxTyEu9/nx9HZRpBQwKf5qr4bhq0rSm+cc43AMXGDp1TUvbSolk0aLxFpjkaXLQg7TMaWVatZR54pI098c4jmpA1iNeb1PmApEUzWJC5J9K0SEBtK1iCgHJXR0zWdu0J5dcQmxt5HrGmModSdF3yeZH27xRg++wdNINa/kiZ85mhlTNpet5JT/1MgKLeMM+U6K/W8uhOGXKvybeJ+r2L/G5NiG1LEEV6f7cS49pUbsfie3fNw7w1W7N/aBNYTvjcSkgHXqr+DUC965VOdCATELty92LjTytzaBNRE/TAJhLPH1ucNIVUU/BromGX3TMf0xZvjC5ECVnBNG+qQ7N7df3v5adp4bqxsnJaSLhMQV/4/WhovvK9Hc2h/WOUpoqgXXrih3J4F2VWTtjUQv80hLZpaGnyeVaPa3NWUaWSFLdGqEJBnb6aLDus7FLEPVvFe2rdaGz0kkK71o7Y2NbO4ggJSbGTd7V57f7mircivATodvUcfcE9uP5fj6vT6Rv4vEWb/M2v70oZoZT/eEYGZcyoc1jla0X5R19wD37w8b/2XhsUHfjNW+dia98Aq087M0QNMRTtofzDWy8UxUML/ZVjThtDxYrip3lbAagmIeht/IzTorE7N353G9/lJfcN1rCtr8rKoAJzo/nCvcv8VzOqagNRHzpiTa2vs/xgsMZ9RLtF8hZ2vorIrxkf9bvj+S+lgYd9SoOpR3p0tZBpaZpiez83FBVGGOX9vK8VHhP5XtxIL8oS/NHRBYCFyobWHEfLjv4qJoyr1OsjtLl5EVHG5XegiEcXFvQVdPE0iW19g9izfi6LtjVFvsUMXHJNYMZR8tx5N73aIwYWRoPPrxw0maYIlefVyNPOKwmgb3Pm7dNk3yI8W+9jyWsdNIO65F9pmvrfIc3GpGaMzdMRlok0xNZ+SY//TMuXlRotU/BHbR3Vvqksa/fxhX9YWz893YgWEKiHwvHFKmF43pyv/1YSoL8+kGI31ehR1K4+OU60tUc/8yArM26QGQ52OU/8tv4qundkwpmm0EpGTaEJpzKNhqx579X/+LffTMf375kfrKcR6N5neeiatmjHJiLgC6Ka4SIUnpO9n+FnD72AGcs3e+GVzrMqy9QGuqST0hcTHkt5giP9UdDnC2p6mLVYuCLKbkwYocyHtVlpTu9A1WMGtA+TRD/NtQxcOS6UNbpYa/MlVrb3R1FI9D31xQyaUiIZqGZMkSeM86iWYtHWFoRaysPztL3moTSNdk2R9Q/7IWn5ohbmLboBDl4abZf3LDKXJA9UdEFFeNQFI29O5Pl9KzebgRE+LOuMhUf2D9bU09cBoKd/MD/00lOyFCOb9m0Kin1obab7/GgfcM8FH19lUeT36SwMA9m/B6o1DAYOCwvxaAnVqEyf5cqfmC+J3zbpSXOCKBeYyQhJnXGJls2/i5w3aap85zrtLOJFaUxIsdLo4x4d3nZuUPP7paBd8hg/Lb/9AT4NWnvcb7WW5tFEsq3Tl27C6755t+rJlOHZtB/oMI71o2pMFf2gthmOBnhpEGmu7A/+6BHc8OQyj3ZKf5Zf6X9p7GHru98wf32ha7jOfxxe9827CV0+t43JNurYEe2iPFFrQxleG+MDUh6mTfCiGROi4CPsiad0JgiN54LP+ZGApKwSbagoWlIoEosb7vj35nT6c91fN5Wxpim0sbkEv4+L+dLcGhKqT4uE0LYK8pHAaaildWYVMDRpZxDQ991rbpsWfYddTRyxssk5RCNb5VanCvmYMeVfm5etxi6nxHMBUaZFlFZFGKTQrJGpSHPYtK0f3Tv66/U0plmtTzAtzjz0erP6whWW8RA6VJjQmT076YgD1XIPP+8uXmZeX5CUqBWOtTmyyMiJlLKMfAI6xOqDYmXVPZlyYOnfQoKHlPL8W3YM4PDz7vK87VTI1gwQZUDbPFjlwhIQFrxi4WX0by2srChbLDLs/bCAU1hU/T7TFmtJJ21D2UXNVxx4upbmaBgkrip9nvG20j3doUVQ40laC6QHQlWq1bIa08nC/YXA3Wi/vSxd85SElA1ZvoRqsBAL6r9c8wR+OmWRWlYCf0zHTqfndMk8xWCQFGtKgtvDrXr6pAdCQ4n1Ipb2pd/PxCV3Pg/Aj1BgtET6w0GNaiFtde3QtlnIeootRdnf2jdixrkATTR/7BwSpnCIsa3RJ/9NVS5tvZC0UONeUZZGH39PrdvxNbpe0HVTcBX3r8vvm48zfjO9/ozP437N3S7yaFFWjXiSo1dCM6b6NRd/8DL9bzJYreVP1/f0YWvvIKcz9ccfK9HVE4sUY/lTNVGLwtDkCAk9woCvLZry1AjOY+0ZBBRjhlZmbJ5pjiG3BhVztlDwMw96cQ1ddGuXe5/MdWoscwo+RBprD8nvaPBl68Rrn/bdkqTeFoXXujTJD7Rxn78DyjdkWlhXARBw5vBr7rQ1JCZzqTww1ecpk81FH2v1aDOXGUEkLYoOlyLFX51/DybNWsXKYVeSanJqzj9EG5Txn7+c+J541h7v2+vyVCuwyynxNBw5xuxiDFoVHsWAjQnY1GNa6sMqgytmvXMooyRTaKdfS+ZY1ENPucz+OPKQffLrs0K8V3qcwvQVf8v+06IIZL9rimJafABF2fK9C0Ud9TyKYFhGltYsj9o2CH0vmqATCauT/i1D7YeC+P7M/ElOS0g5YB5JMU4oYvSW2cfIGXWIXr8+5j2P5C/eSz0hr1Z8lLxMV4Q0yBx70X2Y9sKG+nucHirsV71xTMdaZNEV80Bts8aT2Dzji60mtIS+iWr8cmmEPuaxTov+oWVXFN6ibdOIeSC0tkqDxZotffmpt7IozTPlh9OHjVGMJjJMNCHcr8/1T+q9Jz26rCzxSxFXxnkb1m7pzQ+i+98HFzI6tfe0aBM2frV57369dVMJi1QUvjTlEWnSYCQNapW6l0eOJ0kH/dvN5wphyFo3SmGYftP8PSXiQNIeMyjQcsscbOfStbGj0eqwaXs/Vm7u5fWReSnr0/hCnk2ZdwWd4XlK+VUq+q+opCjf9YdmBHGopSle9fU7839XksSLwnERMLKa7Fdru9+f+hpep0/l3+49BGkvaFGu20XWLn4mh6AFPp/y5JBEH0OSTn1NDfMWL60u/2myirvSsavClfkQLS4PhRaxkY+d2Dqo8ii9XWnqzyXG48X7/KDGWH0c2ta9Rms4LcvJLKREHt0S2QKjrSLa90ohZPo8TaMz3Ibc6KLUxwNQUvEeGb/1Z5udg1QJzVG3leX1hccAbZczIHtrScrfDNHXauxySjxVgnRBtv4rBgsbXK6sgGVUQj6qEAvjUD5sSLCPLfJeHmWCSGFfVVgoDfUXB8XGJXpCp0q7KzPS9tgCVPR/RPFWBByNmWr7e4K0ML2U9zE9ZE+jIUQnfZa3S6GCMwP6zYu/3SLYiAaJ8ocRyffoMz6eNY+MBn2+CObI0lyZgk5FaFLrE2k0FCwWvpymtHxRN8hrKafdeV83bx/Apu31E7mJgCGqQ1WsrNr41+cnb2fMiqwajur/rpB5rfWi9LprPLAmBjRrHxNy9fnCDJHO80y+d8yr6aBfp8d5CuXD/nYhvx+8QzAJDZqXQSoZzPgK/p40dFTIeGaCl8L383oja0pPn9tCRunk71FFwv29dmuf957XTqXO2LkgOn+jdadqmlynKS/0bg4AV1S4IKjzKX1s860NZXg6oz/hz4rriHxDMh3/Mk0LYVfYlW5sd++hyC/XHDoG3CFS8r0u5ZqQ6HgUY5ancdr1vcj0mVaG+/auDSRNfhORh0YQlfH20r+9rRGKUqLLESS/qLtMaDOdl7I+vg7qfEBTkNxzroiROSF4mVq3zEtADbPZrzOqKSHYQF3BdzdMxA1PLEnwvmJ8xW960La5eLJMROGmv7nHNedJpG0JVD7O2+X3h6yPllek6WvBYefc4c99+IYBtV2ROSu3/KnGBvhylTY/o3zVJ4Gkad+Ng469gv82rk+rl0VXpVzWlt8Z4OuLsGm2HLueEk8WZo2JOKg8NSIkFYyCZhcMmiwgscUPAP72sil4vO658+n038+tYgpNnE45+COm36wRXrsA7vks6PLpixTZwMhAFxLxywQvnqZBW3TjYUM6TbTu4uRM5X1tIZELnvIeM5QI5uRSnHD/hm/fi/lrtrLxk7CcYfokpAJB6dOUQbU/IvWoQnielrJ/Kw78gk6SqHoSRCfHhIq8TJqf9Lm/Byv1njGvsnuvnsZPG+YtKjxGfmSHE/IryiKt3bnLSxbP5DgkETYyjwPlTfoeXf4e9Q4VbWg8rzUDBi2z2Tkv+zEaGUAUh1yYUG/f4C9WBQ2a8qR7Af36CprIWGALP/e6yf6L7u0To2HiuAomdFXwiq9OUse4FFZrtexALZoG8d1ou2LQ2qzVSaPAZHYt6iYVZUvWKecW9drTejVBvTg3o1hTVcXB5Q+s4dyQ6eeVPJALwD5dofdYO0h2d9CWg3bYpiR99/FdGN+VePQDhSLmPFGcdk4bfQbarhJCO52nnueYzCX5nuTHFNKg01Wh1xsW5XgnZCvzOr4ONuZ9gM/3Ge8LzCu6hVGW7UAV/cKQ7JcleZsWVacZQNWIoxJzg8uGcU+828euncZPy3TeWyh8uJYWB9vFHGZltrkU9LnnqVdmmmZt02R77duWra+UnBrhr/TfhSEhg4wMaeQtVg3WqfNKi3rJQ8ljhT2V0cfrKeazlp/mASnzpfvtztIqib++x9YkB8255Yikhl3GW+Do4jTF5vVwsesp8eQ3NqH8/RG6pTgkDKhMTkkLfdgFa3uwbmufmqZZ9DSPuja56bUNgjyf4SptpjQEvVgRu0DMuk6VSVUYjywy2gT00kimYp+TpN0nfuXmHXj9t+8VBhLJaLzXhMDsnoVnsmrZF3mcgWTDtn5s3j7A+tAx4aO+eXceJlzGwk9plWMhBl0Z9AWpuGc8RlNs8eUE6+GO4fe0PtZCIfP3am6hic0JXSmUY5rRkHLaC0E7LIjS+iDK1CNY/LZqXpe8VrFYx6z+jgSu0PK86pzXDFvEciWFfcpf/Sgpv680FqSHZev9wEK1c+XWH1CaMiTXgpjAwDzx5BkVxjXFuemQV/lA+6b1n90ndGFCVyYavPXVf+rVl2qNlsUnxa/LVa2leMVXJ6l8gwpcvrHMJz3NpGZF4BN5QARNuuYp30gum9TrEuOLIe+oK4O+R09Q92hRxlDM26uN//gY9edjnofQK0tw71FPfKHQ8Dy0fDm/WbSUt1779fH1PXumGwjraYpM40AVqgRAV5Lk+UtHigm+qCkZsbkXW49ia49D7OYG7R3JP0JrlzP2NBNtEsNX/zALv3psSVZPfc7LsnifFd87u2Iuo+WhBeswf01PkBYeMSDSyLyRc4nmlx5aui4146l2xiFmNCDpmYIfHwvyI9KD1eTc1dZbSQ99zymYbH2X0bX0PYW8oj4+sFhkD13PRP6ii7lyTCPitHZJ3k3TCn5alLn/nhNYvbRdANTxCNJqTW6XY6GSKAZkkoXy+8KY2sQkagK7nhJft+5ph0xkKAa9hPKtSBofqFpaswidnMzHA1/wQsqTRztdteuIKZExz48WShpj+nJy5wgwJiloa9+hmDT0Pb+eUDgroy8F3vHfk7G8fnf0tr5Bb++sXrYsR6tXz6uVpRkGKhWwzpWLcYrs7mJ5X3kMmsFDa5f8jd00QMuSwhxP8wUH/z3CjAV96lyMLcIRRY6POfEeocMhGuIZWZSYR0yMC80gFhLoNSNWKvLQOopnYQWfeyz9BkoLs+4dCvMAdlYApAKitMe9R8rUhDivPUr7heyhnqPgQCO28u/mfdP4ncyQaYqAzkKoydiRXhFZT9kQ4KItvD5On/+eo+W4w/b36HSI7UFOxC+lWQpVAEBvjfDmnuAR+XWUAaG4UPCLdklvjv4er0/zhGlzXq6NGm/KlQW1/zn/0RRa97ccJ35Zxd9OaNf3ddbLlHODSN9yDnZJzZ3Qp8kHZTygjaKK5JrD5pKgzxsDSn3ZuwkqlcTbK63NN5WfKvOleC/18hU0KLRH1ioNHv8Q/1ZvW1HWd9qv+TgRaWofqzSlePXXi9DtGcs344V1PXUairLcb+GJ19a6NF+D3HWGWn2uLU5xdmDKU71l3jYZRW7RFDf5S9NlJCDSej8qvJYtSR4t/nqmRaFqtv2QAVrS7P6deeLjBx9GZTbAW8Oy8eOHzlOjkCyb8qRamqKrUtfJnPFPtE+jVd8GkWGHuAZTM345NDoAVdJevOevS0Ax1zyZrUH5w8Eup8SzMHBPOCjyxT9omBmrYeDqIsGZx6ruHXjPDx7m9YjFl7bBPasqHj8H7eAKTQgMhbhpTPy2mStx7i2zVYXK5df2O+W0V3zmpiEWtcCYqi9X+O+J35BgWfymWLx+W34VYcziGLvSjS6Gsg0aYgs5tTjSEDC5wIQYZyPEFh7PG5oq74l/a16UnM6IFTm2B58ifkJweHxp3glPeIc/fmuir3l+n34WrSPmiR/xUrwfPXVcW6wFLarxK/LMUxySYqypCovHM32Puh/FROnjfEfjMdo99nrkkE8fLcOn3dFTVwIrYaXYRbxQPhc/FMenIS7s8zwJoS+rt+gDbph1eZSxEBFU5Pvub9WLwuanP5fk2MnS9b7R9ksymkU9WuikamRIi29E66d8PGYUke2S/ZKXkfJzIsooW9r6JOdUokh1vOzQuAzJE+5XfgcaHdR4zHAh3+cfri7pbde8UZI30YeazAWZXxk7XBHg+bUoBwf5vbsqhSeeGlYypZDOF43vcN7EaS/Kke1hAr34vmW2pmjh5flWkxIyLOuWVCQoBs1Y+LeciwNVf7sZEDZKV5R1w/HAriQzsPz5S/bwyqMvhAz/VNEMer/FuOVJGlfg/NwzACGbO3zLCG83cxyKLTuyDVmivv5lSSWjP8ivnLPR60NJ23MZO+XyII0K0MLHHbRoE0pnkiTsrJA8jcwljQfJMh3NlYqQwZSxJttG00KGdUdU9i2zNrPzzVDMMbb2oL0Y1+byOxLO8uig8c9mQ4q0QRV6TxOS1mzpw3OrtrB8QQWRCdp81Qi1KxEPKeP0WZY/mV09C9Zsxf3PrRXWXclg4gJlTKhw4OHIIk1l3qmal6WlPl2xrQCp6BhtryLzLom+pe0rqvEXXd+KqR2Sl/1KplFLUyxc24MLbn8Wu4+vBBXGGFSDB6HFT/VfLOMZVBebCHlxT47rg/A81RZ5PYSM05k956w3TbVxWM/LFoLsIb8LnpevnwqbpQ5q0rCojxIvx31pQSqQP+zd1Mly/adtCWj0veXWFT2MVvySfDqP9svwDCv1RHZ/rMKjMyND4n1TrT3RLSMKj3Bg3jJSVuimiVhYscwTQ3G4n3/9Di+L//K1QT7x+4EpLIq3XfIrKiQ66OM3zb8Rp8/l4UpJvp87UC+lnRmoEFdmtDZrve/vvVWuxSJRKvl73lkN/hqkGUULRcynixlmRarW/1o9rmBt7OT5ImuyOnzFt3Rjh44XzfkgI2W0OqukYxIUiiItMwUE14+Pe0anN098aJ54LRIoNH+dd/Orf5iF9x51cLAebxwraZ4xlr6nGC60NQGxZ/VfLQy5mqaqdzTfC1/J+uVNr9wffQM1rN7Sy/K57UZC9M3rS+q/7hA92langNH8rB8U+U9rX1V5VreFeGuKto6y15U1zpUX6ketDX+cuRLPrtyiKr2ItJ3SH105Ut2rze5MV8a4OpwJP+xKXHS0zOKPTdoeVh8Sj3gqn0lZssw4js/rIqI7FM3L3tMsiy3CLueJd7ISFWQ1pdCzLCmTW7MGxyZsjNnpwoGexq/WUcpUFla58MeMDYUXRR+MviAqCIiMV6q0xiaSFByCFtXYM1GPFuqmMVWZPzYGot5zZZxoll9ZpsZMi4PSuHBaS1Os2dKLh+avY0aGUJhwCF7YaOT6EVXIKNGufN9YWeU/QntMwZd9oKVpY1wT6AtaUm+OyzkUapfst1zYTIpTeEPtUkMhNR5T8nuniBgwUz6+aDSBR597kPjjIWZQk+9rCrsm5GoGsVhbtbMt9EWa88N1W/vwySsfJ8YJTTEqDKbatpzCGh+mM+adS1PfkCfHnD5vGs8JtQ9EHtUgqa1P5ZmLWoY2X3RPPCfGKdV83rgyk7xsOoaocYq3gf/Sv5N65/BIknAzJb20zNh3K66bDZfl2pqQgnXhkQ9EjfaYAZ7KwqFoJ/qO5BUsX56/qFcLGc7bJd5z35DNQZJW0CDnkj/36eGICevM+DfV+Dhi3zK6nhX8NDSfY7K+U6Bun7UK81ZvVeuLmNxZYqo9lnxOkXdYcYleT+y2m+xvcbC04PvOsBg62C4zchYGNlcm4OZ6kvNQbS1xZdBnYW6qtDdNvcM2qeFPczA4BT80/mlZ81ZvxRd++0zUocTeqz+btXwz7nl2dW7EoGluLaN0SRIq9TXnlMsfCsrT8pvIdYKt4YJkeoNIsa7Uo2K07TgkWsGnpXjfSxNzizkmNEOVmIMxPuyi5Cr5WPUNQZKGhC6obcCup8SjzkSQKGGjkcUN/gBgnoB6Hm0hUYXalKdp4Z/yvaeWbMTFdzzHhKxSnmT4z3RFQC4IvvCeW8fhD34e4hNbzOq/kPUFaE+lVSz8bfKy2CLPy1RPOVfGQIx473uzfpfjxFfEIkWr+bgVv2AatRq5voVsVXBjW9uDKaEJRMs3bffpy/P4ZZTZHw4oC4n7N1tg+TOdqcbSeB8ARRsLWsg3EYuaJkilKARKWY8GHrbPy49HoPi8IhxSR+nzFydKOxAYh2JO0L2KupAq3gO9K5bXJz2aAPcge8qumy+AxyPoHNYXYtlW2n7Jp/xMaQr8ZPIidO/ox6MLN+ReeroAx3mt9t3A601kDsLLEj4+qOLCjAXuyr3INh4JrS8cfboXxeePjGbyfqTW/KfgG2SdCHxf6jWhdNK8hSHeL8flp+uTi6jgZSrtyr9X0YLM8Bg/2M57RP7th7AW7Qwpckji4Z8qz/QE0YLPxdZN2YZGV1A5mtwZd9JAQL+D5GWacUjdKiKEfadcAHoEih/l4H8TFjIv1/jYOMnpVOojabEzduR7vGo+92Jwyog0+NFfSliZyJqY0iXerP9f4bmeDKWtt+55whRtWmZxcn2hhIfakCuqiS+nUhlJRk/SrytlqSw/75uP/OQxpRf8OVurfxjKt72tPopBgX/L7HfZxm24beZKzidj35SMva29g8IQWnwb36ghykqyuff86q1B3k4jDdSoBfItg8oxm2LFFZ65PKDwPk8e9iKRfbmDjoEQL4sZvbTzA+hantEsnJpi3DPjfgPVYqjY5ZT4HMpHp6ALDyCYuGIhioZ4elVTpuOXX5TJ/z37xe781M9QHp5GFy5eX5k202fut2CwVOjkbYgZntRTHSMoPCvEis/SXXvcr8b0/QlVTMrYe5KW4m/V+hZQTKnsnmocSpSpj4UsjRp70vpzJ1Bp+09LyAaqUWjl5h2kbkGLQrzvQaa06+UAZN7Ab7vWx2XSCiFGq4//OyS0em1O/U8W61sWTp8G0uqkUj7iXfsCfwHR+9+nSeNvjb4lHUOxMaoJJjIPa4OkT/2mPl3eeEYaHU+0TtceCc1gCqR4cslGjKtU6u9lFYQPQOU0yMW6WWMqFTarKQ8hTsggkGMhVqYKUmaKNBPcwiwpYIjwaQjxSmbslaHh5G82JwLjqbhiEZDePL9+Hq3mGYwEP07JTEhJJ8l5FTsDxUFbp+Lhy7wObsym64vOr0IG6wRhpR/imUvS+lR7Tx5CFTf2+LxCU+7ke7knPtH6jzsMkiS+xcRtU9LaUnZrSuycDvKGkh8sP/0mUuGLXvnrjBlKP1KHgSw7709SFN/+kDDvrbZlwV83C8T5hk9DmhYh8wC8bTbue4/vStA/6E+4FEQOFTQ4Q4xmFGTrS/3dWmRcpGmK6Us3cXmzXldVlOmUUM0wkNGR6IfGMgNrBrc+0XEi66MvuGr2nNiF8ZX6CBINYso1HM28varHWvSZPO/KRVdq8p/kO6FxRb37/D3/mWi6WDdSkVZvV0WX5yTkWOdyC0lLCj4s217oWcVckobcVmOXVeKpxUwTfKP7HOizEmny8BFRap0en3nLiaRZL6PCnEanImA4ePuFmSBaTKgsG7d+Usg7eXmavlhIOuVWAE3RBHvG39fTignvkO/frf9bs0gX1YUPXdIakb+XxPtd0ktp1QQp2v5aWhzkUUmKsKRqTDIHcOb1T+d/a+Fv++w2PkifSmekPVQAk6d3xhibphiUC4MLz7cykSu6ikcP7uHjVzuMhYYHx2iQNMr95JqSrPGreMis3y7PAwpSn0gL1e3ek4YAOacoqFU+U3b9g4DYfmbRPkoX7SNJn6ana0oPHYd56BsKPkD3pnsCs1AkWP0kX3SMoqCJlkG9UOohQTHFQ6kxFA7OTomOjCttnsYM0JoRJdb/PNJIr0cKenwNF/Oa0o60rvjINUwf48xLlqZNH2yneV9i15lpQr/7M4+4IFYRLezT/S3TGq2bsbMcQkbDVKlYX6d4eWxORHgL51fc26WNuSL0umiTHJNMBpNp9HsFaOIKsEv02xAN6RfjytFO63EK+jduneNdMey+JTXsShJCBiBAN5SkJE0sb6XbLMeSZiyQChlVBrk8U5xWHjpVPDfgKfzEbZ1hUVdkXNE+0NaZmNGW9k8xVgt+LD3dWn+GDAr0lzlqxDiJRaI42kPbbZ1xWeMHrl6vzcLswIzL9fIroT6TfRQYV6Fwejb38mQuP8b0HyqDxdaxMtDWoOgYzWlRGFaLscsp8bkAQIUmIkg5xELLqTXdQQoTmnVcQ+wbh5SYkDfEURp6nz7T9qdQRubnp6VzQUGlM9Bmebo6kF1J8pvHl6rKJFcu6rQEGDurR7MVR96jhwpJoUrzOnqMQobVIM5gYt7svM1KxIa8FouGIXEDSbgeAJg0a1X+t7boHrp/djIsmxNRw1F4LhXv++1ShTq3YHlCCKEz6j3h9dFnsciL+ILgL2KekMroI2VE6pFGjUIBbkyffnVQ6j+jAgNSXdCo08kUI7GA078o3yoES54m6wV4n0lB1wt3hy8AINXHod9filFUfi+aBicAFrMvaxc5+E0xsCAf9+F2lQ/dLlAR5EuhQOWBouyCngL0qj5HqxRQNPp0ZTfcLlp3PraV8Stpdn139aOLMefFblYPM1ClXPHQ5iLlk1TQVJXJlP5N+D0QnC8oXvX6QCoZ3vdW1xKSJow8ebmg7xVrT6hMzr+V8mV+uP4K87eU/K1vXXI8LbxeaHO9oFP0GzO6KGO0xtdtrVyqrOVpSple2an/zD3SDE+xcOcYH5Bz49qpS1k0HK1Xu1ElJuvJaA75QgKuYCpFkfGoQX8K+Ot0gmyN004MryRZP3QlxVYmF5Uk25Up+mRMkv6nMhLboy46ie9njrSZrdfZr1unKW/K+lE/KDRBwbdomiandlXIfCZtlrRI+vJvmPj9zua3Wz+VbyPHEx//9b4lUYY5ndr89HisPw6LMpEbQRyKUHn9tqCsDYSGQL1cpuG/FLpszr+l48GuTOaJh8b7oDO5FmIXVOLrAgB8hTH7WyxuShmp/41VZiAVG505hiEHJbOWwtXr0yXf08rULNp00LtfSXulooTTKwtrSHnUDB+PLFiHy++bHzROpGk9JEVhxpKJRxcz0g5/QSb5xftamK+c3Kw+TckI9AsTyhSaCxo443RlZYwke8gtouHFSYPv4VbapTD24v1I2eTbeMJVJMS2jJWVSeaBPLE9viErrfuz8Iy7MG6/rKhBJuHjNSuzqMMtCCH6KLQmy3EV+zaFwu0bUZDnUQxpikGy4BUx4xXtA54mlQZOZ7EiSyE3JRmVTw9tJPrjwcuCNOVCjfO+Ro02pDZv/6/SjxpNtI+poMb2gyr9X8YjvHDtVlw3bSkf/6QRaarfRqCNx9heWNYuuPb4gihV3DKeXoBvP0lx2T3z8dii9aweHoquK6MFuIKfUOJoG1SBzZVQGHJkG2JIkbKQWCr4FuGflI/4ZXvjw7WKCI2aEF6MQxL1BF43o1V8SzcO6RVsWpMLJZ7/6mW7d5RrxcR6RhPzMYSAfEV+aRSaRi87i0MwXUanSNOjR5RxIsrS6ND6IaRg0vZRZOOpgfIZWJc0gw5NK9rg2hznYUV9fh5vq0heT5LzHTmOixDlbL64U8vl9ic3v3TPP+EvimyYK9Okvuw9ypsE0bK9IEp8rXjfebrlGknXKXWciGe5cgy6DooxRw349V+6xUA2wfFLbkjg7dK8yt52Hs24R/LF5rqqc6AYC+6xDItXDX3ed/MjSXjkVire1+abP1/k2i+9+9Kp5mhl40Khv5XY5ZR4B/phNW+IZoWTaXwhkJOsSJOTmsIxMMmo6GJNq5NChB8yRdP8ZxAThJahCfRFG1L2tyboOZFBE+w1uDzjuire3qecURCLQoy3Rq3drE6+l1IekKEtdFrkRSkBPSedhOHHxgJlECJN3fuTOsszctqlsFjiM6hCC/ckiwVZ7Y+IUCG+jWasiQojal/xsnl9PI9aZv3fTBFTKhqsd4Tra0ZDRGiU20EoqmTwFN4t993ypIw+hU/x0ETxvbTxr3yvIo3TyOvzy4ptRwgJB+x7R8Ja1XalPi1yHLJ2KAJGQbt7pi+rNJw+9w4o9aUgApGgydHP2sUUzYTlZ0IIoZMJk7QsIUzItKsfXZyXM3neOlw86TmWR0Z6MCOWX51itPFp4TQ0xyshvm9+rRsRFqu5QIScCGcEKMYvHR9iv7wU+hNf6dLWw2Is0PVd73eK/PsV5EKG+dL3tBB4SUveLuhjDqkfpZWV5Xtt+cGC/Lfw6vvjQpbjaGJtIETFt1rx/CEFMxVp2jrt5i2L8hGTsJTHVVtLUv9vT4FQ6NPKUPmpkD9CdLiCspOx6aFhgk6qeCi3Hsg28HHCy2RVi/djaZoMSvmHU8wLb3bxXpqm6KrU81QKHiy6If/e8mwGp1hRWkJGMulFzWmQ8o7fZG9usJB2jVfUjUMyjRr5XW7qiXfIeWFkzXP8hW27Jb9Jvbfk2kNp9GQc8W9vT3wKNdqBbkNTeTT5JtRgGDKYSlKj23LE+24tp/TlTaZruPfBaZo/Tgq+o8z5nAafvlZj11XioVlXinRNuJVpND0uXPmTxVs8Ey+LL5CS9xxiFnBt4YqF/WtMGLH8QrmgdBZlqiyQ0affiZyyvxpZSMt5BApGIWuJhogrC3lRL2XGgfoY89bLkbRrC1deFqE9YyRZ7i7CTKkHuQwkzfm4VAwyuuCrlFn/ZaGMCU+LURdjgPEwQmURdWUSCykgvpvIW0mKA5Fqaap8e6XunIbsVz3rgvRxgkQ1omj9HxMQZV9nizUvK68zJDBLAcBvHvuWFPEbH/RFLcn/V08TXmJWBhmf8lYRzbMeEL1IxSIlTfMwT1emm1va3C28Bq5dfL5xYUmvj1Ip+ao8mdnld8JO6DCub932LBv/8n70QdHH3NsgR4rOPzS+H2IzmVAmaCaKunw/F/IrhJeJX3rHvYPuHeLtdO1JSIUaD6NzKKc3sL6oY4/0u1O63N3Y3DtU0ATEhcHcO0eERjn+mVKSFp5ByZNoud52ssTxAWFwA+dN7htIeSJrM6+Pftt8TkSuMJUKTihEGaSttG9llAfAjdqSJ8dveuBjjtIQkws0eUCL6PPXC1omLzStZ9DmbLFehGWaUNlJrmD6bYk5R4qyws80o69zPMgon4TMk2pNv2Lu5w8tytMKmUgoYkTBkkp5QpZbZviJrK3+89TTHbIbRfgBgb7cqYwTpb4uZhwWc4+URelx7XG/kvR8G27EIKntpZc8nsrqdBuPlAuo/OHxK+HUyiOVkrA+QlYtQZ/GTznt2jjSPq0m2/hl8ogLxneYkYLz4XZil1PiHZMLhQp5gzeSpoXExfY9FQsC/cj1ssSHZhMqp52E98lBTNoXQ8xTLWnRGIx6pZTa5hS/fnyp91y1qsP3PEtGQetp2tqtLLpIw2nyO9NQT79s/1lsYfYtv9rhWOE2yGc8BLjwxAzUJROXOn/NVkx7YYNPLMQ4VpTcvF0KsyrSwNvVQOjxyyTPcloa1xfvf78/tbEuBRWXZ1ylgsFqCdqVsaqdTq96rXLlgrdZheBXeh9r38211TdeQb4Hvd+K7H5+CXm9YfSeefgCLRWEpFGK5lO/SeTfnnIm8qWp3y5t7vL3/JU/ZIBzfJNmZ31MxgUVSjSBTQ+Nlv3o7lIuMCjcc5rQqfFouQ+SpmlGUSZQBniz5nVx+buo4qwYJF1f1oqFl/SDNJzyPbiaAp2mKftOrA2k+DJhmDXX6eQDytBL/r78w+eBebsCtDgvvc+Tin+EwllZWv0ZPyiO52FluPEYkStiBlON20lhXzvrBYyn8O/tvj8vs/jO4bTw3NVojq3TbM7KNDYn+G8MBX0+P3XgxlRBAOgaxP/N+AAKOj0atLVY8m+FR9DJkH0f3RNfq6FuwONbfRwuvuN5VGtp3VtNQ+aLuc72xEeM4NQ4RHkmRN/47aVni1AeIxXa4v0EXNZTI8vqf1VyT7xPu+adllSqa3h97HD+wd/TDCt8/PvGZVdfTI5Oxb/5+OBbd+gLPHKIly8jE9j8F/JcI0h+qkdJSL5Kt4UUZbm2haI/2oFdTol3CyofeGSyedY7jSnTDyM+cl5Nc0qMtA7LRQnwDzuiabRoqSzoizapN8DkeP6CLmd11NIcgwaA826ZEx24TKgK9KPLFzpxU7ZZW0gkndoKq+1V1Ji/7G910fYEDo0Wpa8VZiDfo3ua5DuVii/suPTrHl+K82971idIlF/0cfjD8UMO688i+Wk/yus25GuaEKIVrSl3Xn3Ew1Iw18hiKH651yv1lCRNcIVIowuqX58/dqRwQD+36o3KC3V5/HqEFKcK9g6aB0mjnT/j/aIJpnIu6YJ2QYMEVSiKORheIFXhW+GVRfkpv0vaCVCKEuqEGUqneghjie8VEmzouGFjoJay93gb/DL98EhWfXbGiSSKoBoLyfVJUNvjpbm/FWXG8Xkq5NNoGFd29qdv6KbrKe0PGe3lzXlGJ18LpDePQjUIpYUnOEnInk9idKDf19/SpRjb8vL8kPkizf++/K5jhSeJse2iDrhnW+Qh9cq5HpuTFJrsVbzHvzNtc8iY7aIdCvL4l2F74gP1ZXXy1GhkHysvPC9lPfqtFsW3D5WhGg0CYcKcQuRlaykJAqeqQ38my5DrGYU0glMjXVXQ7sYl3QufRUfxMnMFn/ATPy17n8qW2drnvlbKt8lE5AhtvfHnRkFLzqslP6b5xbV6NF+MBnmdMys/KQwk3npYTw8ZEuj7vF46GMTJ/4n/HuVhoTHOnsFF/SjzMqeLjLX81/FMP79PSyP5gPN2dVw555aLuHB6ZMINDIX+UNCXQGp3rcW4Npbd2RBCk4TK0KQ1RilDCwkt4VxTyPMnoi4YyYlI07T8/FdTdvMhpyjXjklpQqp2nVak6d6E50xOMgpFmE79vo56DxVxVTI0zUujRQxE6xPva4oYfS2RaUpZ1FiQkkTKiNVTa+u5x3VVMBiIG6SLWexwIF3g5c+0byIhF135XpEWHj1afRDPVDoj35QKotliyNtXjHtRZqQeYXMBoAuUkgbeHp5HiwzxIzz899mim6fJ761fF6OF1NJCNSMnjwrg72fvJKpnUZtndN5oVnHZ1qKOAtq1i7SszFBTNEvupS4TtZO9S8V6nrf43n5/UKpYuCjzJtXbUn+wfON25UaD7NcpYl2kDVokRdSLosyXIo9Oewix+7jlmR9dJJy+OOcDeR4gLAC7eUr7mP47FJ4dO4xVrkt5mhCY75m7Gin43lFnUODh9L5CxRQBdVw5/i+/d5GueZVlWYxf1f/FjI51wVrOFy0ySutHaTAtxknBPGOyDc2dGX51uYX2GzNgpGEDoQbKX6VnV3pTabsaGeKLZy4/oT3AT2lb6fv0rAiaX/OK+t+bjHExrymPkWtx7BYZ7Xsxmuu/0riZn0BfSdBfn9C0DU4Jr9ZS5pGmGKjWco+wlDhd1A2Vl6QBiK6D3pxQZDUK178y2owaYVQZzxkUhMKo3Q5VfBO/3zV+Jb36Wj3OsEjHh+TH7LpRpQ9S+PzOletHgflzNk8TsokMd1ejAALjlo1VUY9TvJmBLy+TjwX6ohYlIZ1jjmZ9K3DcAdVq7LJKPB94GiMUgzJgxaSThKVFBGyK0EfWvNPUM1CU7VWnCjblaPH7waunvg7zNLlYEyZef3HTtn6s6u5V6XMTPtzHKVNeY7RzD6uc8H675ILHF1il7bK+6N4+V592JYzGKIoynLVP1icNKyHhRIbSUaFYQjdckLrzX7+PC/p0OmiZaQrP3BorywvzJS/74ZU+vZrArHkrY/XRfpG0ym9KUSgcvhYvhUbt9HBtrEYjegid3jOWT8wJUQZXjBzfUWhXxkdBJ6dXs2jHeCE3nijzJdLvGk2FMsPHrzSCsGuyUFxhVBhoeZna/GRjJ38vPMa1fkzzepX3CL0A8N/3zMO2vqpaZi5gRMa4fgZCwW1VBV/QoEE7II0bSvl3ld5XdqK7xtvzNUHQSVtA2pWfDVBPlHMjTf0+cgjegyzKAIDP/Xo6znv/kWxsuP3l2rVttEw1ck6Oe/YtwdKYIoZwXzPa5VxPirXY5/vFe/JqzDj/156Fx7b7I++HRBkngnZ62JtLp6B8tZG3XZN7oofesfWl8ZxVy4++B3Q5xVPIBZrxNnbol0c73BpUlBLjzdq/fQWuIFAesOsMaJVKUkTYCGXLnYeRH9graFm7tTeoPGXl0P4gBkxSmOSxsTVV6xF52GZ2FZ4zSod4kuaxLir35P0I39bpdPX4co7jHTEnn2bUkHOD8jC3SnADGuVhvB+YgzMvP/ve7jwa7WwdRc8u8igODTketQhmDVo0r+Rv7mwB18fyUD/NgKk5clqJXS6cvtjTTUO0RB4lrCT7B5SH/JHuSQt/wrhVXdLlv+9bYnVFWL4fVQQo+xKTU9urL+/E5tbg7I+bnnkR//izqQDz9NFJzQmSE5iHraT5syJ/uF2aZU2m6YsoZ0JaPh6GyHtGVagEk2T1RRg1VQppWdIaHRJqQ3UWddfrkQuJQlfM+63BFyz9Maq9HROYJb38vfA3lWH4XEHlvcUMaan/XaL32Ee+PfeWJWoaL9R9U1eePx6jizxZdF2RIWW+ktAxRMpQ2uXKLJQLvlgzvuC13e0hDOyLzp/x35S0mS+2Oh+l+WJXZqVplk6mMwovg6AdPi9mQjF4f9Dqwp40MidS/7qfYgzxbzNYTdE3WPXoy+oqrhxykEYUzStIoQtnPC0qGML/ljTNL8vtgy7WZ3lIZ+FJ88dvSsqhtNPvyBVAr8lMYHP1hHiKJh969SVFeLB+eKM/Lr35SWj3DH31DqlQRazBt5HNluuLJsBGDTpKBJd/7aIvJxXtCivCfA7CgzOQyIiUe59dgzVbMscBXdfkN6N8QaYxw4AT0B1/o/0gxiEvxKddzv9YpABbLxKZJgoMvOeTJPo48b8JpzNYTRSD3ljN/u5KaD8Svp+m9VD7ND/gTbZ5n93G5/whcRqVo7OWLUY18i3l2CG2Ia9dVN4JNTZznnB+4OoLnYSeyHbQ/vArKGhx7XJySwPZqwjx9ovM+0ORa/P6BE+q1lLWj3R/OnK+o0UfcOMwM6wIHaUr4Xvive+l8DB1Dgrex87REfJBNOLRjUdGp3gvKWRvbQ4H5bk2YJfzxBeWZv+jZX/Xf92/iTKT53Flsfz+Iu8dIqJM3JDyqYWU8lM49YlI6dMmaSyM0A/N1/ehu5Cl0OJOlQSXRvcFykVNtaqKCcGVLa/JnnBLi6B0JiK/y6Mzx3qaovA5RJlB/d/U2hrzUjJFwFuslTGaZnXQ8SjzU+EvtCiplvMI71HHo6hXY7zuO7JxFlkwVS+DmLO6os6LVtN4i9gzvT99EmNRLVo/aDQ4L4g8wVsN7RVjSLseRecHfOyElB+3SMcUt6L4Ii1kgOMGLp0+jRaAGuz89zy+qDyj5Rd0yXp4+bUa5/fZ96Gh14FKQHgownSGwrU1Wmh9queNTWz+PjtUMfBtXBnBA15lffDzqFFPJdpV3Aft81+nMFcqvgdeCkncQ67NGzKGxESk38vRUZTF6afRNOo5GMqz4p54d2I1Nwbo/LHoH1efHE+a0YuF8hIFQnrL2Zog5gJXpNz418cOXY+1dbdQFoLdo8+XVP+lc1C7OrWW+tfrJQlw+rVP4dUH7MVopwQW9GnzWaeF1628R4Ug0VbQby/KjYUTV2spxneF5pZGg18moBvNirRAxExknZX1SZkNQL6Fj0eGgF0xx/h46qIGiwPeJBas7VGvOnPtYvu2wb8zLVFzDLF2Rfi1lK9qpBEh4wlfS1yiv4Zz+mT7UvEWnSfZL426ZNtBkkREA/D6+EnrRX2F4ZnfKkChRRNRmj3DAhkz2/oHsXFbPyaMq6hOFW1HuayP9kOZg+309/i/6TNpEHbjivIdWiZds1z+dmGX88Q7UIW2mH9JMA0gH1TR3IrFsyg/f09ZkIs0fcLT/SnhocgHYLbI00SeV9szzcqQiyfgM4+AlS+ngUx6gCvAcvKnkTI9AVa14vvLKaUT4pmyvvoCs8JUdSEkTINkBroQTsoSfawv1kVZ2n4nmc8TAhtwEUkzHXu+MBimj28v4AsJ5+GRtgomHFPUVaXVCXyRNE3YoiddZ4IgtSanft8oQlKZ6A3aPsngNeOL7HdVoRW/2s0Zrq3qwUpEyEJkHMbmi6xP44VS2Kd9Fp+fRZ95PEyL7FCI95QekpamWTorMpV5ikLl/cRs3Ce6gZfC56tFvSn4PKd152OA8FVZVqHEa+GRfOw4BVOjhdKpykMRPsDGk1J3Rnv4DnOaVpxiLfOQb8L4KR9PaVqEVGbz2ueTGu15HsXonrdBNdKlbL1ygn2lkqBK6xP8saxBOBYV4Bk+6VwX9dLy6XgChHFH5NXo09YuOXc1Y5t6UJdoE/cSF98m94yn/L7mFMX8/PDrX8raF2tDipTJDe5ZTgupj9HO+iFcPp2XDn5URYS+lHtFaZlyyyVvFy1Lzo1inqpeafBnMWVXm/P9g/5+w7Q+P7zxUffI0ms+ZZsA4JePLGbGJrl+uq0Vzksf4mHsNHbS/3KMyvfcWkFpr9V4mHXWH/x9vibw8rJncu7ydgF8fHm8FkUUk9zvHltbe/oGsaGnT40KyDzxCdZu6cWO/qonqzs5yb3J2ppnEnQmfMys2LQD2/urfruUjpA8TJP35VzUnJEFncVYK2M8p/W5CCBNT5N8sZ3Y9Tzx9V+6h0rzDnleG2UgaQqVbqWKLCAhOhXFlqXJ+uTMkrSEGAtTdmWaL2AwoVtTWAStjplUKo0VdW5/IGWmer0UmlAmaaILhEzUozH8iSu7Oy54+f1SJnQV8HVuXfFIgZT3o6RLGQIeVCMDaUsuOIg8nHbRV4zOIk/meVaEGEUAiN3fWwgxfpq24Pm0+M/kEJLjX1ryc8VNmUt5eCqZq8V7xZNGBhIt+oDNRS9NGcdifvIy+S9dfFWvuZKWz0+xcGneJfosPy1XLvKAzytIGLga7l9irdS8hnn5aRYi6ZKKU9L999I6kdrWJW2+0T6mpyP7+YtnFdLZmlJdzdN8GlwIq1NyYzxeu0OXQnp0GhkkPQWHziH2jNOcrxOJozl7j4ZJe+tFRNH0PEEkjwzdZsYA6GMpKCvAn9+UZ+aGqhReOL2sT1tHafSHnGdyDefKLlWAXf8X3ysf23J9Tzj9Wtv5upayPJQe2Y/Ms5u3L1wWm4uKoEwV2oT2bX387Da+gt3GdQGQ98RzaOPf5dHO8Cj4QDEnYvvQ5bdMlGdlvYYuskPSUqTTen3+LdNSkO/l0sSc8v9RL0/k1yC3MLlbJ0K3GznFCCjuS9cc8vIMBDp25Mn11FBdeJUhjJyOZ4Y91ZS3yD3xhWzjStfkHn8d1Hg7TxNrFpFF5Xvub81ISbeRSCfE9+56HjNXdPN5RuZ8kgDv/eEjeP9fHVy/AYn3SwLl7APCx2tp+AC4NAVe+ad74oX123J+5aDLkilrX1XZsqfxU5lHi1JRnYNy7a/zmiKymESVkbWW8gP5rNXY5ZR4oJjMsbBb3xxEB7+fPWopUxYgr0zJcAHIRU3hZYzhJCKPrK+hJVATUJQ0/0oSzphomdT6LPuNtku2v2DCTkDxFWjN2x5TYpglO/SeItjwO6r591IZhadk+EK0hpAQQ99j/Z6/UyxARX7BVJXRk6YpNmzrd/9g9XBFk5ept5n/kiIbzBv/WagNWlqMUesefE4LVz7hpeWLROqz4DLKD6fHrydbuKjy37ivdOFF0K4wC6pYhAxisfNAqIWfCj+yLrlfjS/Mgk5aBR3jYi7wULWcJKUM/h4tt1jwaf8VZVZracGTcuU2vG2I/s0EbdcGhRb/Pd6GQvEOKXX1/qCKuuiral3zoOHmkO8TQVFfJ1KR3ye+4EPKWM/L8o00FJ5hSiiR1MigKsAo0riATsc4P2OAfxtfyPKVSNJH9T929FeDZyyk4KHA9KAuOoYcTy4UgfoLAWUroz3x+oy2w4usIfRpgms+N8i4TyHmFDh9TmhVaafvlZJ7vCZzRT1x2xEkHyiIcH3rDFuOfrZNjNHOV8PonnhKizPAyTFL8kTXo6Kg4Pyi34SWub6nj9XlR6vR+tycKOrP50aq/9KxAyhlinGoto8lSh5RtK/m6BHjkm6zAfiWFIn8gLWEr1m1tODdbm3N04hhvShD4W91aFs3MgWuIL6IAqnLxQhfh6gZz7PyRV+RgRLjw/nXInwte0vP4xwo7plbD/vq0RJ0zcmNFPWr3waqNdAoB0o71aXYt0QxntleetHWP91rIrp3DHhGQm2sAboDNlHeY0YAyaPFvzW+yg0scp4WY7WaFrfJSMOWZqxpNUY9nP7888/PPTLuv8MPPzxP7+3txZlnnomXvOQl2GuvvfCRj3wEa9asGXJ9xURKgoNFC0GjkEwHoItSsRg6FBNJe4//EiKCaaGFWdKsRxhwhqFOeJI/T/MGffF3TVglVSsraN2CISX+PlyvOxKfvtheNk05qNXqjIx60CSDB7xvqk5Ej2lpC6TOtOh7jHbyqPBmSGZVLhpAC7mU/bVgbQ+OvfA+lVkVfa2sGgrN8b1lpF3CnCAXIl62zsYbKUgx45wWOqx5k1JQRS77t6xLWvFZGgtPlTQQXiEV4Ijg6ylw2ndjNPK57tITMpm0eR0KVetSLPVugeZ0cnpZPaTthZDFywyNcSc7qfNL9Fjxr7CBRBoB05TzPieg0Tx+qZwW7btRvkUVTVlmJhQUAijlpxBtpuNXbuVSDX45n+P1VUgmyefoScTaeqEqbt7YUYTNvK2KsEPWjsJwJPP47XNG7IL/i4PthCRHDUEJ+HfzPU2+IeeiO57Fv1/3tN8B9TxUqHRrn/NC5uXmY4GOEG5Ekd+P0krLd+V56zubX5w+HmbK1wlp6KBtp3XmQr/IW7RGzOv8mchE/vbaTMaQvtb5h2tJ77JmlC7a65cpaec8lI89RjMrl/B5iD4WeVi0n8i1pXcQx154X1aHt1749co6CvirUT4W4I8dWoj2vSQPK+ZeARnW7cajJg8W9NSV7EripTtUKkU/8fFBlMpEtAtF2dkjzTHkfxuJBJTncsU281Tzdrk2aXoFkxtJGyDyyTUvZPQqnvnfUl7pKnk093AX85ryENqfLjM7hJX0Y2FQKf6dpfF1t1hr5ZWzfv5szVJ4iyoL5Q33+0eM4+ybakyJ56f11VJyfkPCvxuL0FDqbCVGXYkHgNe97nVYtWpV/t8jjzySp33xi1/EbbfdhhtvvBFTpkzBypUr8fd///fDrlOzHhWJAYYWgRq+LCaEzij08jQvSl6uWi9ZBGRznEUTfPIU5YUX61CkAKWjSmZdJhz4ZeXhqfR9whhkmIwUKDXlmrYp9r34hEpYPt8z5RtfYqHXUa80+d4Q+VU65YLH2hBg1akQzCWdCg0+fOGKe4t5H8c80KpApHw3qZRo+asyXB3Fr/ZtkD8L06kJHHIsaKHDaeqzdjXCwNHOFkj+phaOlqcpY6DR+7Q9qegrINAe8evyUb7o85EijYWnJkIhEEIr/V5MqHNKjBhzTPnM20W/jc9PJfRxyL+9zM9Op1fKoMJZzpdEG7JnSZDXSgKlEOL6it5ty/kH/6XjQ34bpuyKPLxdfhsAHv6tKSBxYbOgD0p+l6YZpnLBGFwxpUZfl4ca0nxve0ELXReloJhTFeqHik9D70ANPb0D0ODqc3Q4Q0SXYqym9an7wwVzUfvD0ZkkbHwkuRIDlr+WMfW6h8qfS270pCmwrW+wGDuKZ1Jfk2Wa7KEG6y4tK8lKlGOUluk8hLGtWZK3M1qEgh9yXlCji/RIarTLNUozxBcKgFeUV2Zh+CRrZET+qIn39DKLtkljIEiarKVhH4k2c1lP0pn9VkQ97lq9bWS/tEO+712U6ca9Jmt7UU8JvDFDEYq04deKFffaOweRNKzoPMkfo1Ke0JwVmizKHUnc8MzO30nkWsAbph3Sphl983bl/UHp4+1y65OUg+gYoPVy+ZuvY+6Zu6Yw1B/R9Umk0XVcjhMKyq8K/paSPpdnBYhvSepuNToinH7cuHE46KCDvOfd3d345S9/ieuvvx7vfOc7AQBXX301jjjiCDz++ON405ve1HRduZUv8RkMoAkjykBSJ2Xj/FGlQmGcmidd/t1IMOUF6My7yC8YLpmwMe9ELLyMnpQs28OE9vqbeQ5tQijWxZgBQuYpwq9omqvDe81vgyKY88VCMtzw946FGmd16cISZZiuv2pKWkzRduiqFIKmFKp8QUrvK5emCdpFu4q+kgoXVaqlABUSvPRTXgnIgu4lKWO8SCvey70FtaKekPBRfA1KO60zRAPYggDQsE8yB+XCShagVLS1ER+oTwFvkVG94KI0FtpMBoMUELUQ20SkuTqoAMtD4/izaupbtDVPv2xP0WL9vvHifXdtUJq3lX4fgAi57D29XbSeVOkHbS7RNvB57gtezHPn8eFifNA6aZorM/NoiW+KYj56Rq+AsiXbEPs2WRFpcH1J60Q7RV1eMefAhdyiXNdm2h/hu6OLiSPHXCGAKdcgEjr9PhD7cnOjQ3jsaesj7ZeUcJliaPNvSY0ieX4qo9SF6apyNoFUMF3a6755Nx4/512clrQYBzJ0m7VL9jFrM29frM2aMiN5p+w/KR+FQuY1r57WBjrrvagPOo61CKzImu8MAhrn9teN+vtROUTfAinr1SJsqqIftS0ZXBHj/KYQSyh9vA2ufFYP4Vc0+il0Oj0Quws+FQq+jNDIqdcjjZgMxessZiBf47rqB1Ym3vvFrzOouVJUvp/XI3gMq4/z9ux9Mk9EP0m5oMLGh8uV5Ou4q5t74gu6koT3i5tPcpa48HknozBFndSTpoWRdBzrIblekPqY3OP3lcZb5Fyg/8rGim8oVCN2yTzLjYdpETlXqcj8aV3n0I1+rUBHeOIXLFiAQw45BK985SvxyU9+EsuWLQMATJ8+HQMDAzjppJPyvIcffjhe/vKXY+rUqcHy+vr6sGXLFvYfRdaveigNoA9Kmk+G9dFncSuOnxb6rI5xDiond1GmqgnMBb2RhUETssS/eT0py6NZYjUhhN/VyNMoc+UM1u9jTZnhZbk6mkvTIg2KPuJ5KJOU/a/NT8aoBfPWBPTY4Tgas9LSimcaDRz5PawN3svfV5mj+FX6UZ1LIo8GPUne3e3nUI1zcr4o0Qv+gs6VDCpg8Hp8mmPhm9xwkeiGNL9ZPr9ii4zjMUr/y/zKIpiCLpD1sgTr4YeM0fbxBsr7f1kabTuk8asozw/lLXiAHFfafa68Zs5/tTFXTetXzJG1QH4L1maI7wbaH7qBReO5hWDDPc/aCcP0PS3KIdY+iDwun3qlIJxxL2Hzxfey+fV5Xh6ioOiGh+xXvboN4THnxk/RteQAv9Sfu/Q2AaaUpL4eTinJDYvaWpByY0H+fgq4UhPQ61UTEcGS5PRRIZfSoMkoXjRGUvzy/Hw/eZoWW2KcgqOVX3iYsmfb+gfr9RWcvFCg4aU5qOPDWxOUMU7nEnQ5hLbb9V9VeJLZusb4ccL+5nzKGSd4G2h5acoNmpz2MDSnjPMcM14rCqHGQ+/0fCK/FIoipz1NidGFtMG9nxAlo4vMG1qn1lY6fnMaSHolgRdZVig9iTKO+f3uFdFWWY6b83I+uzqcd5zOXepJ5gq+xmvFM0ebUNS7En5gpZQLeAQRzyO3DwFQI3J0pwyvh5Yh1wn3b9VoXpdrqYLv+LHrQ1eFHPdpvQDvLJ9c1Eg8fiLlndCBn/q2QXm1qCuTesLFehORk/IUxfjCaKH9mPAzGWo1/6DFIpKB8LAodxg6Rl2JP+6443DNNdfgrrvuwk9+8hMsXrwYb3vb27B161asXr0aEyZMwH777cfeOfDAA7F69epgmZdccgn23Xff/L9DDz00T+MLnvto/H1uJfTLT0lGKehpAk3+b5VR6HkdA3vV1+9sIJQVTCgmjNTHm2Ix88viHnLeD1x45PlTFJNaTiQHLvj6kEIFpb2gk5SXC2f8O2iFslAYUV+V7Ikv6i0YmUtrJNjTMnmYE3+mfVM2Dj3Fzz33F/G4siSYFUFXhTI3/T2NMcWjTXzyadmJSGSChsvv0uTC4PLRhUgxEslvq9GijX9pTOECcOoLVyWZvncdGW2zpxiJ+aK8p4aJyXlDxgnjA6luCKJ9JQ12DvSGCS+iR2lDTAnNSOQHAcU9rdo4dO0jaWL/NP3CjQwktTTl7QnQTr9bQROnhfNawiPk/HX5qdADRakTfVTzm5fXqHt7+fvul3qM5VuxsUBpl+OL/vJxESmD8dHiPSo0VsW5JfRE8kyRk/UW9FUqvA7Ps4viUEOQZ5JO14ZCiVDGCaSnsE5fRfKForoKWWu1PfiaF0sa7ELKloMzQrq8muDqxi1f+5VvRBRo+uvSNCOWaqykY5y0hf5qEUBUYcwjLcj3lvOT+kJoUgK+zsj3VHmk/vG0MZ5qbVXKcgq3U2hj6/RgnampfEdpV8gZoK51pA3VGt+Swton2pD97Y9DejMB3RIk+yohncbXkMIYF1Pis7lfjDUHZ2yspcCSDduxcG2PZzgu6PPXEqpUy+v7HJFSLsgNrgm/bUWua5UGc8JzlKl8QOHtJL9sg7dGEp1F1XscP6VzgowcfoJ93iUeffnnZQYCzq8c7XTffKxdrh3sQEIl8iXvM80IIPK4Z2wsKGXJ70ANHzlf/f/Z+/PgXbfrLBBb+/t+5466kwZLsiRLso1HkGQEyHLc3TYxkWkwpuM24OpqaLdDp5lSFZWBOF3B0F1pqBRDOl2mqFBFhaSrmKqTTlJ0UwG3aTAYC2xsbGPL1jxc6c7zcM75fe/OH/t91vM8a+/vd2X73LJdh63S/X7nHfZee+01r7X3u4DdKifOi+ZfVvsVL6f/7b/9t+ff73rXu+J973tfvP3tb4+//bf/dtx9992/pD6/7/u+Lz74wQ/mv5999llz5CNAeOPvpeLr9uO3Vo9XIpZgwVWOW5wTuMpQiz6rIneidAK3Pq8SBitCLYKISopUWw0TVWqr07YrgasQj3IPkz5n0E+wW4aVwqq1Uao8Cf0lczrM6wyJE0iPK4TQQnivSwxdaaxO31fcYgyNRk596bNlyKtKs6qQ1fms6HiZ/Z6MwPm9qVQ+5jnzpiipK+h4CkQsxrNAVaWdxb3eZ1lQeUP/Xp1su4IPM0Kr5wDoOKsgW53XUlFO8mPl2I7f1b44gOPK2sfw+c338Of8ySH+o/KLBzBYolzlh757FY1emdkOnE5PIKrRvFTyZ5zQc2Pw2oo/OWmV//b1gkJf2vGU2QJ1LeQIpynGVaG5atBXJ2EVZJiMuaZznOmp8t7AOeFtbfGd+Ax4uPxWozeaG9GW8WpKQ4Sx0hDGWFWBMWs4B6G0YgenWW/bnrFT3m8hz7clvzjNRLTDTE9NfqdAazG6mzhW5pyhD9BfzM7cVfJ7CsDpvdRnCz4tc6hzRqXS1QHT2WEclTIz31RZrQHhVbPxRA+yuuKK52PtGOnc+s4I64qyuU/yYJ2XgWjvdX1vkhVKh27/jOeRzZ55Xp/Rvjm/WReH4C15UOScyrXjFSnGg8HpjqnyweXWp7lmBt/4cW4rfQE4Vdbi6xOwfSsPdk59bScV3FZHUftY00mRi7ZeDoNVNllyaqfHMvcR2CEMLs+hJ1a2Rkv7ZtuVRw0U6vtTZjxmXiIMs++x35X/ru129lN1ySKZsOKlXGdukYqgM4/Ak9pJ9YycW91+xTPxtT344IPxFV/xFfGRj3wk3vSmN8WNGzfi6aeftmceeeSR5R56tDvvvDPuv/9++z/aINh+JQOvymzOHbhQmawa0WpoLA9V6RHv+N/93cWdeR/eqqlxUR3U1bxWwqCOsyr1WQn9+t66lL0o8pizeTaflePVx5srY+LcoV/VMdUyruV4KmDKOGtn1+/h3XWfs9N0lTAmHLOgr6332ThQ+FLNLWTIMtNX7oGGLYiyCkCUfpb3AgJtNe6aN/T9bKLcVp//W2WHpj6Nxv09XYVVpq6ufUaRF0I/YhHcUdyWAMnEL8t1cxmzgv2cUYx7Zw3zNvMz+tITgasz4sGvOofZiazGo97DmtTPA+F6hdmNCpdhio157f29rVfZvpYtuL8yOGhMv5KcuwKW6Pupt0WXtBlXhyb7QatMWtDOaStGkzlWTnMrI3wV8FvNy6+dkXkiU/h5MD85/XBoawcs6v5dfk+6x6yb1fg0+l/KnbKW+rzoF2SFpsBndz0HQ3Y48yv8zGuS9xb6c1WhhPdU9rU2BzowzqE5TlweOl3wLAkbzWCYndf5xGqb82pNz9gRwL87C9aZzV0DJBFe1g1aYN/zV4pWp4jreNvGgNFVpjnuU2YSPs6rfENb5Kg6opzXevtVhOiSSY/hfgFO59xoJ010pfhY2DRVLqI/C6rp0PmezxNruAo214ZgM20T9lnnUB2qQjr2G1/AvfE5Q8Kustr22cv4DBp4n1Xuj3szT8zJOrUptY+qlxyWVZBeZVldE5xOjw7cb1roIJ2PyF0/dNSDosf8d6FfkbV1fpWnXJbhWcWjdBBVlhVddyXN+vPwFZN2y3hezfXqtF91Tvzzzz8fH/3oR+PNb35zvPe9741r167FD/7gD+b9D3/4w/GpT30q3v/+9//SBmiipIoCk0fOOIzzNbQpS5Z9zY6zOURfAAyr6G69h6yA9rki1DqHlaA0Q6XAt5rDVWUodZ+atmrQrPCeDsTC2PS+HBbtY0TqB7wZgCj4X0aY0ffSWC1zhrB7pT7PrKneW9OXw+T35jlfdYgX2urAvlUJGXHmsNhzCzrOU+0XqdmpnLXPRsgqODH6ne8ZFVfjwG4t8HKG133/GBTIbLwgCq/Ns4B8rs5rMkKKgW5Bho04g4EO4NfyytdGDaxKv8pvszLkvToHNYrJ833/jan1gpeVE2pyQA3a5teUhlJ5ll/91zl6wti9M0CwMmYtGl+MQStrzcDM+bVxyOTdva+RWeQ1OLdVflQnzea5lCMip8J5qaLHTn+/Qpb5XM/zXj2BXmE3edzUcWsTfG4M1jXpec8DRoSkFZqDs1HlG/pcGbcKX+UTyI6QgAScE8sWiy5CJuicfgrInzN6cIy53uPugQ4NLqz2lgo/JT3hmZkIrgpKa3n7fM9/z3nDij8r5Q3yWTpnshBqTM8JG6WFM3ZS0U/6FtbXKwwqfbT93uIsn065X+e1KqFeVTOiTcFbs/GIZCZefE1qNZMGpXTiV9k0Z+2/tvgyU2AtZr7hcAPYq/fEF52V486HHOo9fW9sb/E5NOnsnO2klYCQAZebny0QIToy31P8U05V3K4SUauqjH/ws49a/5ijXlsF5M+W08uanLb982lbn+h+6QAvzqPQ9VU+88CFy8VXChK3/T/zV1MkqFH0/YqKJp/K4J3H9aRFSz2tPLymucgEz7lE3C+3/YqX03/v935vfNu3fVu8/e1vj4cffji+//u/P47HY3zXd31XPPDAA/E93/M98cEPfjBe+9rXxv333x9/7I/9sXj/+9//SzqZXps5oatM5hXvainGbPD6Qprhu1KCZ0ZSwrtMYpzJcYruLphAGTGEGMulpYEYKXTKODJ2Knk10qIooMUctzKwlTzaX32Ja7yz6n+K3u1ZkBaOx3PKbIyDOczjVlxNCqw+L3PRe2unMKaI+1WZ3dMC7yvju9JaX8y5vlezBgrLCr6Vg8+5zwJ1shcWfUIQqhO6UmqzET7DMjksy/FmfPY+8+9VkdsVr8/OyHwY0bkDvsYcFvOa6PCVZczKUERfZoQInBFrg6Pv/anBtVobjjHjbDJegrRS7/W+krk22QLzjKNV69H9E3M7jR2/4Pe9VSNmer7K2gajf8CixrRmpq4KplYedlhI21oeaZ8MKvJKddeVVVYreszDmc4b6/q8HfhW8AD5Ww9JdePd17rJgHhWBzSYmvxd5pNzKHNOZ3jhwPXe9xJbddb67IRK0P1cJn5lbK6qPnDPSvqjOOpbN2NzFYi/as5r++U8nORTXbeiE5bye0Vz/klBjIHntUy47/DjvmZO06jOeZaApPSrMKkMRVBoGPGu0arOsfWS53geiD+z6qsv5qyw4KFq28yB7nVAQftyedBzTK6FrFeUIEjRZ277jmuHRuenwgK5BJReVU4PWQg7SfXS5FDZ2tNeNGdc+l5llX1sh/14GLg+HnCQpGMqefFMMCQrR74Ae6LqBL2muOG98Qve8PMlsL7yRYr92qmPDPlpZ4qefc986Z98E9kSrFjRYL1iR6uiCfZ5/DMY5fPSaxXHnrRYyLKOgzH3e1ckH9innE6/bYN2wRAxy1XVVbe6/Yo78Z/5zGfiu77ru+KJJ56IN7zhDfGN3/iN8c/+2T+LN7zhDRER8Zf+0l+Kw+EQ3/Ed3xHXr1+PD3zgA/GX//Jf/mWPu/qeI++9glF8BZNdFdV1xg27dtUCn9ubM2ARxl+FnKRvFTC4qC7wZJQtIvtqOFQ9gNIbjfZXR30Fl0UeF0bqgPNMyU6B/ZzjgDWd93fX8a52Rlq+d3ZaS4FW+7TXsq/zczBFWV68KguCZ64KAHlJKASZzLlBaJU59DmIosKe48zKqQrFFfmyT890r0rgl/t+VwqvjO/XdgUmwR6lgbosZjCn8J77r6f4LitravDFBvL38nNri0zFOlPifboBUO7Z875uOloNsIy/r+LB8XvKrB4DVcvgSa+BO/8+q85LDYAKs7YrAyR90LwGrcbvXAmB+yt8RMx07FH8cm3JuwM3qy97LA2wfAb067pL1/u0uew2/McK/8T19BUCoZNaBab0RDnvMHu23OeOZllUNcwL7NUBqYbbcOT0nuPMg++uZ9QhhYHHsvS5PLX3yBLbi0Oz/ZKamVRa0M9iaZvl6nqbBvC2lC0mp+joOP3G1M7RnDY40PWW43i/ZgHrGcd1XPQDmFtxxhX26rilrICTsc33ANOsr9c4ppwDXZOeFZaKB86Lc247IL3HFJxgXw6XVhICwNO2hq/CMn1NQ/jUgkmH2a5brSX7rXLReXBdIVmCG4U+GHw5Y9DG4C/SjtoDcAr5rFaSaI8a+InF2lcarYEcvHbcx7so+qwGSlZn+dC+PW8faB8rXUxZ7tVh4x7oBM+orFV5Xyuv5hLxiDOfqLM+CR9kHNZbdY72cZQ+VWOs0JDVnUVvtBbRS8JwleDhBbzXBC/+vj1eeDBxdlA9IFWXkrBBAOfV8uJ/xZ34v/k3/+aV9++66674gR/4gfiBH/iBWzIeiGl1MmU+syBUY5rsaxYyvRJHzAphtUf6CvtSPjHC96tQXWVKbA4NTL4WIvq8RY+qIt9QBhtTX7i3EkgKHWF3mM9mhfq69OnsXMs46HtdpkTmnPvkvF5pDmqU9fKM9XUFYS2VdXl/1a7OZsR0r463itzWdWixXre5ZHiGxWBqZTzBUp3zuYPIqhKorQYbHAaBJdZ8DUNABbver+Mk/AvYYfDpmM7zfkL7tN+1KVz8nRyq8t7K/nFaWCus1YnCPUiTU5Y+vGRYm37VIeEUPqjKLae8y4H8PE2jA9LludVe65UBy7FnPOi9rb+CHC7y1Fql/1bX+eo+0UALq8N+zn3XmH05fZ1zDHRrkgdc/dnDoU26R8d23nB68myvv5dzbfPzecZCZnD0YDuMtb8fDnvSyX5vKwGjvl9Qvaa/Wo4dIfqs8WJ19Fb7tHt0M0yHMwMnNKbW5ZmcV8VL1zM5HB8ggZWBXufomfiF8hd4pjNGFtvfVg405nAusVFh0nFX9yB36gnXGjxEZtzm3vjcqdpQZrz7vFfBjRXtmoNT9Uo6Z3OQIPtI2Nd6Zs2X586UIVxTPzFfW9FJlTt4flW5mNBokM2uz07hOTjrKeL4faVy+nMZ7rol4FzA2faoL8ZYyeboruu2PqpuaKvMvkMGmRfym3CtqwLqHBSmb/7KN8QPffgx8StWNpe/v/rSA1Sw2vSXJ376TRMUFnwJeb/QOHX4PD9z1KPnt9VrO1el7PPj3Hmv2zPubzle0I6HFpenmU/PVbYCD3k2wxke1sD1q9V+1e2Jf7UblNMrMTCaCcCl4vGFX+0nusp4XI/kfa+iz/P4JOTJAAgS+jkh4nPYQRemnpTFIjgBYtb3qiPmRqePq39X4m8ChMJeM8EUTM64uSc+vM1zXzGiwu+RQCpKea/0tTIKvlDDhu/NAh7PnQquIjTwA7jnPleZvtV6I4o/CUczGK4SuFcpJwLAtXT8LVhqVhoK8wL/HGbBZ1eOs8O59eyk8leN8Os9Hv4yG989YOzs82/C6+nMCMzl1+Ysc6kZmbq2GrFfrem6xLAGN3kX+4Yrz5+riqnvJz7NG48MYPAQo/Xe5W2nnZVT6HjwNalwXVXxpH3a+wsZxnXzcXHPYCrOsTos6jSBDzVgOs/PQFrK+C58FoXPKgPAUFGHxeTIVXJqaQiB/mSoMh93nD2oVAOg7rTWw5MEt70ceqcGM3SDTKf+aqv9w4n51v/zPzLjWI06zcRz3fysjDzhurUljn1cv4ZWs0lDF7vRXh2clVFbHaNz/EwDfRFw1eDG0rbh3Afs5xzFZobyqk8EpjLQt8sOzE8dF8CL5pnFmWYVFuAF67TS0zbH7jS6yoBmgEnWt+JhVb2xknNn+XoH3snKaRXPa4Z7JT+qXJ1syoLbKSDcudYr2hs4aPn+uWY4ixCY5y8O4G9UiuJWMzyovvVJW2AW7wlPHXcnXrG/CnibA5w6nM7uRB9qzy31jNu+2mr5eJbTy2cuKz9b0CV8XqTZ+ZyUdRBvdKKl8lW9ow/dDqRtpY4rSVydZJnl3IpvMK9zZwjp8wwcsZoMekD50ysazq/TrWi3nROPpmid9pTE7NBqW2WxlwGB7n1dlf2e4LNnzsNS7S9zruWZtk+s3lNSnRSr9l+cOxVSuWdxl+J6muUXgked8wwfDa9V9JgPudCq47TG/T06QBVIqofmcrZpuGU5W82qOphrmrP3djBNiMi+/PlE86mrhPmpF27E9/zf/vkE/+rfYz77vfB5XZVRcNjnNVUc13mteK/2Ofpp9vfKIMJvNQ5WlQZ+foPDboJajGIth/Y5L5SLZsabO85mUMp8XlnuyHgJuz+P19Swqc6FGSrEzCRn5oj2Yp1NHszjXTkH0BVwBdjFWBr7eNeBvjrptZHEtv7cJcc+V25fh0O/K8fD+77q3nqdsW7LjKk6VkL3VQ7MwQg3Bu1QKA3olLf0BOgrHQiTi772yF6dm2t1cODUoC91fHV9IAetzBEwVTlcvYtQ0sG+TaGvyWlS/IGumuCyx899/jmTcxeHw8Q3eor1AIkI1So0XNPxcMkd9W4veGCdY+tcERzCnvE5CYF75wN9aLovucrAtnrPBX+ca6tMH7NepDmW1haHMVzPTMENAcQdsj3ApXbIApYu6972gZInoFcWY/vaw4Gb5RtR5LKM8nF27pbrveK7wrP1ltpufnCfj4fWCuy6xIpbDU6Pe/Mp57WPQ4uzDYE3BKpCcKt0UrcKVkf73JcelnMNrrnKFnw6stK/BZmb45Hyl78r+6rq1JWs3qSven7UMhO/1fdY8abj4SwJhdsrmClXp+QgYAnoM9fvCjuCNdWGOicizvlUld71rKjaevlb+eZq+1ZsE+ic/OKLuBeAb5MA8hUy75fTbjsnPgV4c8eoPDQ5r9pWMnFlPCZDBZ6ZO7nKaEe7qmKAfaug8D6vKn/WPiYDzBwPh3d58M3GaCaunUqJ2zLwYUJohnmCfUbDLERC15DOZOXnqmQUxlXQoJrtrzTuBOfm7/kcXlmIO+wO30pJfP7Zl+MHf+7Rad4RxSguxtyV81oSotNVGjGh66bjlT71JcAnzh2Vby9C3N9ZCXht9b1V0MsdRsJZx1oZt/jzVGhGP3NEfnaeVYcFBoetqaxRdcZ13/Y5BzOMTgi7KkDL3CX+5/dOUunRgk6N4+w8fWmfk2wJMSoEpjGlLvjgezDmJgM22Fbyhqjp+//jbKuOzupeYAYCS82WeWBrJZu9KoPvzjTnBuwax9pOHd+yHfdW28p4srbCt1c7lIBAhON4mrPJ+56XalUE9UU5/6KtM5FR5ADoRPFSDVIFaUn/ZT6ztHJjFkYs+n3pxmnvs++fY1QaL4evdaKG8HWTc4pPjLt01Bth8kBk8/nsdMszNWaZzu0xupaEU5sZ6PWeOFmrttIvaLVyZVX67n31NKKRWddAt55FEN2drRA+Ay2QOxw+nPeTmXjFg9BhziPW64V30ibRgN2irxXN5NqIvshOBS86njaTnXltHVBwuUOanoKwE2HG5DBiYHdaC35Az+LF/7Uf/nj80IcfzX/XrRV1PrilDv345rl8CaB55pn61mVS4qEt6Gm/brK643wOX8ezB+kJr0ZELA9Wk2dz3HItba6FHb3ZnMt65XseFD3k6fSkkHreFehgcqpB942yyO1aGeeMjLjK6a2yybd8VLwLXoosA22bTl6MEzI/lY+QfXmmSQagdZw29Xsr223nxEcA+fP+cOPDokRN8K+YeymomzPugiirkl7eWwjQSoxGsOUeFMXqnhuy5d7imo5ThQEMMM0qrE6nr/OZGD/KWhSGXX9N4DyOEcVXJqt9r8ctSkZmsXbwm81nmQkuv/muroO8Mxtz8+FYuve4GsfXLxcaIefgNHBY0rgYfOU9bbw3z0MV+NXOj3emGVcoi7gClixrmntcwDnT/5SxVgcn+kRbemhP2x039sXxeBIxpsM1VaduGAd8PzNilf6Frirer1JAUCdVfoDPISNqX7TJFof+7MbjQYTLbDgojvW3ubEjslbHzhON8cwZnlXju9JhhK9Xbb0PPpqyQgvYV/S1xH+Uw/nQZ8S0pngOa3o8eHazd3dilOerEVz7Nhx0woQ+q57h3MenkzSrbOME31s5jDnXck37n3lCAjJRyulhhOf77mDaPlmBBv34wX3EEQz9q4LfaJb5CT+n4OWbpxxvnFit8zxfgo113xY4XgWeVnJEx+HMZwNbM8jOL9JX3nN+WWVhs1qir7eqqU5Sul9tbTmni2FrmM2BG4q/rSfcLarz73jJOYTLJLw3yznFp+7JbkVGOI3ZPQ1K77IWOPJsKhBCuICrGhRZOeoz7QiOo1wThGgQxOcs9ssCgXoJj4K+TqWzlQxc0YLOJyLib3zoU/GPfv6x/PcxD+CbT6dXPkA10UHWDeBcdS4W+nJ4WDKtge6Lw8GcXcgbxX+LNkrZV59i2/84R6MYZ8C0uruGU5/n6fTng3IVHzidXvH7Sp+ErXQMsyBPb9c5B9ahJdzaVjNNfbiw96uecZ1VaEwJMd93HJ+reKFdxiqkWkmla5l29Ssv3S+p3XZOvBLXZKwGDYBVxLcecgBiVEVV+zzn4LPP9b1Xynjk+0VQLE+oDBLlVUKgCniNSto4bQikqgfc+cG1wvAaMSug6L7aZfb2CjxUB8fm1XlA0iQEsKYaWYUwXgi76kArTOwb486wn1OsaqCohF/BoO9Zn3JvOU7po8IHQ0jfH3DQ4DjX5qwtBPN63WZHgAbUuSY+/MRveu8LKktbCP/qHFblVKe/wnHek+wJ+qpwgWb0c1WrMjGOR9iRE600A2dBW5UxViobVKIj+v4KRnv2xfm1/WbF8ZoXFc5Y0hWN232/WTSb18q5aMBVUdaKiasMtr73cyWNL+SATGx5Tw0WvTcZDEF+Scdyd1ox6+XngRZGyOocEiUTZLiw9pPsbFzX0yY00c7R44wGDzhX2aB608dGcAf3agWLvjPN66yD78+G0b9XyymcoEFt6BM8W4MDEQPeo1xXB0KDgtQl4qi24jQVPcWVK0GaTtrBv8/hyIKA5Xmsy2pL3LngF/esE249MXyJW4W7OZ8av+z/Ad26vUP46p54C34FnSfbu5x9ruhzhr1hXruwNrqXPvXqGNvXqxv++7RGE65UtpxxdIR1s1V5tdxWJsjKjGKxuVyHz/fOBkhMXjlMfq+8KfhR+Gvfy/XqXk0AvatJHNODSk9Vb56xuarcOhxGsNOQv1jT1ZbEDHpEWRNcDL+2opNq5yg+SPfjd3mwXZvXOYMhcyTDDwwtfaqcopPbbb2rzjpn8l0VuGBCT+ewpjUBfWlPJ8QL3Cqc9l6D/qTc8aoW9DXz1K1ut50Tj7Y0qqFQ2itkz8uCeFmOvHfGYNN2rrRl9cyqrY3iXu7RyK1GVtjzgHeflxF2ET4xn6itkWnNzmuf67nv4y2MCkC0YlIzDiYF6TjSbMEqwnYuk2b3VMFO6+3jzXNY30vnswjXFlEU8gqGma6mg/dyMWdJSQd4hY+6Nq9gzCVMCl8RrlvJqMcaR2heTq8KfXESsY3nfZuBWGncFIr22VLx48XKO6YMC3pnA4rXTlIcoUrQy2FjUghmVAOPlX6XNMf3arlXVfqrAyvxnOJD+YUZfJ8fZNISL69Ax5rFthPAbT7e56oywccuMOztXIBl4IN/1+9J63PnZMRKpp2Tc0p/ahSYkbWYX5VTNbBjcmTzkkh1CnXOESwb9U8AFR0XdJJ1bPYlsmVZJrrTTOcv+AVbTE4yLxqMpcotdJ+y66DoPmfHEZ3fuiabLjTgFcTReBuXVF7hO/HAAXSQlW4LDs59ZkxhAj3VLwaYLBNhMeyBZvylRqcZ+2YDNaO1lTzAvLD2K56izDg/r63gwcYTh8DXXuZr90hvmiE/HPRwROpIiG2XhR6wrs5JBhTaGfpI2Fr+kmcF9iDemiycqhI8fu4b9xHnDr1zhOu/quys8mqVnNE5qj2AX8tSmp6eHTGFc3XonY6Lnr7sDfdOsLaI/OJDzTzrvm8EqDMjfxC6KnJfs/RruPZqvBKAgH7SdfODbLXsHM+44Nd7phsnnpib6RXgrTyP8eqWm4FLnM3gp+4fD3oY4Pr9dgZnSh9VjtTnz+6JX7yXicqu/OPvTj4V8CK8WGWS0sLVyTfa5gxOcP1W+AB9vFqO/G3nxKfTtIi8gAFWjoA2JdQ0rs71FWsHkZ2dh3US/tQj+Y+JKBewq8FW5YQ7ijtzbhRytX9nUipGvN9aKadfMAbH8383eW6ZUUhY5r5Wmfu8191wXs3HspwwDhaO4rmSecC/UlwVlnoPWYUaCDprAFSDuShDhUshqNCcyjp7pojwtnBj8Co8rgy9qxXQjHfOefX82vhk5v/cp1ocVxX/q3vnnKbIa+fxoQcE0lH399TJQvau0qEHr0hzuSbBcbQpX89lt44PLQN0ZebvOwz8HfObnzdSKMowo9btDK93yoNqvFfDOh23MzDP73lbGe2AQ/ecT/yp0zMZQZ5SWa3363tphMDxMKdOHIJCq1riudJBtWU2W2TMSs4BppGJP/Md69Xn5/Le4prAHAXmmZ7EUNMgseiB2aD0LJsFaMW4Ume3h+N1hQddMcBimfj9+UuB8yjXDY8LRNLQY4XNeXmqsk/62OdRHSNzHPZn4Ow63eMZOaxtvwk9sTqBnllOp2voMwsQiqVd5ZYa4UpPsCdYyeDvA/Y8T0ScB/Sle5i1tB8wVT16rnx8OIxzcPKqwCee1+bBCZ+Xjj+vzdxHtU2Mp1ZMW98vvLv6VriP5/3UQyEVL6sqH1u3bX2vysQXrp8sODD6dtqhjHEdBhlxOHBPfN3mgnlpcKfiBs9AlOh64xR3vlWrprQP10FmtxSbRttsa8zylY7zbDeehLZr8i3kfaWrYxufXQPmKe+ivNcmOx+2SdK4VPjVpNGxeu8yHp6Z73lQ1G/6e1ivJp1WWFZ+2tI3EtrctoiHn34pHn/++nRGQ9VL2u+tbr/i34n/lWhpHBTCM0aeFnRWQGiV+PX6lWVDocJ0tJ9/5Ln49JMvelSq+7N1LqPvOWhQhfE5WHr51TKbKohU+FQDzD9ZNuOjtnNR7gm+vhtlVejoPzqfrRfTmNjXd8WcK0V0zui3EcrarAIlev+sI9HKWja/psJ/LvfnGBS4LvRXYlKdVRrBs7KusGyLPleRdjxk92LNS5jXuT61rWjcxyvzUwNxmsPq8EbMey4TU1iUVsF7587ZWBtzOz02GqKWxS4YqbzhDr7DYjCH31MjhP0QzjpOl+dm2UI5p+NEBA/ZM6XtPAmcqazBWB7lxt79Hr2nZTnBd64K5mxwra9LDFdOkMPnHFUdfHSiRuOKP1eBzK33uMChQjLVFsHvjWsArjt9LYNLQpfUcXCK13oJRtJRDmnzOTtfr+ZlMkxhaWO2+mk5/B4mniDs/Hbx6FyzV0onatgr3oFj4wnguPt6iwbKv1AVoLyO+WlWVB12yBGc9owefR3W5aY1QL4KemkQqwZD7NrW90zrFWX7KaNnObCi1Qieum+O7R4pUQdX2xcWEEZfM47G+E7HKiMUPsXBQl2cnZ8DLLDsY6usrXNoMnilD9wnXbQzPBs7XEQIaDvynj+7ADntpxWcWgkBWIzyU7YUWAI0fB63Ru/l12W1z73i8K0P3R1Pv3QzXrxxmX3nmSEx06rapvk1hiCucfpFddzQD9cL92R+3eecMirpfwCtMPVct/P298q+0qZ9oVU7FZ2tcKt74s/JaLfpIz97ecT2q44E3UZcZzDQ19D79LNMEpdB3U/M6TM+B53zgMVtjFleOSJrsGe6h/chx+V+/WIJ7MbPPPVSREjQucxilZ2/1e22c+K3nRMtIpXInRXfSsl49q8IoPJsk4sro6oKrv/3T3w2/rt/+fACZmkLB9qzt35NYVkrSFxz4r2KMarBkIo8PFp3WpVQkoNtfqY+Cj7NKFsorimaruOFfC6jwpLvz33i7/Vn5GZBMRyyOeN6ziiz92J2oN0p5NyrUFg50KuTxWvT/UQVvnOR+nqtNtKOzmHuMx23zefs8HFNq4FY6Rhjr2hc/145aZU/YZC68TLDpwYKFVHLPhTeqw9Lkm+ppsPi86qwZ2ClzO+qeQlAxkPop+//qEaZ9qkOQeIq2rQnFfiZ9xnWPpnFm8CMnXcPo6S6BguIF/D8XJmA4f1745HP57xKthGOnzq5FuwtsCrsoB1MYt5+pTJspgUYSzBIdS0hY6vMVCNJg7d1PDiTZuQu1gTvXW4jIwO/2+Xq+WaBJjxf8OcBkvF72hR/fVq3enid0oDOUw1LfFLNMncCix5s5zJ35aR14m3zDJNme4+txWXf9mcH7CMw43PIeeHQK8j2In9XTnnaHvtEVoeSRfPgmm0rK2sS+YqfrXOVUUx6LPeC8/FMZEwN+o/PiOwMHu55aGt4B07lEK5F/1pN4LpkIVdDaecqWNhHwiKAUR85/gb9M2vu3+f2vf4KQw/y5mq8quNX65WwLWyG3iPaYV6j1YGJxInLm1buTnPPO408UQZcOVh3HA9xPBzkGhfabF6REWgZiOwuCxHQ4nvncQvgU0bIevF76u7sTnI1YnktKzFLkFmhWfMgx8u+wvXDVvCx3Jcf0CGzTX/aetxxUW2AMoeFHGewi/J+k53ljQABAABJREFUqjrDvZVxKv2vZEaPnjKqmcI9b7NdVTGDPiPWeq0+ozoE/97EMNC1zDOHrtSYv/R225XTo6nicQUGoTX+XSPM44Xa17zXou/Xo+k4IID5xGnuOSkUfgbO8kgygwoYz85VAUXYa1/Lcvoy9xo5zBOkWyNBx+LbzAuFpwalGps6pK7XJkimU13gLHOlUexzXZVXa4Tf4eQz0/7OTiP3qizDOjjUF3Sydvx8Xjt82wx7FbT176nPXg4WVJ6IcLpaeLQKp1Jaaz5nrXQxpRYrI2QaJuGZy4pX481Et4ruTmVskMVtQQMa1Cg0p+Ba4AdwbXNfrVF56nekoRBWBiIj4OqMy71WHdoo9+T5zY3/1Z651X75Ci9KpM/t+z0/BxgQiyqQRt5dlczbgWetGBOFP6ux6ffmwBsMvtV2kOV2njMyWseNlNHrvfvAFfikBh0hj+tnkjKjDpnbu/Xt4y2y+0sDcYx32jZz6BQRyhtnz+JY4KaHyIGoZ0Ewa4U10GCe7ecvsoUHrI2bOl7udw3HDbO3Cq//mvyQsWuG6XJP09/cUL0wP7vJHJrAVJ1rtNk4plJGVUZCqU7ufq06vl5OPPNS7+rgcxzHB7DSklaR7dSGtV1p5ap//T3/xTp7VYvq/p57uRUmzrnQl+FsdjQ9yDbDolUBykujD51jN96pM3UbVPRFsVFWuhxtCtit7oXTmsPiQYPjDm8NUtT1YgB0Lkm3dau0I7IaznW1gWnXcC7IBqPZ2Q4yIeWl73zvWxPmg9BQD9D5bOcr7NpQjZT0Dlm7helB4qHMZ7eLJzqBs3uGTr4QGqit2o1wxnsPOyF/otVwv+S4B7/UJ6nVBMN+mQ+H3I2nxEMtw1f77Xhg39rmPkfTb7IP+MKeO8tTZksVnJmDnzMgLHhv259uET/3+efiW776i3aYvDJH16uetXCr223nxK/20ZwrJxy/qz7k7x5LYx9jqBG3LOGg9BnXYnaE5ihmGJMOODgvB25WQHUWeWWpzLx/GgceuNB9MSv4Vq0KbzPKyhws+7roazVeFwAZGW2G96lPEzSlH4MdimaFY7xXFd6MT7Tq0M7j4d48v5WzO2dGqjul69zyGTpBjp968N65vkxQR0/nbgWLf65k7lRpoRqrs6PJvs+VKus1rtdsHOThWiGGxJIuRJnJGts4whOabUQ/cBQ3o1EYpPPYOmeVYUWMmAY6V+qG59Wp1zkrfWWwQRzn8cUHKsjsS+Y+G7mFLhufWznewIPCjt5U/vD5tdzOPbMxB6GMntRJiGp4ce5zwEnkPoKA4YHJSW/ob+jhR54tjwCOeGJ9dTi8OsV54yAIzKCI4OUcfDcut/jpzz6b2bIB3yJgveINDfzgnjwDeuq9rM0+Tw1sYa/5abfcMmgjnTLjITpIZIsf5udOOWRb4lHwMDtU2r87Yjd34rl5udk5AhpcIJ9zFAaqFng0XvKS+ZVx7FnlVrYjCLw7055bG/Svc15VlIBWNQsFBI1L9RDF2rfjOcL5U+WHzl3vAX/Isk/bJxbOJN5VuazAL+VVk3Uv/FnnZWOfcSqy6kaqOVzPCN1XfBRex1wMlitsw3O8uz7FfdYhw6H1DDKzwJCeUQ4UFJtg75OfivO5RxTcl2bl2SqjN67NfXddy7GP++GG+qmzmrG34KjOq8vhZH3eJnBx2PeOm40imX+COa8Jgk4632KXKS6WNo1cTH0p9q2ee7I+A2Kf/8Fp9XBocfM0ZMz1yy1+7pHn7PwGyBOzXZWe9hliTbYyHp6pFRCcs//qfEiru54OpWmXW7G4p5VO0LvL94oMtKRFRDz38tjiMelr6b9uJbjV7fZz4pMR1/t/I9w4iD7vQ1o5YFUGr7LudZzlya2La1fIsmxgqPE3CIj/HvCvSidlnPJbMzgRFBgqdBDBxV5Fy06IgJ9hdvyvqgISlgWTaZ+TE2kCMBJ2GH8Tw6siEuNAo6w6g6XeacDZebqqtJDGhAgBhZP4mJU1xtEyzknJG8w9fvqzz+TesipwV0GUcZ0Z09W87HkYmzKvmmVTWBUf54yQnHfSlWcyM9vUoygZFcYOfFV8eF5POdYyPRqrhOd0LkPVYjJED4dZefago7j19TPjuapI4qziQUR9hb+cl+BDs6gD1jmwktk5CzL4GQr1Uys6HhZ2tTaaOdPAKfAfMcapZbDTnNva6NH7NUPNOc9KOjp5sBpQxjf1nuAxsztCc7sYXgav1BhRp0SnveVcGOGf4CwVH/UwI+idPhC9MFBGe+TZ6xHBbzLP1VzznnryEmHT5weOuI+xBq8qzPW8AmY8zjmowlM7f/7c55+TgJAHZiDvd/GxNLTHc3VebkhGMBP/4s1TXIhVh7XBmRfDWCY+eycNzoES1yUKu+r8Ho4rC8pR+HGcWNM93vKqOP9FgxypQQm9V53dqv9U7k8BuGJDVfkT8t6cEeaYviXDqxJbizhN/LKCU+mSNMOyeF8nzMPwWA6QVLqowcMBT8UL4UPzoIbzp8LSyjXPplJfgL5aFHo8RwPVqRPcqR4EzeW9/Xk7zDVG2fy5hJi2DDakzOQ7VnXZeC35NQig6zPANzte4EkEIVTej0DjtsPY93XnnNPZbbMtmfNSmsu1KsguOMGT3f5V6dcrnVbVrlmWrkG9fW0uty31zE9++unhcHcf0ekf41S5JhUaxc4/58Sv7Ojnrl/Gky/cCK3gUt1vsv2MvBpz9+st1rStcOI92F7et1dXUd9y4Hk1b0277Zz4CHFYilA14VMVir6vBNDK88KI9V41ksxg2K/V6OC4Nwu1SuCIhK/KQkRmLftCmw0pvmvzCs+eIKJqnwcqTK3CO+dQFb++F/N7lTmh2F2paf+Amd86BuxV8K3xUfY/dQqLGiV3o2L8nmy9ijFdlL3tiV/gQyP1LF09D3t1EoCj3/lf/3D8yEefMNiBvnPbGdLxmIwJF8YKu75b1y0NhdamPrVNAafg+zp3Xc9qzOnctc9N+tT1naLxZe0V1ecysy3q53PWh78wuIax2WfuDW4zP7PkdXVP5hXl3pl1Uz6vc46gnFRHEWVsw9Fkab/uuTvtMinxIrjVuauxw2dnvFRVPxkjco3zoXI/J9PVKLODx4CrMg4yTWF0JfzSCMtK1iick/OzG5mQVzjkDfpEA4sefFG5g74FV+F45/at2XipLWVnronQfTj9L+VpgQe8RPpZbQHg2vvBdoorHccDJk3mrHjFPZURhxbxrz7zzIRHOtp9ksPpuMqYl3tU78Off84CE6igwLod5V3gU/kVcOlvOt7qQBT6UrmI9w7Gc3IgWFvzOuSBG7BFBylOO4ObrdwjX7sOCpmrBs3r3CNga+zOiOxhjqADnQHWjbqgyuP6hQPtozr/Sjs1eO58vdBZkr3Nsc/yOvuy4G3z57eyNoa/M33rNcKyqLyw52vVCNdU18vn4OXV9dOKU+A6eWLw9fHYDMchThiC5A/cfW2C9iB07HjQuex/bz1unrb4+OMvmD6t9reXjTv+8LUJiH4NzF4cWHbe+06rGjQQmZSyTOiE+sLvabtqC2MVteYkB4NYn3jihXj+5ZtmY+iD1d487PPSrQwWiN/EHgacsr48Y2TWMysbaJrzgrZ/8tNP5/urLbLO64QlYUqc4Q/c84RNbWcraKVvDRCqXZt74udub0m77Zz4VHjxCo46frsbvRGLiI1FsIqSCRcU2T+YRv6Nd2o7LfawMFo7C8caNFAj96ps0ixolbABAyVgGr4bja2Wqs6bzb1GEFPJz3tFmTVYK4RW+lBDLaSvupeyZtCWeAmP4mu/q4xAK3jR8XB/zpTMTgYdlvMRcO2/yKPz85kUXZd7pTSuziFmWtMxzwlAy55ENaBmwx6wRETBeyvvEZZUnuHGcM3WrOCcAluNvFmzUXV/Z81Uo3lGTK+hL6dfGsN+Encr0oCZ1sjg1ZI/W3VGZN3Ewaz4rAE448Hd0tB7rFoQJda0QqHQQkSsylp1De35NNB9n2uVL5p9PVcC7Id+yRqGO4omW5pXLYS8X43H7LL0PfFNMcLP8SkcPzhuaaAIn56luTTShMaNjql4qhOjMKBhn2wEaYfrvQ5srXTI5BDt9DMy/cJLjU6SHkpWDbd6tgD6G3TscKVTUrwS9PnSzdOO43XlXJUp6E/5GlVnb3nw7jgeXMZAfpCe1+u3qnZwfBZZ1hymqVy3xSRTtsXzyi9Vp65oNCBrO+WXyfadcer2hGkbW5+N215+HdcuV6FDVBaN69SrutVPbYHe6egpDtbBBg5Yg47VaRrzYrXDqlpnyDIGOqo81r48sOhawcrVwxthZ3VcpW131PXrBeeDXjrn1txmOAgtTKXXTWlv/H2he+K7byPS/dWA8d1vfSAicH5PZF+G94ZAKGzkiGe17Dm49mZzif5QOWDvFXxAfiGYrTTbo8grmxvhneYg84pyzRN5i2uYR9oKCBpGXL/c4oc+/NikJzCKVoSMeUXcPHmwOGm21XEBk+MPsGiSqhIqnNzqzFdcaSMM4mcFKnKIC+KqFz9NZlSc7FkXg2fD6Dci4t1vezDnYHJuwV/rmfzy223nxEfsi2sOoyuGx5+/sRAk8r4ZJWcIIJVuFTDsx/d5n1/gVWSIsEjf9Vr5XQkRU1iF+M3oLsrXBdkQmCD4FeyrKaw+GbcVRKqyVsbId+CUlDloq8afsVUxYkafLe/ZCaayRpVmVnhxpqbxpnNQRal9pdA/M56+aweJtebPF0EdEVaCWm9W9KnjXenDnlsIwN3GNMdIn185oYBFBSYEqL4HQKl8I52kmsHQuVcBX/cE20muxWAGv54LbKUB2Zy2uZZl7ZXPel8aqYq3KShX5Ify9yrrovCoDHPjYz7sJx31MmflKc2Arda7jkvnn47XqmqnGls6o2XQsci3HDtiKjOHA2QVAvXb50tHZ2Ewl3u5Fguj9ByOVJYdZR3QL3BcMxARnkWaeL/IES1D9BOa+by2w8GdzoSlp/YT/pzlTpUNHgTxcuJNz1joa0M7g5zNx6t0ojTwzEs349mXbu7z86xLNbJ6+Y1FMBXzVqfjcuOnl3SvL9eLWyTq4XKWuRe4wVOrrGN0f3bp5DaVN1H4eT6p2sbZ+4B+mb4Tv/eJ7QHaINN0/e29IJyz8a6ysyWciqPY4eRhgR6E1YZvhKNv5Yd61otucdDfCI432xMLPZ3vzQke1y/BwEBzml0lV2ZdLONWWGpGMpSm3dnDc5AjLIduhYYcuaoTwIOEtRyCJrBRtnsQ0c/JSUzkv99w3107fJRJJmN22PHFAsW3vhexwydB5brNyLL0B95T/u3Bw/kOhk8GMxRlE53g6YXdojioNoC2Xp6tybBqj5xqX418qHLx2FrcPG32HXetulmwtcCw4yrWfoGucTmzMN+vej4i4mvefD9haMQxx5vtJO1zpcvRakIv7blw+m1y72IHfqpWE9jPVe3cqnb7OfH74tVTW8evCjQRnOsusplRDOEYqz2VHn3XeytFN41nRtmaGK1EWQQAS17Pj7c6bGaOnAN/ntnCSZYVV/WwqsEEEK4+PxV41ZGoxojCu8rS25hm/LVyb/07YO9RI7J5rwhCFcY6boTQj8yhdrqKIJ41gM/AoGOtvnVZ4ZpLimYHYPTZYhUpXvYZNBABkK8pzF/H7VSmd2bOgGeKoC80pe3VrfOTcdwI8VNGdbmqk+CGLyH0tZydVbx30ox6Dzs51pRT4UF1qnsZRzPjldftu+2y9KqYTSaFGD3Nq1LUaQKc0X1tVB7AWWYJn9B4rA9/Ic58TYj/Fa58bXQeq5Jt/GZVkdJ9W/Pg0pCSS8iyYV5Vl/iewCoH6GjjE30gLawpHTGvLqpG4Cm3QXh2OfG63zt3+jjaUWQ9+Bl0cu5AtpUh6rqumeGje5YjpIRaHd8O/Zag2HhasSE2YERE/P1//Uj8wqPPTzANuSCUVfQMjMlKVxm0Fnq/uVvHl6dy+GDCBz5HlYEYiM3pOITn6XjM53ToN5yVjiFr/EwBqQKYnDP8Drm8qlyZ6L6F0fikW8Pll95VmyYd57o2QttYi7VhXmVELbH1fel1D/82ySTVdS5DEwaRmTbnQv/qQHmwoPBQkJ6ro76aM8dz+AwWgQk6KAS35Be/hrWk3qUSX8to14PnZJKuI+alX3EIwcE0VvEC1VZUGjtt3K6CQ+xUFml1gOpz6EGVLf6e7+lOebD1uNg/fYcgE2wFxXG27rB7IN+vabvSTxCdDDpSnkelAB93PYFrFiSLIacuNy+nR9XUHMRa9Cm/VoVR5rXKxK/0bkTExbHFO19/r9gffB59VB6EDFjJn1XFzGrLCHmD40Ro0Mu3d1Q5fE633op22znxuug18lJ4bbqW99QoO2PouSDzcdCc4DqvVRjOCFAdB5F+h8XfWwuPtuwropQT16huEYAoWZu3HrgCgxDTawZfmXM6mBL7s5M3YzbmJhzFzGS85/BZOWHUUltVeLNQzazBNt+LqMJV5zXfm8qDrfxgDYNXCqzxoPdOZf1gmNr7qigLfVjfC4ELhVKj/3hOhXDtUs9c2ApdOR1XBTvPM42HmOewMphhjNTgEEs2m/VfjQ47vbYY69WohgKBE3Kq92I2YOFUu4PvEV+XI0V+GJ9BSfE9c44LnGoAXBwPWULMdZoVWCrYkPdLAEPpnwefjb/zILBX4N2VHFgFkya+bOty+oi6DWKeV6U1Myy7r4OOtzRUMa9Ox63OeXybnIGV7NPgK3hpjiuF2x1ogSF6vP1190RE+AnS+73MgMqnvXQ+67E554G/+fC68Vm9ZvdOnfJAszDuJKx4asau3lsZV+eciLnqg32g4WC7eR8pYOfeWcp4VLCoY6k62SsMWoSVvJqTUJzTHFtg17NhdD6roHnlL9cpTYITs26F4dsKA1R8d3me1/whlUFV1wFvnp0TpzVch6tzt6OM88tzSDiQq13aV3rAV1OGKnPArZWug6zM+RVmp2O6xovCVwPdYz4L+ZjvQQ6wTy1n93J1oY/iNVW5UyvZ6rlTYtAln1jGW3R5dWb1n1rdYkGa3oUmxm+t7CCXzcHNvmOkyg+Fs+pB8PqMs1I5FJSd+j5o9Zx+EqwZn81VnRxb+6qfwJv0g9igicc9GHJ52oyvfa+/wsL5sS+fv+kQ5auq5MLlYYUdgZ9VwmUEWPy91DcyjsnJNuMs4YwwOZeBVr6a8CIAir40EL3SRbeq3XZO/DJ7K0Z8PieKbzYevbUFU8rd2dFuMFTXezTQ59nxFs9X40LfU4eg3tN3VVBEhAlo7QtE79G+mPZp6nurKFdlGhfGMh6cppIxGsy5zihoA1xXZfOUyRhkcCPe7pWghuLfcCV4WDlW7PhqHNXMrsKwCjLUyK3ScDXK+oI+jE7gsJQ+tdWsaCr5VkplDR80K5R2MI86Zypfn8OxqYJtk/GCNvFpQ29lnDP0P+974jgq1G3/V44995/OeDC67fC1lAN4T5VidTjUcTwXnIMC8uxc5UGuswU1QvfM7Z//Om2hmbu6N9vOMjDZpDQ+8OB8psoQfbrqNKc6iiNU8D+dN1AcjnQiy3eo1Znx4GEzw6vOK40YdBZOj2rgJQ72N8EbtZIhwsuKW5CvLQBX6F/3wJ+2nl9BAH1VuYMx77xghmmSSemALO6F6xDeU/yh7JWHkuW9xDscAWbXlD6nzFEa9oBr0SaDcQQi/IrSrzc1fLFOuIZy+stts1O3Y1/nw4GfuVJjkPqz2g4hY8z0WOnY9hOnPNwDP4Bhl8cYu1ZlKV31pBnvk6ikEf3Mizeitl5+zaYpemZcK7/qacecQUfSAvPKT8zthAPnHXjH/Czo2+bxVNfMiYa9igK4KvRkgfi0TWpFDmk0wvl5sJbbO5sooUMZz77OIPpCYc5JtcKDDTTX8nmtZtl2Pm+Cm8pT1aGtW6zmrwKwgqV3DxD27nLsqmY6S1DSe8TN0xYvXj+Zw67vRd9d9SJ/VZ+qbJkCaUWPZUn1LkvpqK/3Sit9qa1xTg6H3hOZRP7imgI+pV/VfRGzHa2y1tbywDNLEn8Hrq/Kg8q7DKDtwVg7I6SsOWzFIv1Wqjxx2ntQLjYGC4vdqK0t+lS7Z9bFxE+E6+vccrvoO3W/yO0vgKR/ye32c+IN0X6tMtu4poTap+dhTG/l+Z7EJUQhY0d4Sf9qvxmaOmnzfFSIF6VUxxWBogbGFLkSYRXleSibIRgAnyjYYoWsSnfyXhlXDw6bhNzS4KXTFKUv7R/KaXy6bS0oVowPZVsV2DlnnLTgc24ipFZZjRTsAks1RFeRvNU9OvHzvV6uWcVAc4NUR6sOkkFS6b7AuHLcmKURhSJjjd9apqd06Qq2NZ5ybQJzIcSvCvZwXznpX4MhVXEZPRZjWhUlMos1KmsG8/5bP3eEaWDOulfaz9uIUAdnNX9T2iYaUN7bTNmmsg6+Z4G7XQaoc+F0XJSh0bP26UYM4WZJpzsssxweT6/lzZBXax5azQt9c90cf1oCWekedAIca/lz6oT92eqEApapVLDJvWBmUUVZlTuYkzqKgCGdyHzP54e/QYs80VyMuQIn5Y53di7D1ETeoH+8D/0yl9OfN6YZFNlhKbyqeMLa1MqaxPVVMkLpdnN4bpZMfBec0YH2slWHhVoFjRlTGVfgs+qb8HUG/tWJtLJWlR86XmtL3TMHRceLH3v8hXj4mZdN9R8W66XjGE204rCUMTAvdRCrLDvUee4YgZzSL+no71oeiyNZ9Az45XhY73PtZYJ2wJfcgoxQ3aa/iu/Vwbp+LtMc0NH39bPAKjOr0wT8UY7LuiV/1hl74LRWxVmyoxF28K6Weg/nF9BFfOjjT8Zf+M53RxQ4I+aAjuLhf/r5x+K565fp6CvZKnxWTt9jgt1su8YAtgeEIw/Q0z31Sodw6DAz26oSmthzXOO+XqsyWn8Z3PdkGL4chQa+9BJ7xy/4JiIWe+J9S5e2tWPv2670DdBcbaqXPPgNW37WY3yvyKuUB6qv8es2GMZQOJC8yADXNGvHi1YH1fV+Ndpt58RjgWpkVH/H3/hjXzRTeM5Y0ZyhNFpbiapFeW5/D0xmgrYQsToxdT4k5jm7rwK+9m3Kc8E01WDeNp76qXhD2WMlbsC3CkRMTCqCcrlvp/4uBBqaygUozVUgoRoFEWFrVCPDyDpWwzfLpvVeOPArA5EOnJc95hwqjYYahmG/tmoLY07xgblnn1EN+kJzOteraGcr2dfw9TrneMCYy3uqYGM/OFHuqdLOz81Em/htjNPkPc5P1zlCo899PY4qorbG+7jXylaFarBF9qnZpOPOQ4mrIN5pDPh7lf4SD2029LLcK5zWhkOCNdFsuziDwWsR4/n81FmIQ2rGO9d7KLNZDkBe6foSj6605yZyFYZQoV+ugTiKRRBoQFJpDuuGVh3Gc+PpnFtooIryG/iYMn0hRmAJOjKDS4dF56BwWoBA4Mxy7o19LoNzwXe4/5ssqqXhbnQCBplPwV/NeNZ9tcDhkL809jU7NByqmtFpKX9UltWGUn3wnR6sZLwRwP9ccYGm8z9lJr4bbxA+nYtUDOxrCpugrsFUNiqwaMCwVhe25hl4wNA7ZWI6WQv9rDJd14a4cnw47AzCrFovv4AZ89LxVZYw4CcGdsowyp0D5r7BNilyfDGHakMYLDlH4UGrLOvT83AOgBuv3GpneUjlxxKGBR6XSRLRTw0waJ+iI/B8HlLYBMeq6wqS9F7VbwZ7B9zk/VP30+mJp/H3O19/b3zHe98aEXNFjG+vWyc7EJDQOc6ONnA0V2cp/qyyBvPZaQFOrgbA8d7S7mwrmpNAU8LAV1z3NHtuFQhOuz0YPFTY1f9pIbaCwI4MPOC4+9oxv1RSKwy0b7yjwZq2uIdxMhNf7L91kKz7WSoQCMHxqp0KHaN6sNKcPb/QZwgwqW2oz1pgNkAfkIGzbr2V7bZz4jMqdmZBIyLedP9dZ42r0F8YeuEGsyqdVsY578S88jKvHNqV41fn5UTp87L5XKHMtKQICsGycod1pnsOlNDgrIaR4lHhpXPsijIgeNvcV+2jloRqUyGXDB9qDBcc23zmezGtSct71ZDF9aooWz6Pec1wp1EgBhj3a1dczU3pw8uXqwDk3zruCpZers1bTWj2qONWzyIwJ76L8hXFgD7duV7s60efMa+lz6sK4zbhQWl1FZyLcOc/yvM1ik9eYvYxYl/TpkYgaRMGhCrrNKAM/+VX78lf9YA6C5407gOb9vOnEmVAATSrTgzoyrOys5NR2bMJ3pdBFzj2nW9UfgH+rGQ7wmktFrKv85nKS2ncyqpXHHsGzt9L/IVXTtA4o6FyaNJXgE7ojPNdd8hYfj470lZ2LvSYtLr3C8fnCHpOw4XlxHAEEpIi38yokkcQaDptTn/QIQiEu6OjQSzHLQNHi4ocaco3kBtu0DmcgHx1cFPifb+mmXgEPg6CyywtbVIB0CgH1nuedx233zrIP8BTeEYdepRJ2zp1KXFuDrsGuNBXlDnX4P6qXFnxkp/dUvwW3KrdEuUermvQqgbLdC1Vhuo2u8OhWSBCS7jnqi7yoMMJJ488uJq70XhTuR8WHEXblKbj3HYt+bebV2ZfndNBbrcQUNDGqfedDyiHMyPf2iSntK+qB1VH1JJ0BOJ07dUuU9ujtYh777xYYDj2vh3HqhO+5s33R0RM4yVeTDbp2FxU1Qk63nhPqj42ZuJB6z0iv/oxB/PWTp3KnbUNi3thfY17qpNbwcfQJZqJV1mkfVufncm6iPHZzHe99YGco+oQ9GHVYzuU3L7jFUNKA9VnyPcXcoc0Q3vuOJQkdeTW7T2j/4jz94qeT7hEdlYfDnNS2QS5kzyiSvBVaLedE6+GjTsJrlAojKnw0JSh8powhBr/MLz0GbTW9PMtM6zzwTIL5hZCJwOvmDvMGFhl9dmXQZnXVGkrw0Ixrk6nr31qxPPqAMTMZLHEY5vWso4NYZ+fL5KmBm9tVTABRoezQCLPV8W3zOAvFKwqi/V+3DKHYtjYnA2EvnyPRriWe85rcy5jp9f6YICE0ealruNkAEQa7+M9z5ym4uszT+W2lFToM+wJjMx9znp56bbNuTudWElcQUjdg9YiRPl5EArwmVMcFceafT0vB6pzpjKJc56Nl9l49D5x2rbiY+Woxx6YgSNWjSfjU7mheMc99KlZ5cq7PPip2/Mz/sYqVDmaOlrWS/HfWj2lG3gMe1/7BD4r7ApTvtYWlQkpp+Sg0Cb3ujjh9p5vVRj9iEMscpWfBCsGX5Fbb35gfM5JT5DOgNOBmVY1xPCc6zPHe48wGoWhVwMPiocMjEtAI6I4RqCTwHMrKsAcxz96RHzqyRftvmUW9fmIhWyhUr08SSa+GLn6N/gvHZCQbHOBd9zTzL3rUnUIuGXHjUuVG1ft7c0578xU5fZa7864RRsy4pxTUnXPAsfar+iz6hBkYKu77qKR74EIxU8r40GOVJ7QTwJaQKHKWpMxLarTo3MHPWgVE/Sbj+26BG0E8zgvy04L/rxkm3OF0/pjn3wqfujDj5pTrThwezis6XOk45m+VG7BNomYD83UKtY6ltoPup1B57X1Ht/wZa/Tl0wXaCbebIy+O97Rc103ItAr9PbnwePH3Ys65vxUZ82VShas76hku3rb7Cr5Y50G5UdNZBybV7JBByxL3+WZoxAb6Z6yzAPr3fmyqQ3KKsECctIF8MoB1zRH3qPMPDQWuCutzgHXdYIHODtnO2C91W4iPMQP9CDkjm3/iVev3YZO/OyIrTK1KwN9VZ4aAeIQBqwErs60kKob2irYXYjWUlIVcCJnBM4yhxxPGXCNG52Xvp3lJJsKMs5Z+9aGvuxb5hhPouM5rwp7nw30VTZEhQL6Uhhq5NDm3HTueq8bc6fTtXAIEpZwg0hxEGo0yXs0aIVOmityPaFWDUPHB/tkxmem6XxmcxgOC/ogzYoArAsQMdExoNF1gyEG+rUywrI2el4ElCEexnoTXncmV5mj6iiuI9p0RiKqcUYHBvKjBiAUl+q4nS39KwdM6f5ABsT4X13TydjHNeMlp1EzynR91akQOcjM52JeXT4rqco+qrJvHLuMS9ij8Nl4FtH4Ssdots7Ns2PVQIGRr+PlUAuaAT5h2NXxOC9X/OacicGh9yDo1AgH7hBQwdkHqkPSmMDvAu+A79DUoeUcalZb+/A9oBGv2TNhUzm3wKJ8GkHZwL7OG05aUWAOGPSz6JzDzht6SrQ6qKGwwGFZ6DiM3YNrZPdUly/nwHvoA/r5Unj3eGjxiSdeTANVv1s9b8s5f4KxVh8kjovcSd5vek37l+zVLjyT1opsACxqYyA7X8/tgdz4ktfeQ8QqjkH/MhfOAddipkOjE+4XrjhqoTTAAAboXh17c5DAu9Fn3k/ai3wG97SywZxVwxXeY5uCefv76hipvTjrd18j4n9eP+J0HWSucl9p6fnrl8k3yvODxgsssj5+8r9svWmt0Kraei3natnfJvAXeaRNA7tVn9ke9d0p/6o33TeuSUBH5z9kmibf/J4Fh5rij3vGPaCm85GMNXBbD5czXnTdpQgHv+i9Xp71dZ0rWKL79oDeFX/81QPtcq4SuK90ZYnQYIACvGuJQ3n3UNaWfbnexVx1W5n7WdUvkbUVnaLIqlu79D10mrro4DpZm+nIxnmt7PBb3W5DJ94NgAgyhhLgFA2W+/qrSgb9qwHbhDo0css+qfi1uSJx2K3pHPYXzRBNBcHDatSos66K0e9404xAM/x5dqhN79U+a9ZGjbIqTAz/Bc7sT5xqvaP441YAhy+zGSItUyj02UhtUZ0ZzgFO0DLb3oqyr0o3Fgqyef+1zY6HO6YV9tpDhRM4rucqUFHOQhXvrWDY7xr9miNwTlDvSlxPQteKCBpsze61hvFmXsr5LfC55l06S3qPTrLzmfa1qmTAc625QYTzNvTgFD5LZ8SNfXVCW46jgchq9ADHMN4VPh23ZgQgCzXCnLA3X1OsjcsD0pPvTQ0L6KzWphpL4F2lTfSVa7LIbGdfG9drZXBMfRZjaeagmQedxquRqu/BaFzI/U7nFfCNeywV1rNJInxLUGYmN628ILy1DHqVadW/rfx4v6cn3Auq4gpUca5Y352ekBVSA1vLo0/dM9vVeLfyVtB4i/ipzz4zwYDKhKuC2as5LMvpuztz+Z34bUuHnTTUzdjfBAcIVHVFZNAo9vJ7lxFKx7rdDbSX8w7KsFMnXdRAs30RQea8rlYba/+b3/Faner4WwzYFS0kCnuf1qDyNzNblGH5TiOvbkaXdGRnW4X9WwZO5GMh1aKT+25n7VlAcQ5W1Y9VDujab1ukzWZOhoxdA8IaiMHTpyKHXaZBn/GJXt5HWzlptconx0gaIoDVjnYd3vb1plM7+FvhXm3RoI7TsbvgUeFjsGy80yPiXW99IMdb2WoZBAziWWlgJQOxXi3H2+cXWnVZZW0s6cXsWxkHzfWLK3f/FK/bLYAzz9xqUeCrNKd8wnE+/eRL8WOffIo8JfI/1yTUUVc8uv2m0GvZvvoFV8GnCTnXBd3WdEpeGD4dP9H8Gp7X4A5sIW1qZ9g6C72rjH412m3nxPedsarR6NHr4sTE7NhE0BExgRmMeo+RZucs7J73yXtz9N9KN4pRsdpvUhWeKtZqMEd9Lym+5XM0pmEUE77MHLl8mQxYnWaNNJvBK4YlFNBZXO3ayBSIAAJhc1qU04/1dUGLZ1JglKipwlcNG1VqNWtQDYb6HhWRrEkZB/BqH1vVrGXOOift00+91fcWaxOiZKYgiiqgOuczAZmi4JDda/Ju5ako91hWxQDSyjDVOVYndDzH39zDlTKi+z2hVc/MOuyroFzy437tJO8hmKQH4qH1oIKEIilkHMgi2WFLhV+u2qdcM02J90NLA1GDQqe+G3ySSQavMuA3kEEFq/jsyXc8NMbnRGOJhhfeDXlvXa3jfKZGQc1W6rr6J5GKgVgOv/OqBce1OhCuS5jl9PV2eqSj2eQaDcpqZFW6R7k7DtBCs0CVwAW8AHZtWk4/YFUn22VZNaBWxinwXw1KpXFd19xT2cn7kBVZehteSVQN3cRThOB/EfDDBPGzkBHadH1RTn86scQWuD/1np+y02A4aLYeijVwp8GG8asBgBpYh45022b8Zykrw/tqib9m66qydmp9zqSh5Sff0mERPaT6bKGTx/OsXKlyoO/4gTxEtr3qAj1zoc6F1VmcZ4TbV4SJdAXexTavanPlZNFX7yZjth0RGEe3itQxI2KqfAO9txYWtFQ8ntO72Xe43MMasmLD7cCqQ3J+MdMJaLYGs6sjjF/X87S5SW+zvmPGf7blMRf9PnqWbKsOD8GxyFrgwyv0itwXOjqKEzr4TZ3l4ngnjoCzAUjFQ22Vr7VRPzEpoHp2VPhF/JFv/rL44gfupi1fCUT77J6JR8OnpDVgiqayPgNNQtuuQ1yG+di1gsfnqnrjtCNQ6WmVGGrNdf4qKDJXYLkdOCdQ+M5qy5PK06XsvEXttnPiVcnbPrAYi6fCICLiX33m6YhwBpoiPLJIqhhaQGjI2PszToRVQLgiqY6wHvowObtNhUGPVoiLxjTeZ6uRYn3CDADII3Ew9fAYx/f+W7J7Oh/NpFXGXR9CslZqQxjMMPQece3Y4nLbJmUAQetOV0u4plKYtt4n2/XNQkOqRCsNUR54VDjvFRxpq8GdakzX/dNTQEXwCaWbxoDSbKUrE6p+zRR/uFCFIYZ7aihWIdealj+X7S4Nhv1sYC4NKumzoNj+Ngenka4Un76WLj90js6D5GeUBeucoej0HmABv4B21DjTBvq/sjxM8F8j0ZyXV05YcK7V6gjZt63vd3E8BO+6NjCEiT/nXcpOyR4uJm2BlVivb8Q6G+cBGZd9gNONOT5Deeo47qE4LoGLlGUsbbazE5Lm/BwArdyCU3LqDptWOWiJeiSOde5nAq5F3yjuarDXShqBfMWD8aPjVnWdnsHB6oGWHQJ/x4PweuJLndZOJzbmuSETx7lGBgismZwjNSlP2Pzk+Zv7Wl5KlUTL97iOWpYJ4x0BRpUjmolXfOq4jo8BqzkZMq8alK62iVcy8F39xJ+har+2MvaxpjXQV/d7d7k2YzsyoFN5FvcYLMO4+5o2h08PE0VFRI9qV7DfqqdZIRIeLGjNcKXvtX1ugG8KFgR1h8p7tFVGUTFdz41xZ6Zsz0v4hAdlvPvvvpbz6ztDg6cqDAN3wsOCo7pVBPIqM5JTeCTEXgLdMVCzeCwiyjkdcledwlyXXbdifpAZVnUWzsu1olId7xY6V9K/2wfu6OscVnbPysG0uQudVJku6j3ho7zywF3CcGhnx4mIqdILDTJlptV6HoXI2KIHp3k1wh3lvfEM3/vYYy/EP//EU0UHyfxXujwig5bTPFe2wwKfDPz7HEz2iu6BrZdwTjO/de32dOLDjeHcE99B4Lx317WjGARd/iuOul7buNhGXCEKef/3SoGgNXmxCnPx4cu9NhHjLFhKX0XA4L3KvjDoTSAJfMdyAmbtk7bqnFGzeRXGhYFfHYBpHCj5khlEHxeHQ1ye3OHge1WgidJUOhHlVPeIjest3IELvxdrAY0+PSoMJb0aZ35+jEdlTecWQorzngIr6HeBD+J/EU2E8JVxajk3nE+DU/GognZyBvlek7V1xcB+zuEl99/FTFcRpB0aEYRhFRBDn9O+tobnYl29IQoV8MHg6GW9ThuNBDh3aRSLbNG+QatpWBYW13lRlhWHUXAEfGBPbFWsCEKq8oXTr1FrBB0rPjl3N3JnowcwKH1Uh9R5T2mtKuc0wDDHmHkiMzNGh/wFrW3TPdcvaoxWWjD6TxpihjtCDBvjBTq/ypL1BG5zyPYH1aiuFT3nLA395nk6zLL2K+MsDd42X1NaS97ucXbPIWjA9/MzCzs585U5IuIPf9OXER55bllVpHAqEIu56v7OerBdjtdJ4xGx69Ge7/e+2xyqu8JpQR2xGrgEnOqE95yLl/cSR7M8zKDQQrbMOpK40uCE3mOQ4QxhCa5X+inkXsKw8d/Ar8qSaRuPyKIIn1+dlwXZihxx546BxZqJnwICTXi2CGR19DQgyeobrk3itfnf57K3qndVtuRznev/h77py+JCs8lxPmB9bn7AEdZD5ZUGe/vOCzoR04eHcf/3v/8decr8qqnOdxnNTLyW02M0r6a7IgARpIcefqitjn3qGjQY14E/Bp5iojmvSIuEQXG7L1PCULcu/dOPPjHhT4NXuFZtBg3O6xgYB9f0+/BoxF+bZIXSnMpYyh15NgMKc3AeurH6P9qUrg6N/Tsv+u/4u/I1dLnasI4P5YkKiwbRIWez34Dcnp3/W9luQyeef/eykD1o3GCR37Yf2tJiNsx1P4xfOyfkaBCNS/P+DbSaEVN4tYHgTVALMVp2IoowEKdDx1FFAi6FIDIlI3hMg74w/jq7j/H23w2MMBu8FArNBAzviaAIRnELFHFxbHFz8QmAij+Hbz4UBHisAtCEf1lTXZvVevfynivPgocCe+0L6J+Ml4UhZd8k350gKKVpXuawENBlWaY4B1rx0iOypJTKbO9zU3x45qcXmGppqJcyrYMomON4jwovtM90wPu8zj3SwBjPO1/CWbX+ZU24L5xjVnlg5dW9mwygQc+9dsCWGrJKh8CA4rjOK5L+55L0DIx1lqeSZ2MyDvT5/FpFC4GPNJdfiuidczWckYZq1D/5pcCri67yOCKsXBlGmTpS9ZBNOgJX8fOM43rP9tdGFHyMk/8TdFmL6hDl3ry9j/p96cMhpioODb5kFcE2O2RVrlYZ7hUeTuMsay040udzfq7HxqePGKSplV6KF60SwpYR0CNowRy4xRwAj2q2KldXWyQiVrpHDrbbHwT+b542ltgGafRiF34JdyMvanAC/R9AQyLHB63KnA8DUNCVZr1o0/gWDIwdpl+kak/wHkFndcaVO021gcdXOmy1Ha33+gf0kjqIYfODXabVKjXT6hWPlMF1S6L2U2E22DvXIXa5CDlcdQ9obN6ewLXP91oUXuLzCu+AwbOblW+q3cmgF+f+7MuX8ZOfecack8P+kOF4YZfBDlSdAD7VMdUOydPbxXFbO9I9/g+/82vivW9/KM41C+QYXJp1V17CNdolnhFHpQDxx5P/ZxuxB3lKt84MXS5ysei1mgxY6hLBTb4Hul3wIBrtfC/Xh3zVviyoFCqb8d66wgbB4ZpdVp2sjVUYa7ssZVFEEv6QazOOtLkuoFSvAd3RnyZ4aj/QU/TvpsBdeICqwoF5gieMBsLtxlej3VZOvAomj85GRkOHMaBv7RkLVe5FyRvBpFHRF/c86uRGu44IweT3XGixz7ofQ5/X8VVJ6G+Ou1BYaqTWzFvYOG7Moa0yyXpPFYjte0+YXFnPfbH6QI06G2eLuHY8xM3TXE6fjLdwctUpGTCNXzVqTVAIDKPvsHuHNq+p0uQUHdQ+uo+nAvNchruVe+cCLOjP3+MzpKsVrc40Op6nw6Hf82YGtBufgOYBYt03pnQMOGEUGA0VxZyTCxXGRQMJnF4mOfOZOX6FVtG0tHnMS/sir6oBnAa2BAprybc6u2awAe+CV70/O2lu/NWSPzQ1MCsN8LNfXqZXs4fZl1QoAaakBRmvwhnF6Mk55ziUO2ZECy/FvgZ2YF+hmeqI4fwM7zOy7+lcCh13p/9BTwv+3P9+5qWb8aMff9LmDJwoH+BvrJuVKqc88GyjllAqTyidFXEwyRi04yHseQ0YoUSWffjv6poG3Lrwcf3cVL4XPb91vMrsasWKyk6fA68kPc1iYBq3BpOq4atyCgfb3TyNg+3eeP+d+3jEO+CFcxlC4woL5IZldFpLfGPOq2oMzQptQnPGz+HBV84vbJyQsTUBgs+2gQdrA46PBb6Es+uzVV75L+h3VYECejgIv5DuSVf1BHXMeVW9o/rPgnpNzjAw+d3yvYQ9ZQv4eVFVJzI9ZZnhaH9e5VaQuJ3nneYteKa26BSg8qDemnZmB0zvmS450CLLbVApt2J3cMJk2iy3orQ22S5anaLzwieD8Qxg1n3rNYGiuKXsk7+LrO094rHnrqfPoFU3KjtVzzcZx5JVsja0k2aO0eQiUPH1X/paTzIV+yhxupCrR3EsLcggXa34ujrlze7NgXjAPNkYipDFXL3SaPGM2AWZiY+qI/Ph5FDSb9HJqseE95PfOiuBHA7OXe05yBbg8apqpF9uu3jVev5V2FpI5KYY6OpQWClqMbzGxcj3cLfL+oNpIBjUMFf/wYzHSqjF8Bq/fE9BUeVRnZjkQzNGIGTnvTIYr7IvHdrZ+Dtt45uS9XNTCvPaiYeSEyVTFN2KyRTX0KHMQAjMEnS52COIdWJDYc0HkWX/RalgfqvSp7YDs9pbinuqyGHIjjvNBG/k2E4fgKlGsBUflrVS+DCvXvFI/KOTug7LrRgLRRzhvKQCrNIVsxmz42AGZojhpbgS427w8MENMCtP5fO1PDX7iBKND53zbBRbFiTE0Y5ieEEPYGx8birH1f7ZZ82sr5xjrk03uaBtJcsqzWRwI5wuWMJaghO7cXDjZg9d1MSBCALDrdAlszZuJGlfnLM4kV2NCQ90TAG0/dfL9Xse/Da/pzqhOa6qTFK5L7zYsk/SrT5TW5vwF/HZp16ye5DbmQXpe4Q/dH6EYTiKdJBUth8OMbYWBfs2nBX4fvqzz8bbXnu3zMuDXeAfx7vIdBlbn2lGD7InXoNCO44zYHfYM2RioCc+zIHzOeQ6qJG1WBN3KqLcmx0MXYPLXeBcnnpmrLRlxu5AOVH5ek3jzWgOeqzKCA1opfHYexq8atwOuvDKsFqKHoKH6qCMve49InRPMPWO9mn6uupf0wlFLwks6jgnLK1NssTLpUHvmDuf7V1sJ5FJsCdodK/oo8ehHcTeoY7UwH3k+naT/1ijuva5zaXaV1fIjXNJEr0HJ+YcbTdZN2RAa0Ch6n6v3OIz0PfO15qV3sfUVVfeX+owp4uIiKobFb7ptHOhyZnP9r6D9iN1OUevdKV96XhdnicP+myqnlJnF9fq8z2ITw0gH6a+Zjv6uLAZ1OkELwAP+d4ixYstTxrwAx5bC0vY5Fy3Qo/S0lEOiOaeuK3Jh4ixLerx56/Hp598SdZyl/ewvYpd4IkQjhvBM1haX9sAgMvko/CnyRr5jKjKqbaggVvZbqtMvJZ/unHGBQYTVycyIiax3pVQZeFNwDRnDM1GuZNQhLCMU/dfV+MxMxG4J0Kvlh0xOuhErfNxR52sBeef+KDQOR5aRl21oc9FJXsa9svghOBFFR7mrL/Qo1qSqKBufWTiORs2MudsYFRhYGtaBIQqCq5NLN7D3BUP5d6+bgrOJNgX+BhjMMOijgrG17FXsFcFrsPWaDxhcZrTsjKFnfe6KSU8o/jTEmfnT9KvrhtpaK6YqTir+/vdwWT2K5rPWeE9C/sOg546nnB1OsJadt57nxzZ6rC3xu9k6wn0Nq/G4IY2W+9GYwO41YBhXgvFcTeDWdcSJfp67bTxG/KHRkeYhkOzNcVcdfyUZV33VOqcd3yKTF9H74m/6uTiCS03nIJsKVNmJe+yHaNJMGRfnMo3tcRyNkh7bv2B7MPfm+BDzyjRkmGWP4tOKGsKWle4qrxCe/76pRlsle4rL/lc1VBm/8iU5iFhVgXD/qATGMCgruMzfA/0XOW8HjQHo3/laDtGfFbLSioxvvmJOTpt2UP3Ml91pM9lIF2+uePRYjaO8Tfw+OFHnot//AuPm/No1UThMnr0uY8juhjZbw10Hw+H2Ho32VdLbHlvoYOSXyKdab5XcGw0UB1MOugRTKCkjbex4hGy1vWMBtuIl5QHUv0HXtp6xMVe2adZ/WorAI+wTU5lnXXtU56K+F45dWrXeLWazGsPpIfgOKLYjYJBwK26e8xBKtLC121THJvMnBNYLDtHOb3MJWKa+yrYeZafWzN9pnhg4L+cmbCwRWsVnjmBW0/nFe11996Rcicz8SF4PDhN1LmugofUWCZQzW53Weu2l/oHpNtZzqVO3c4HayAf0X7LO14bD91zrQRv+WYPt72AjybP6/h8b9aD0E1Kh2h/4lu/Kv7Dr39Hrulp61auznL6VmgV9SEuW5Tfqv5LXbLQSxERX/nG+2zcCAZ1ufbuy70a7bZy4qMK0Opcx8KhCu6nqJEdCkc18iOJhUIu8nnyhUSUwxVWwleEsAo/Cq1wI7wYm2kA5JwpKLXkKkJhYbQvCo5UkSuT0aB3Sq9RLWJMmZXCJ6RPn7MzJe+xrEaZxfdiRlwcKfStCQy8o4rZHT4VTIoDjKlrqoGZVVZv9BUpqFcKNvtShzbfG9fOnnZucGLl3XADHuEEeQRRBOBCkStSuDaUij1i37Mp8xL0W7AAsAfWaREYM4eYjop+Q1r7SlLtdBp0v/2kWMOdjsMKhqIsFJ+6L/O06dicP52rudwU+Eafns0+Fw3m2ugeP21VGaqh1EMzmAky53zgyfBabggnUp3rHrr3lkEwxZ+fVkx6XJfMEz6XSbE7GcUojtkBcJ7gPQuQhMr2sN+DwhC8V2X75HiE0FVZ06rUtQQP47znbQ8ZLnxsDYZwwPw83kZ9BoO0yvFVed+5IN273vpAXsRWFJwxAL6shpAalLV/D6R370sGV92Yn8wrRmekvBJjKyKqnNcgUWsRP/KxJ84Y0x4IakK/S8NQFvMk3kENoEJODVi8+gxBLNVBKYvCjXjI2hoQixB6LCqO43TjA+MJ4SVm+sgT1RG42EvUdV7Kw0MGniuP9rWdjOggjmFEq/xVOak6auBWnfJIGXvanG8wkmYkLbCST4CnOF6PiDuOLW5mNQv+O9svIA/Psqvc8bVRmlklLRQ2leO6bnUt8myM5s+joSoM+OsKUxmnC5y0hQgvS9iZXWcFBJ3ctHPD5Uh1Ks+1wwTfuP7Rx16Yy+l7lGoR4cv8hRwCXJ7IOJS1wbWte3Cu9wicX7L1WV71qDohcg5VB2E1NQEwJZua8w1sUA8muW7dUn6746z4cD4Z4yA4D3pS3o1e/SbOAc+5Pcz5o2Hta3Kv2jTK813pvkkCq5F3E8cyHZV7kfcc/9QlLnMbhxPYqVuj77aQyJZzVXi3ot1WTrxnJyiYlUkZFVfhGB7ZLEpeBV5V9uqkVqWLkseIIiDQVyEqK1FcGKQwjJSRVlmeFCwisGV6kzENGBhZatPzq2yZwrzsc6Ogz3mla644bgl7hDMnxynOiOFIDhWy3tWwUcOvZnsdploWrPfEplsKnxq0wXw02pf7T9u6r7HOrjyzn6CzVQVhXZsaZPBsV8naNH1eaRW/So87fXXAKTgOPm+ZrTRXiUed37HScbhQdaPOac63a2jUH8Yq58rMM/DIGavjh+xOXZuKN6VfUzxpAIx30kFPo6dEmA3XxWALGqfqjCdMwlNVmVHWzA3jpOFguN0NAQncZYYwDQdATvpDn13g0HvakgbKPcwDsg8OvgfXnAacnnZ+O/OprQg6wrWUV+cZzekDeIFx28t7q6j/gI3SHvSrp0WnXNonPbZk9Pwk4aE1o7m+r81JmKJmFM2xWiy+Xvroo8+LbHE9tlo3zDVhLnMG/tThQqZUZRIlQnUISoArYXI9qE33rWqgcEn3Bd7Y6XVdokmYL4u3uvUe/91PPByPP38jeozsbYQH2wD7qlQ/aSirb5rNMflgf37l2GMekMksW3ZN2PfOzI6QeVRDFGO4E8N5pTw9uB6uLddS1nOS20FnF3K/BiQt04o57HRl5fQbnbs8s2JTfqW80l+3r4Y9ceNyMzy67omUSWoTYp3Bs75ezCJqX5o4oZ3K9QJui89lTihx5fNCn+hHA+JbbsdpxVYWOCPk0LSCP8zvoPppPAdZwswp6XRmSuB4pj/arn5Pf/U5tRUUD1gvTa6Yrlvwp9oMERH/zY9+Mn7m4WcTp6AJ1ddVL2HdmszbdR3l9VSF1GmTo0+w0sS70q+eqQGbW0zfnPNHH3veVqB3VrpUh1bpQl9C/xok00e2aW1YEYInV75DdJWdIk+FjqbPd6s9J7oS46sdretA/MdEA0z4IKCga0GeX+mZW9VuKydeFaYSU0V0Kww4rnlkju/tDNpVuJ0XnCpoI+boW8LaYiI4I8aEBVG/taBQQk+BkoSus6EwXkXz1cGh8U0HCnvkqvHESHNMDc7ZJjieDq9T5pT3eKuloFBjvyqxa5mJx13MYY6y5vs5P96DUQ2DvEaoq/C3e7JupMPqKEqWJrSvfRx1oBdCru3akYZhz77r2kxVIIF1LkZxuADkp96awIl5uWI1Y7OLYg0X+lVOw6ElrnZFtM8RhqgqN8w/+xJ41QCbo+oeWbasi6yhlpLV4Jy6YoAP+ACSwHs03LifFGWHdGY8gJRZpIOvN/vuieNVtckKx7jVgA/ha8yrBj4rPi63Yjzuz8N4T4MZc47uOIhuckrXQx1hy/jLWtRMvBpl+lszMKiASHrCnJXm9k4ZfBFearU8r8iB7MMzu4cDDRvFGf9uaSzZvU4+Y2ku+a1FWDl9GuPAC2SFHLa3MoB1Lmh6MBJkecV/GkKbyxT927KGIke1D3XQXVeVZ4mWhO8ffvixfa/kvCc+q2RMCraJJyY6lDm4vGIgAn24s0VZ//jz1yN6ZGBGs9o1g8y5c4uPOaYZUKDNUWVfpS+dlwf1fT41waB0W7N5F7usSljKnMd78zW0IqITx3oRIgkyhdsv+A7pAv8GjZOGspxeaFbnNQe8e2jgU3+Bh2sXh7hx2vavrcy6Rx0jZj5dzoGXWCFAXbmSZYprPJdyTnTW+MOdO3hU6/N6VvRIWW3yo9gFGkjQbV4KnwX8gjQa4XRJPT9TTOXnKZgnr0yyM5xGT/oe4O0ezGjSZxfa4fPkF+wdp5zjmtb3BnxKJ2J39HltMI9VsB22PwHdnw+3TbCNxOfqAaQmfQKGTz7xouMoNPA62xNKJznXJmX7RnM+3rjGqgCl7ZX8gC49JV5YFVPtAtg2oL+Iyhth8s3lHnhCkyQt36FcAM9T7jz2/PX47NMvLXF1K9tt5cSvIikRkZEiVW6pIMMVa8Sa2XqQSA7Kbc2f11LGNJ5DhcdsbFTiasq3vUT2hVCj+78zKxo0MC0qKeOp8VLHMQOqMau24Q/FrQioKog1WrWjSoSIz133HlajUJVFDVjoOKtGo9idXDDoOUezVmykwaGGUTWk2mIt8W5TBQnjhbhZHXxIBV6FOCOHrlh8Hlz7Ls7/6CGNCz0cS4xb/OY9uQYDEzjpiX81oOiMA5/A0QpX1bDfDGdtSSdTRqfJvIQeJ6Um62UlWWJEupHlNOeVPOoAa4UHy03xnBomyVuFTurWAb2n2wW0GV8LHoH3mrnL9zqV8CjL9hPeceqzlt1VZ6uut98jXBWGn3/k+bh+85QwqNzJtZE1If1WGiXe6yfYajYPcCrOmjy/PIQxeZBzwYupE5QHd2rQLuhwMBBzIYZok+cUFjWMtKrLeGIhCxEgm+WByyaFzx0P4rPt1m6tzlqZXomHcLzr9opJDofyQre14jPVGMRVNj+dHvM6ZzA7vJgNaCECus5xo5n41oZc/s73vjXe+fp705ge9zyTrGuizdZbdLIHPGJqKpsS9qY2DZ1jnY/KHzd4vSQ6YjhKl1vP9QO8tXJL+XqMu8uDRbBH4R33qn5fyPsdzqwG2LO+wDXOEdFPMkIGanbNgiOx4gmpRNmYFECfV1VwYt41YKX9zsFoyZQKX2Ke+LvqGaWBla2xcow0cYDnjYbE1kg90ymbUicE9Sfua1LguBskymPKi5v07W0mksNhTcfoC/MCjrXEvgbw85rOS9YScPpncJ3Ga3NdN9saUzClrddm3NLqPdfhZuMZPsa16tDiOeXntV0Q8e993VtsPllOr/MSqnPZ2e1a/soYdbJZMRAMrmEOM24hM8nPsMEyGJS2gGiD0qcGwRX2tDFDqygddn2Hpf0D/t573Ljc5N5C0N2idns58bVcz4ScC58UigsBqIEv3QfNcpyaTR3Pb4WIERWMcOKAgKiGpTMihYCWxpizG6IM0Gc40WtbGXGqyOn8uBDZRFFWcZZ77VbRk3ABbEKgjB/GQJWpPdI7HpdqhU7BXvfs19IiGY6GbmFczWRVB39lBOJ1FaZ01CG0xJgoNKefXlLl2aUvjJN7onajRRXsahuEzmv0qUZ1nKVjdKQl6Qlf8D0odc0aRo5TafWMwSEw9aCxk5mq/ARWExqf16aWomrT92iweZl1DbBotl2V56GOvRsFDrtUEeS6tilT6gEIyXwW+A0P0z3iOK8tgmX1vZFBak6rk3HgBop/j1pK+cINGi0xrRk7jDHKkGkk1RJq0FU19rUPdXLN4BVjUdfS1rTV9dqfUV5PXBGf0zaN0HFjor9VGXL9Rq/JiFZx7GdxdKwbvqceYbjlmro8oLxyWnjNnRcuV/ucyYnah8qIBhzxtwWDp5BT08Fj2Wc3uurSJ2EhDFXGRzBbpjJ+nSUujhgUQJmrBucw9qWc3gq618wp9+X6iEknha/VaAcsKp+Wxnc4rQJ/mQlu/hUZr7phkF/vncqhX72PIJPyFuBV+Z3nX5Q5ldnLX6Bfx7+WukNO6jhKMyp3MK+22x8s6xa8qJza8YSxAZ7qEgQK78itES6T1vZA0am9B0vto9yjfs8EgwaHAvKUAT/FFfEslUMid1YJKNNX+/9Ij5W+SsZa1uK0ReIvDx6TdWMAoxm8alt+oVnLarP1ci+C/AaYI1yfYV5uo7AnXcvV5y8xn0lWd4fP3osqR8Sey/eFuPdfkwMylgYbcguY2lUiq2fYF7Ii5+46KLeVwYcSWsXz1VlV3fP0izfjY4+/YP3hPc5lt/F62PkEVUhzO57aExyz+lmQGVUPJtyTXbxKCM72jvKT2iPoAy1toC+Arn8p7bZy4rGwVZFkNLl3RoFCDHv5O2I2gFN4pyJRIe4l1BrpVeVQo01jnMhnAWf2KUIgBDYlaFUMIX3hmSZ96jhTpq+Jk1DgVINytSe+OgJ+r2ZRZ6NYhVwNMlRFzmyNGDvN8T6vvcy5RhWjBFrElE1jQuGFoBDDiPh0oWWlalCWKZAkG7KvIZ1xXRMfB8ioe6QxTxW4Szw2LU+nE5sKr6wNsVHKTBvLoqJphL0GgEqpcSOO61YAOrs0XrQ80mgItBC1+oaGcp0Xrtm3t5vjSg3Z1kibpMNBwWp4TcZ0k32aESl3tu4nuuN7t4A9eVboA9CnsR8eZOO4ujb1mhtX9XkE6dQI1MPr7KDLdFZD8NN2xaxVCDReFa4arb7z4rD8njnoQ2HHtSgwaJd6Yu84RZaZRD2bpNU5b6Q/rGkaKDIvHRfySmFYOUgRxRHY5Q4y8Ye9s2lNek9DZ8BJOZVrk7RKx1e/jNCaw7Iy5iIivuWrv0jGgSGqASs1plXm+ZpNDoQZR85vuhbgEzifbnjNtLOil5X8r0b7/K7jQ+FTpxrPTeX0wmO9+5pS5kJ31DUJWzfIPXVkgX9CwDmWaVnQMOm3Ndvr3GQdzN7p3Xi2B6twYNjnvBRnyeudgxTMQh4r2vm4ynTNxFedRf2uGV30hQM4NZMPGCyYCj0sEHqwsiUsF7I9r0tfaiWO511O2dqHO7BzlebsYB8Kfag9obhTGqCeHv9QeZXrlvqzpU2ZToz0r3oG2FK+Tvx18mx1GNEfMJ1fWdjWnxrNZjCTvgZcck+qmLLt/4COzS6FJ1TGq617NjDWdN29MSAzBx2brSnAmytN8/mgDPQqguKsoi/BR00CEXY6pDW5EhEZfNHWpa81rztf7xOLjz/+Qvz0w89MOKpzrXxZZW59TyuUgIvkm1KlMkBRmey6SHUI9RvkMeVihbfr3yJ3LDgRTgO3ut1WTnyNpKDVjFhGS4tw88w9DQhm2SQitfcNQy+sb2XASmj7e0JwmtFin4TBFfNsaNDxUGGlxpMbkZalMeHbzKjWOcPxqHSqRmd1LrZOYxDrUxV+L3hRXJnC2/FST5FVAbhqiL67nFgfaIV+qwEr4BZB4b8mKBTHQby7Q6oGG2E4NMJn+BBcVaMYuHC4hJ4bFbIazl1oZ7U2afDpOEkfGlghzgb9d4ev0JzTsRgv+wQZ+RVFGTRMW5Auw+ik20nX6FQj554liPxNRyJKsEDwoJ+qAex4Hmty2ojb4+7M96DhYCXzoB2ZjxosSSfhRq42PL76tI6eW6DX1EAB7ztP6Cc7OWBmkgUv9V6uQ/NMfJ3XCHRIAA7wddKcyhbl/2p41YAWxu7An8rMXDceMKWyGsykmZHZKODc/sUnn2LfbZEnFuMAvJ6l10G+0IzWaYtp37vTKqtVYDS7MS34LL+VTg7pNRHHW4948oUb9h7GVjz6GR7SfyuOOYJWJWijRpmuW/a5uPaPf+HxePalmzYHL6dv+buwDye5HXDErCJKXxz91YPtlP51TY8HNYDnYNTAlVQa4R5kDOyBTh7SrJ/aH2iecSYdavYbPDV0HIVCDUazMoI2zRjD6XjlCKBV3aX4rjSUurwprvieHlbXhO4jWE5PeRWSbfc5q21oAT+ZF8bGJ2sh5/alpHOmOj+8fwRtbC2j0H0or7ruz/UKH8/fr7pV7VSnD6Vr75vBnrxv+Cg6PMIOasV76fhJ0HEl71bzJTacjlZONe+xb8WHvmdk2YSOcynnbLnzZ6TNC77+4x/4yrjz4pDvK5/W9zAQdWsIv5XZN8dnxkm66271AVQfrXgwbZWD6+lc5q4ysxmtVrudaCwVUa3FoQxdZZPaWm0f1+yxiKjkkDwbrBJC39DlKk9d15FWIxhAcnvT15/2sNOc0vFhX8CqUyOYMHi12m3pxNemGRNVmuk4Lwh8vFf6ECfXHaqiBPeePGPHviB0XcG2LEmHYsB76niosAO/01zgb8KZuAkh/ip0+GsCUJjleOD8Km41yKCYdEfgjKO+z0+ZajayiCMccIdzDWoGeIZP1iFv9RTsVYEB/+kgghYkgFGdfzVGtpLxyzmGC0caL555MMGy06hlU4JrfmjMtMRybfCeZ3k08yD2CWEQdOgc8KvlQy2vufLENeUlNwLdkGIWxKOkFdfgGzoxzd6Hg2+0E5xrzVR1WXyNqiOjbp+Iy76ifOOeZf7p5IrRApqp5WEa7W4tlid4Q8G64vJ1Jo41E8xfVYq6NgoTjU41lH0LDQw1zb5oFgDrhG/d+9wj1rJZ5EIxUnvQkQaONCM10VMxbPpY1kXASGRSzFF4dZyrcq+08ML1S1kHDXpxLpaJ32Gvn8RMo8Pgw9q0/FJARGRZpZ5lACeZfHe+YsNltWdFYh/z6ReHk3zteDAcR+/WF+gf84+gvAFuqwGvJbwwyjKbKmXhXOdZr3/oE0/avxkIoobEOvyRb/4yx7/QkBp/UzVGMVAvT4RBjcgelM1j3GIg9ohj0iDnro73yfQL6V5pnvRYHAeh3zngr3jEOKA56i/wNeQdqgpUhnkA2u2qc835k7jWexE06F+4cUm7DPgLru+gk4Vs2RiAwK8Guj0b7sZ+vhd83qoqZL1WVS3Y6qVJFV37iJbb3/I1yGSTW56t1Ht2NknRrb4lrgQkw5MRNmeCsrBhcU+dJdVnJUjXqZN1qyNEBn7rpwy11cu67it56lUL+70pYXMm+VZ0yaR3O7O9cHbvu+tipwUmAxgwpQw0B3iln1YOX/fMc85f4IL4qOt1PExdeUB3I3yUB6WcvjE7DxntwQm3w3R9x2/zf+9/mK7Z7R0914f2G+FX3GogU/HoOmHWu0bPsfAvEte0OzVZxLn0hBO6rnfnL614ejXabebER2GocR1EPWd210J1VboEJqvKvhKHKX5h5mqEKMFBwaaxGvWeVAy0YpinEOHzGM+Vk2eV1EhKo70IssRbZ7S7jpOGw6IstoNbVjKrGijyd412R9DINOMoGMmr2TzOQfd/Cf7DHUZeV2FcMq6tODoyTzgEbhyoMaJlSo6Hc8EnFcYJX6OhsBKq2ub33PDKf+8IqXsWE9dRhSLpsTrvqnRxuihx5OVJes8Ucgh99DIG+KTwAeZYK1eI4xLtDncCa+UF15lzjobgn5Y2hygJRI8RlKPwV4WP7SfqCNCZXCi14JxXzoVm1mcamDOZOj8PKu1Gi85zWzlU+/sb5arJgR2mn3n4mXj25ZsiwwrcvadBinnmfOD47afgN9CMBck8YFodFvQ1sobj3zRUMOcw2TfTAA02HRfz17VQ+ai8B70Rgah9xPFA1Yw+NKCSGcY9C6k8AMMtDUWhVayX2aP591pWWDBkvw+euvvasRj7jgdtFtRsNfhEHFcd2ZMnIFu8T1SzXNWYrRGDfh/3oXvu4HBNg6KApcv8KPuqLrkUS01pY+8sy3yPSkOhDk7RYXJPA+Qs5aW80vlXHKEv2gNqK7iTBTqplYDkeTj1bb9HPHzyyRfjc8+8nANSn4GudA6JlnQ8ZufdM4QXRxrKmHANSPGrGITPy+k9m20JG5ELapeB5hW3epCe2hxzJh7VRLJuqhPCx658VgOEK7ss4TR7Qucw/s25On2obMRAaW8mn+q4RIjqV8VtBmuVv8Uu8eyvB31PBswOUGE2BIe1j7yX+qLlPa1mct3v9h8rbzWJoI4i16JWvmE9sE4r+7EHdDl5Iuo10fl+b105FLk24OtWKklGP0+9eCM++/RLAw+HavckQqb3Qm5VG0X5WfkSbVUF4AFGjv2ZJ1+Mzz710mTT1aAG7GjYWakfgzqIa8J1VPA0wJrPJVxasaR2psMerRU+5xj62HGBg1vZbisnnpFYv65OSe7VEeUG4lAi1vciqKBq1gb9qlI3QV2FfsLK97O8Ix1aNVrmkhNzTOUmGEIJzvAAxtDsWpAxVJnpvJKBpU9llpkRyfg1y+BzjowSrowrdfCrw2Hz6vNc7V7Mzg/7nLNsauSbMRLqKDpdaZ+cO7GsMHgZJp0lfbYaeDZOuIFScTAJMlkadQQ8GBWmGPDsoTUPWIQ6SCtHu9m7tr1A3wsxDsong3RbCI2CKHxaDNNQR7jyi2e9MiATarR7xBfZTTUCow9ndRgike+txkEpdJbWdmbcMsIs31hWo8BLeSnXdK7aFGfM7Do9WXaz9AmYSHNqpBXnunmlAdaD8pFwvnDjFJ956iUxZInrr3rTfdFlPMwz5xxOV5yrGiES+BQlbRmjzWmt92BWu3ELEo0DreygkVWDNsCHrgXwvyoN1b+1KkKfnGnbnUGsk1ZCrGTFZMgm7vxXW36VodDfcKwQuPAgZe0Lf2NsDzz4egF/6AsVR9SjQgtmgK1bPXwqgnLqeamWUD07YEFmpTpNTo/AEfsWHd274dvkaiO/qcOY4wUdauCMsCAApLrYnTngUeVUOurhwcKUAwQ7fz3rxUx0iNw+bf5ZqpQRkoWqsqs7oOfvRcRdF8eUix6I4FpqQEj1YO96horijzzROw7sk7G706nqxjHejv9wWaQJl627/sNaaV/Ut5wX9AR1CdcfsqV+v534pbWmlxAEVHtMWSP5a4/CUG+qXHWZq/YwyorHMC314Sa/oPWLwyF5H7bz6pNspIfCX6qz5JW6J15ti1WQYGCq2DuyFhhvE0R6AIi0sO20kwGMnLPjGDD5139mR7Hj+aDcz4BV0gLXAfLezkfZ8fF3/sVnZJ1Ij/hMG8bL9xTm/Qk9nLNW7zWhK0yhOvH4Z7VFIyKeeOFGfOKJFy2wVbPfiZfEnwfrtZrRdZ1vQU1dJIvDa07zvrXFYcIzK3zonKvcu5Xt14wT/wM/8APxjne8I+6666543/veFx/60Id+0X1UJ4+H4lSGl4jl/mw+F67cWrkXi/dUOU+CIomKBov+XeGsjfBCyXi2y5S2CI0oc4GygVBl/3Qs4bhohBPRMGbLduNY5oUMWTVeV1mGHDeKUisMWGFHmZaKBRUsGpnzcSgktWm0z/DemF1Q41EzpqrAMM9hNLkha30XoWXKuqmixDxoDGQmAfiXddYSVuJlprkW89jNaGdRRVD4Bn1mSaLSpqwb+5AgQ3SDF+XAuAe+SeNFFL5nl6Rkr/vaNsHxSYDRDAmj8i3UUF4bL5pVUJ5wh5FK2h2W3pnJyflsfN8z8ZVfjCRTrq2ClBEIMszX+76YSuOOD2ZvKT9omOinm4irObPYuyvmKOMpLUREvOXBu5ObV2XfoLEpeyjPHGQcpZGUw73PfLxwgDmO0yg602vkdc9UhKxRleWrbSuTsVMNEwkggXc9Y9oK7e2GpdBXtTgIkxOKZsGpJ8bL16RW03XjHIiYZZjzlQZ+cp33vnByfS1rzUBYj/j97397nGvVURnXRl92+nfTObiTjEACxq1sdvNU+4Fk3TEKHal0GXRGKl3mHuJwOVKDSpn9y6BScQQExzSqfZ+r6p5ovl/eSqLTiHc9X1uT9+YM+6yXnE+ElwTLhwMcjhJclucOjdUpPQBz5BiWiTf7zwNcXj0w1v2jj72wwxXyyTLCp/RgFYSFnjTwpkEs7cADzinVePp7Jy0An1XX1WRTG10YHSvuU1bL+yl/ZF4HG6fYZUIXSavN545//9D3flP83t/8tqRBlQG1VV7LdSvOWYQGdBz2ca0ZnGmHbMxOq+0D/AE+BU0D1gPGAYfq7kEfri9Uv6hdpsGMOnetoEjdkO+p7mlGM11oFc89tW+FQnVK6spwWl1+llMCJHWVwCc5VeO9WLaVHIX9RrvRR1LafPbly6TrHKMz8UUbgn5PSJ9Vz0NeqUxUOZn0W+ak1/pOA2gW0H0V2q8JJ/5v/a2/FR/84Afj+7//++PHf/zH493vfnd84AMfiEcfffQX1Y8KnLwWLliGIhXiMoaHgawCXoRIo5MRO8OrsZllXp2CQTM4Dpc6gcUoi5B7JDjMJyPvu+OsjnCWmIc7BBS0Xp4WQSJUg3mfIqOsxWJT+GCAVW5dZV/QVJAmfHmvRk1VSYhB36kMM8jQ6jh0AmW3pI29qryoArdmTE3BCh6V1lS8c0080q8GWDYYWV0qJ2R+oOmapcfcc+9sUb76HugDCwlF4kYkDftadaD0WNco8V5g8Gw7P+VVaS7n1ZyGdA6tkW/UiNFstsj84rD3CY8U8JyPOqtuXHnmQrfvHFqLy23jfjqhr5qpVqeUhkazPjGxHro2TuS4Vh0kzP2weC9lRaOTYYpO6AtzURlhzvw+C8+8doPv0MTYF1wzu+PiA2upfRk9hY/dgifQaxAEa5KfmDP873S4dTFexMgSWtGMGOij9+pMSQVAj/jd7/nifJYTc4U/Z5zlgC6R1SqvUrfsnkGuvfCEBrMxH5VN2piJiKQHrMlFcbzZFw0i4rrbOLrtBzKsi3VU9Wfd6qDr13vEG++/y+B+60N359+6fknnIodzPFlDrSwhbS8COXvzYEAzHlOc1cCA8aDKmGBFjgbKnQfZPw3J2WjEPdmlYQEZzXA3wGg2Bnli68zEY7zaakBYr0eIzlf8yzroL/7GwYearVQaAm5Vf546x9StNxF+dgfmhYCQwgD5//HHX+B4JSMJHG+y6JAfEaqLGwMugqMpqI+xxan1c0Ro2+BeE5xVnZzVjMUuGHNo+U4+38jXTZgiebJDpot9FFyHlKuqJ3YiBC2+6YG74u5rR5Fb60z5ZDhGxGefZgUXxqvzwXu65scDq6Y4H7eHV/jLgxzDeQnbmiI4B9oTbptHOA9a8HZHcgvqwZy96GC9BxmgckbnFRHGG3r/Xz/8rPkVabeLb3NV9dIqmaD6VnV+RMR/8L4v2fHaJjjnBJ77IzUYjrWh3YTrlcbZD1q1yfNWrpdXi3A86n6Mr/yqp/aPcTjmSqfeyvZrwon/i3/xL8Yf/IN/ML77u787vuZrvib+yl/5K3HPPffEX/trf+0X1c+SIFTZlGshTJOR0ShZynCCo1DY+4pw4oi5z4g5og3hH/m+GKtyzxyrRrgAe5YhLhzTmbgkc1/w1mWcGn3uotTQ1IlBsKLYqqkMe7lX1yah6z5nILk6HAnXbiGooKgODgyp/CZ8nZf0uaPVDShTlDSMWDomDlL+Tdh0rjXaOvYS+9qnvG3qwHrEUvuiguXc1dDW+VrmR7IZWK8cW4V/wlIi7/uoPIjKKy7SgBVYNEOieFcDoO/jKc+qg5oKtijRwRsaUDMyEIdDFavO3WHKIJnwRA/SBcqPN1sTOnz+3euevOpGz0CU897a2WKlTBgdJ83IWtqck3b4HowjfrMe8sOzofqpuQ66OHCd9RvBud7hdBVJa23ODnWupa6H0iMOa2uN9Ktzxr+VV0NoBwZDfc/ltzoHJXrfSX9Yh8Rj78Y/MJYwjfvvvkbYgnCuAjEDFq88gUHagoEIGlceiFDjXddooMPlW6UTdbIh3/DMRTnYrpbTa8M1rS6Bgaw4bvl8F/wzOKQ4xpo8/MxLppdqU0eFRh/kiegzMZijk/4ph0XulOH0dHrlU8xZs8WZPa9yH3MX+YjKCwtSCi2s5JXKdoxTg/M0XJ0+VFYCxy6vGBQ5VybaYv5OvM6vwqb6S7czKLiHwx4AVVsNuJIKAU92iAPXmgSL/GA7wIl51oBT7z1e/5o7SbM7YIqHrII0+cEgr9K4wk77sejbYBUjYSF3aF+qg/B+tS0TFnlu4MzXpCaGtA8873bBDoOd8dInvmaljepfdZ5GcOgLOQQMwUMQiNJ7tUVVt9VqnwGBy3/oHLWdmGDoRgOWIMrxRnB+jOsBEwt+N6f/apNXOVUDmFnxKH2rXMR8AN+3v/uL49qebbvcusAyyx3YKLXleQPF1mBSxp/H2PfeeWHX1RZd2SvVDrZ3dxx96ONP8t9yT/2D6hMw6CW+TuM95UnalKRjTSBqfxeHg+FfNeCUhLvF7Ve9E3/jxo34sR/7sfiWb/mWvHY4HOJbvuVb4kd+5EeW71y/fj2effZZ+z+aZeA6GSSVSHemwYImc8niJrOFO9NpuIY4RsX4gBGgzm6UPrtcq8zG+agB0NLJIjG6wksDdp8MDCUV8DVL5kagM7yWceYYBXY1KNEmZlkoElXCNbOh5d1Ym2Tg4GEs6COzeW7DLOcVMp6ukb6PsmI1dEZGzJ0znWcaHBCAO2yq6DAeFGB1xs0AiF6EndJqqQYQ/CvMERSSWtqpzoLeQ7RVhaXzUMmohwpAoY9wWtP9wxqcwMM48EtxlUJVTpxlsE2CRCJQQVdzQIFwamWDzUHHaewf9K/rlXjokYEq5S+cogw66x3lzjXaTeOStKMGm9LAbKAkblW5Cf4rLyW+hY5xeAyDE42OdyfOtQxNgyc9YSDsVcbM2SGlBcgWWROBT2lUnWm7J4bTttNMdJcREcysgHfTKVADWHVC0BiI0IBpS3odsEXyfMU3toUQlmLA7fNVHiLtqREin9NS46UxsPjoc9dnZ7nomeqYaUASdI9Hrh0FH0FrSnGWfL11u1flzGo/rMtD6CwjVYE9pncVx7WpjEZfreC4VsN4UNX7POnBdgVOhUcP4mv7ArOSSmwH0J7I/5Qpqeu8Ue4UPC5wlDTTPOhb6SJ1nciFG5db4qy2x5+/Ea3xaxpq91D+kBYS9v1XM7u8tzt4oucxCayb4g+yQg/ehKzOKgKZM35V7+IZ4OM9b3sgdavKaOXxZYVjuDxV+WHBNTxc1qsmRBIu4ZetrLvJwvDxMAe0GvzSdVabhuulc/Z7aR/1WY/VQFwE+Q3jfe8HvjL+3Hf8hvA2U9lXvPG+Qs+z7lBdV7cM8K09AdUdDzWJ4H1Rn2l1lc+durjKq3SAFY9tljfZBF9qt9BeYlBfZRnuIahxz53H+HVfdF92m/bmNttCHjAi/tDv5WlbyLeSdBOcpPytCFmsbQ/Ye2vbfDzD92CbRiM9LgMlAh94slbQHmRN3V5in8++fDO/RAI4KNPbjlvCelyt6S1sv+qd+McffzxOp1O88Y1vtOtvfOMb4/Of//zynT/7Z/9sPPDAA/n/t73tbRERmRVUijgURtQsoDL8uE2mTEOsgcBLCUdxjFSQocGojXCh2vcBSXAUvGOsJs/OJTjJ1HgGcy6CxQSaCHhk8h1HcGIcTmbsWj47oGGJbGZPwueueKktDUqCZwoISu6q5ylw52gp+xTnJ9eGjp5FZMWQWu59xriduHVBIYo8ukWMYQBrtphrWaoBTJGXMs7QkvJCQ/sz+vkzdEol7w7trGTcsZ0cYcDXO+kjlZPwWXcnC3PRe5qBWL1Xf9No2uk9lWk6TzR+qmKdslFyP5KO1WH0gJ0q+ZoVPci9akhlRiGcDpnFquN5UFANPdLebJSlovNppVE1Z+5mRRfRBIYB+yg1V1hKEEsEkePY4VOEA178o0wnHQ/gXZ1CrdbReWkWFU4uZgt8N4EvM8/Jx5U+UKYehT9FPvZua+ul5ZwyjMhnXro5OdEff/wFWTA6kUkfOywHoRkEKfBJMAR+cjzwhMBCWT3LY9JjE8NzPHRxOExGrv9Besx+93VTmDU4pHChK3UAbDw1looX7/qGv4oH1yEliBrjk2aXp81prRh4aDUTn/BDhgosuv7q8CS75HjO3wqDGp3KM6r7MS/YPm5/hATjJGjeMly2w1dpTvVTTO0nPv10/Pwjz2dfVU+njaG4MXwV/bQ3HqrFhzUoOp6hPAfstl9+t2MSLwWPFwi4hsiMQ3W2Qr40wICcOhy65kozSr9q00wBdfBsk7NhZJ5mqwVpF6vm+Byw4XnIfTTyhupY0qjOh7Ki4EP0BeEh3rUcfKVHAe8XP3h3fOkbXhOrpuQwyvA98I9WA3YqT5lJdtyoTu4Tbsv+8F0G8sA+XsecVH+qkzxkvNv0gCdxW+ifen1t80ahOcWH8kYX2o+IzLbXg6xnHakyc/z+zMPPmk0PmsMqAZb0Cw7EjepB2GbW1K4q8wI0bq+Qls7pa9xXe13lHniC61ZlLu898uz1+OGPPG7649px3AQfWEJi8VnDW9l+1Tvxv5T2fd/3ffHMM8/k/z/96U9HBI0XNBAenNbeaVAmAZlR5g6OShU+z2e8BG82YJWoaLCQ4LysrK0JoUeoUeElwxIBD8Jn5SHB+z0VVqlWqMI3BaCWaO79tNGb48o/RRWheKFRrHhQ5ZbGdBQcC+wZdVOjeTds1OhTy8vLZApeG/GhDDkMZghJzZDLe4IrVZwpkORa7+7csWRnXIdAgSJ3h4/waRasGgxKJ9qHRerD99lrJo2rRkczgz5yTde7731F0iMFIfAFI1JpKUIzP93Gxd90nJtliUJoyEu9qShtTYTINQA3R2Bjqrw4NHyPWORC9Owfzq0G7gDzSZTn8cgs7KH5t+CZpfcyae73LnR8cOWh60Yaz4lRRqwcfJEfVpkg+L92AcXs2UPsIednndTBJ86/9PX3Oo6L4iOduOH17MuX5nDnJ2TC5agF0MKrADzD6rJoylQH10JpqAZYCC+NAhozHuw0w3J3GD//7Mvx+PPXzcH7yjfdJ07CHIhInDU6nxmIMH7ruRe0ybrrmsJxXIjCxEvIvCP207x3/EYLy7ZH6avKndQ5xnslM77/MTn6+1N2snwx3vWfPHyKNzDeXdeOMlfOp/eIp1+8Gf/0o09YgIPBE2/1gLwcb29Ye/I38aLZvOFEVkddZZIYm6hQChKN8gGeXyYRQtZJZV/BnfNGySqpbi1NnTu1Z+z18HlFuE6QYfK5te5vec9xq+/JtpCqn1WedO1zXe3j6xX598RDYmPQme8Cqwa/fW2oN8k3Oi+Vb5NME3w73nvaeGhTYKdD1zEwrk4hgyh7wmArwZBw5xHVDag0e/nmKQP0igO3Eb3V6/zE3CxPa6ZaaexQOkrdGGK3RNiaW5Kv+3sWGMOP8nVx4J5+8abJO67X2uZS+wrPVxS5vQlm2uliowM9eJtv10QI5tp2oVu/L6+4xfs63BQA7nT6V/yCPuriPvrc9aRlyEN9BLyKVmVSzeBnJl/6SHm3uW1J/U76IgxMukbp73g4uCzrEQ/dc01wNsu+W9V+1Tvxr3/96+N4PMYjjzxi1x955JF405vetHznzjvvjPvvv9/+H+ERZzQsEIxwMrVHg9QZ7PrvoMA1x0MsRI1KYjz8rcJR31NiNyVQ5mrOblCpuYGkwliz2YRNFbgySPaxwQFxGOqBDi7ASqZU+jTBtKDvFKq0UalcZA4BvEeZ694L+q8GHufn+EPDeJZRwb0UfCHrXbJsTWgi39sdAsEr9723FLJVOalCga1mdLtL9lS6gj931LE2hFMnrMEgVW6csxreYXSVcy5G+KFFvHzjFFGCKRU+c3aLU6cBCY2Sg1bdUfeAAufEA63ovBIWzrnAKTw0HDESpDqF+SmlHuZIJR471suNRWSUe/i3bzWTTGWmziDvaZ+n3i3aXueAdn18LiJp51IddeFLVYZAFvrCyeSg6957Zq0Y+ICTwecQ3Pi3ft3r4947juaYYv3pYLKSAYr1Zz/3LHF7ILyatUKAC/822Sc425cykOWqp+8Df0nj+e9m9ywjJuO5wS78EuxD1+bUe+IqIuLeOy6KDGQFD4NY+z05WwAn0bfgfFACWANqHiRygzhxt3Hc3iN+8zteGxH76fQCH94ErnBdmwVmk1dXhiidCX6yyc2hx3aDL0IOV12M65m0ELyHHdJmlS7yPmg6df9i3+6lnE5/FCbsiqAoek34GvfQNBuqMun6zc34c8gWn9e8j7QEsxM2OlCZlRO6H7/MzKI83hIM0wrHfk+3QXC+4CH0PVAzV7NoAC/Cs6gbBFdQziT+BKapAqVrNttxq2eVwBlPnSfwa/ZVD8KzAGFHtY7bY5Qj4hyE0FcORJmu9gf4QYONXEe1H5sEQzwoWp2tTMDsz26y3myui/MWdOPBZaZWPABOBB0ffubl+P/85MOJz5r5nxvljgzLtRT5i/GAA7yXuv+wGqFN+Gwyf/AI/m47QaQOP9dnqXIx+JJ3OZ7iaozlsBxaWZTm91RPqy4FeH/gG94e/9nv+Op8fZnQCA2qiswETmUeCsoqEI++cs7hsg9wVux97pmX4/HnrpszrQ10CrmtvEVfRX0IsYuB27TPgOOBSN/+CZ9Kg7cVjnHh2pE8D9zecTEYANuVXq32q96Jv+OOO+K9731v/OAP/mBe27YtfvAHfzDe//73/6L6oiEH5vaIDY2lRaQsFbgYudmxOsc1okfG12ipCvQIF0Jw1GgQsRzrnBJOR0WYpTrJpkiiCP1ghk+jUxHqJBTG7ZyXlbqFK6Uqe3rQeclsEu02zjkkOLF3cig4Dnk+dD4idDBX/FuWzZ3Jxjua8dSIrBohKpBgzABmjwQOJMD4S+W9w9sDGZVecC3l0uVwG47DQwPdMGS1g+IHfUTwywgeVCrZyjSyKr94ZifLwwT3vY/Mx8PPvOyKCH1JlFrf08g8KxPU8G32vgpJxUtmDwUvq8AR17KnI6iGKZ3xkonfWHbbBA/pTLfm+81C5zXG04OUmvQ9K3kNTniWORD4CTdYZIY294iIn/z00+aYv3TjlE/fPEkA4uDvgZfciR90rfc0M9Z3IsdzKEGlLPT5qOzV7LXKROxpVz6DQcI1pSPQWshBe87XWC88g/3kNVOtgUngjrKZBlE0luFjiWjMUT6iuYz2YAt0C2mAYuooa6M8e1I6FllxY09/1YCO6oRKO//7f/er4r67rhHHe1+vvfeOiBjfia/BvIGznn2jaVAu8RfBcyUObuxMB9tt4iAJmMk3xZheGqHl2tZ7/Ia3PhB/7n/5G0wOOH+5QYigYdXFl+LZ33nBAFeFk9do8Gn2EHSjWTKlnc8/+7LL6NjL6UXpWZBBdfHeB2W0BxYr3UdE0pPKTuq989ZpHiIXkNngU6+yAsyqS3GPUpXrC10A2wpyNPZnILcqbu293iXIIDJ+p0GthPBfyiv0qS0d9vC197V0XQfCsLMSgjRggUlhHNhqvOfBG/Ig9aeut8IWAq/KOz1fCHe1mqAJXEpDSq+kHb734o3LHLPaHKtW5VKLtgeeCTNadapVXsyl9mqnzgEZfUb70kovLRUP+UsrE1Yy3nRXeAY4e2rEcf62sPFgu67WXoMMX/Wm++Prv/R1+Uyt5tC5arDL5xbyPvUgbKYqDvBPwHCsNNpnORoRcXPfwsTk5bym/CoAq6do/2myL/I5Jk0l0RAzHUeITdmKnxC8jmdoB3K89++4Xn9x4da1X/VOfETEBz/4wfirf/Wvxl//6389fvZnfzb+0B/6Q/HCCy/Ed3/3d/+i+qnRqt7nrJllZkV443kvqxz90HjemfvsHlF3nD1TyohZRBgzDwKKiUEiRLDXm2mUucAGsWtAAQZw7zSoKBz53OQ4i5NLRUBcHVsxQvKelKw2FwbZtwgr4JjO48ppXUc9a+mo9SnrXCOC6LPirxo/PDRsPIy+3Pn07BwFe1EaUrJNeqQSxHpHKB2u8E8DXve/k+494yZ2BB2oiv/Escwd84qC/0bjFNmpFoKPcN7As/oeMrp6wq1Wymhk3wU1HTc3gM/Dyf1pYXSZuLE5Kz0q/dPprH0l7J2BKexZ1qyIVuusTnaHQtYoudPhmWybyC1tMEbuvXOUE0P+fPbpl8wo02yW0h5OuoXcU9wyq0eZYfJATjKuyg/9KP4jIuXqe9/+kMmdLBMPoenCexyTcs5oxr4YsJdGy6RVT2iWSWWzBV1i0PlvfPuDiVvMBUZB9l2Mg/HnGPw1d16k8T2MqhogGWPhM2THA54lHQO3l+nEe5aTme5Zz/wn//aXxbUjg1Kq9yK0nJ5zjpizO+MaZZHOVbPfldagx/hpRZfHb3lQPiNXBtR/6cGrSU87/l537x3x+37Ll+RLq4B1wpI0PjsWaqjBidf5ToGtYB92L1CNQcPwJAdeYh4VTtyG7gBuUp902hgpr/pM2+gIMGaWXnSXzq2us96rmTcElfiMyOakHf5moLdXOeBOJ7Jy0EuYhBRHUOYeaKN4YACH3nUePCu4Au6w5WnMB3pJq3zWOp+6ynXdP/r5xyNiVLVYdaHYR4kPeU8DfDhtu+rB8WzIe25PYO4RpEWWxw802iF5Yh9wHJGLSTvKZ6AzhUnkZA+b57mmd3/yM09HBJ3DvpwPG/6eS8RdT6AXxSXkI/uibbKyfTFvdQrR91sevDvpRMeLtP9EvppdoIFnoT2xDxTnq22KtWmyoyYhqvzG/O+5g6fM63rgMMsEfUfeHRLoj3C9W/vQBl5Q+wEN8B0nno+dJ9zGSz0YooOKvdQED+B1fU8DMmh6eOm1/SstTFLxk6fjiwtX0/Yvp/2acOJ/7+/9vfHn//yfjz/1p/5UvOc974mf+ImfiL/39/7edNjdKzVb7FCBS0Md16LT6NfnoWxWWTIYg3agTkSw/NUjREZUnYIb76FZBsJZPwm9BicYNJDo7s71bjBzvOocR1AQwQDQ/bGjT1cSCYMIg3Q8FnhXJ0bhAT7oHKvD7IawCcXCK7i2zsR7ZL6+l0Jg8Q3oVIZnvs9qwR7s2bU596SlNNh6d3z2yKBQZs0DBrMqCVesdCpUaKnj51F8zKlmodgnDQfNrHiGkIq/BfEMw1YVQ+9KH7vTWejX8C/rYDQj97A64OOD4FHpf0XjoIU6B6WFiT9FaZrwVierBCJA99uG0+l3p6uoKQtOBGWS4uOQeCQ+1GDQRiPJ5wUaOB4OltXArGnwKe30zM7fcaTzvyUsw+GY4eR76ZiBPoFbQkwDXYwQDbRm5gy82/wUZeUzpYsKV117yFrDlcgbDc5FFBqNkmXuEV/8wN3EtYyn8qaeVg56+APvf/so0ws4smEBBA24kgZY6cHD6AYfegCwG5zk+XUgaMu+mjlU7nioXlmtJdeUd4l3N4p7Pj8CdnGePxvxaE3+qYasykk3YKmvkeHmOy6vVji6KR7jnfs+e7UFIAtxWjHeBz0CZtUlajPogBn0DfIX7w14/1f/1jsNFWr4Ai7o89PWWVWBOQfhQ7VTVg7JvXOtfmIOeIxw2YlKmYl2lIebBzo0O7f1Hhe7s1AdkJqFPXXnXTpgPk8P7LaEpUdPXsB4vYc4dcXJxXya8lnkJ8h6j3j25ZsREcnrhId9Yi66v1lt123/Y/TZE2bMs8kckYFEMwdVaNvf49owMKPJKdoONbGALRW6tSLHF76u+kmb0vcfeP/b47mXLxP/uPXrvug1OQf99WvzCJTtGlSugQvtLJJ/T1u3AFLFY8WPJlD0d5d4FswaQ7XkXaUr3Bu48cBghK7huXJ/ruWp6CyFyyYdHgTpKsQWMPSIOB5bXDu2xA2/MCH6c7Hqqm/B/xW3KTKFDwa/iS8GGSO4CsWn4FLnrsFHT9yKnJWDvu+8ONi6qV65OB7s0NNb3X5NOPEREX/0j/7R+OQnPxnXr1+PH/3RH433ve99v+g+VgLeDpEKIeJw5zAN+CQKMnuT/mnoqYEthqH0GWLYIZIaQcLyfWczMePZdgWhhxBxwlzmGUFCVQcz+0oCpwEc4cZfntCZhgmcmJ7CLuQ9Kou2EBgw7mZnK5VFuamMVwUuMruYZ71HfNB8AT6OwqjABdZ54K9ke5sEPoqjeijjmaAI0ksIPhhVxL9VSNYock8c8XvjgvMCX82MES5RDMUITyEp66j3kIUFrCgxHY6KZCBMwNLJ41pGHowGmEgDmuGu5fR0ZmrFgcJsxmp3vJxESIDWGLUGDIpjViZoNkJ5v4dkG2Gc7VkhBCc4v2b0obRtQZsSuMigUmEmBhacmYD3i0OLm6fNHB0L3CmugvT4Tz76+D7+vhDd6VGDKJBBZvAdxEGVdaLy9LUHTyr9Ko3r+oDnsMdXZb9G6jGOrq/uswf+MJ+Q4MZYG3e25si+zoXZbF0JNX701P0/8+2/Pmmw0pP/e5+zVHbgYEHOXWRYgS11Qjg/83n2Rd6hgbLJi16l43RY1wbjtLqWoj+TZg6k/5MIHh3nCh8+jqgaUdwX/J0rfwWOkuYONZAwHjyXia+tfqoS8xtzEJ7Ht8UPLq90cpr5SVqLVu71+BeffCpeunnK98wGai1Uz1QaGIdjqePh8yloj//Nb/1yW9NI/cSxazDVs737b8h7KgcEj4CzZsbxrNIq7JHjoWXgQvtUmwWVFurQqpOH9xCAg1yLrrqxiV1VnGPowd7jfe+U8yVC4enGu3qSt2ZRVTcAxzWAr7ZXlQcaQIqgfAQf6NoxuOz6MnV5A/606qPJvXENSYnq5BbVxTUVmvsz3/7rk9d++COPx0cfez56H5+dw5pogxxZ3hN8DHoSnZpzJo4UjnPnQTV5Tx1A4rtN96CXmgysbLb1Hh997IX41597Nvtixa/rJx1Hq2+0feUb7zN+s8qyg9OHQoPLb3nw7ukZ4ENhb3IvQnwCw5GP9C1f/cacc0RzRAR1wgv7FkDYMQqpJZaKnZRzbr51ErZN5SXnxQJHRPz7732rnWcUEUb/FwdWC74a7deME38rWi2tVmPusEuqiQBg6IU7XmC2FsUZ2VdyPsxm9K+ZxRER7QmLCjm1ubVUyzoNd6jymjxhcxAFAoIFE5FQXckAds1eKdGrUYzxANdUfbD3B0fPMskLg08zXJH4Z1CDTKYBEmcWKtSKOXec1WHEPRgAc3mTRzqpwCBg9vc2h9NxxjV1XM3ODzJV6CCdrYVC1oj3ynjHXDXzCSUHuGDc1qyXZlGpWOdIscL+5j0Tqd9Ap6GlGVAKRTq54c90rVrwTMSgcTpumplMRSHwVUdCM5GgBTTtq0Zb1bDXvsZ71QDoif+LPfuNTxphffCrAUalOc149C5yJ+gIV52NZ6rCzKzQwQ+sfOtDd/NeMa4Uf0+/eIPwBisGFJaDCCfOIcq6Eb7g48aDwCdor8LSojgCsm6Yl25RqE48ymw1G6f712Gg1wBS6ovNcVtlct2mpEIhD0XcX1T5DYNF5UClL6ylfu4PuiWDBjqe8kRQFkGfVXujBXkqZUTCTprDGk7BhVxX1XWCG+E5w630kc8cqkwKe8bgln/r/k5841x1Cd8J469s3eXAKgP9Snvi9RCl/DsiAySAaR/OeL0mcixACLloc/Cgxutfc4fhCPOb8N7dqI1g+Xie5SHjrPAQEZRNZrfsjq2FP8iD6MoCzzucNyTImM6P2HHo8VjuncqhdzVI4fjgt+iBP9VngPG5ly8l6BK73ehVdLq+NdMM+QgYvvrN4+DlC3GCNOmTTnwn7wMuXz/Sgq4TAjXAN2A61zSApNcU15TbTew58q5mWzXgjS6/cne4U8YXOtFW9VmE89ozL920B6tTHbLm0574UPsNa++2v5bT85wOD+AbvKbv6YxCXxg9CZ0gUGV4aM4bio+XbpziRu4drzLXg3O1fe1b7s9tMqpjM6i3jdL53/XuL57ejYj4+i99ncDU4qF7ru1B+R1nfXwe9dFnr9NfCm6/QpuCk4JD8OCUVCxyJ+3H5v6c8V2LtMkBXyYOduXFSljKVSB80+cFjugRf/47322+BPpPmjuI/f4qtNvMiaeCiIAjoZmt/bmYhTcYTonKsxnM3kL4KxNbyaUdpkABDUKAIqUQFsOrzKkaspwrjR0lYjWejbdhPJZxWGK5cn64L7ke7qHlXsSxGFVnHE2dszrVPq9a7rKGPfJanwV7EA8wgOeyVmZB9B046ur4ubMFYSwlU3mv4EqU9iPP4tMa3aKsGlVHxLiHBBLsM2uA2YX/UD5NFFChvaa4ihSKNWNnUeRUS+Nuvi8ZktftxiOVhdKH8l7Jnsi60aDd5ydGpz4DnMIIUaMi78VsoGOdVbCL/i9Km+uVMkJ+QQ8REOhiXPV9bTYaxVq+iVYNPl7TbC+zQlryjkymth7kG2s7fRwPLS5PHrjTtXdc0QnH6avgn5xfd+MAVMJtNXKvK25dFura6NqmnAScLMMgvasB0Jo4RJR9pKcBl+7Zr587moJCgE8Uv9E45K/Qgsp9rXCBrMAc4WRiHbjlxp0zPYAvZUtrdLqKjP/yvdzUPku5IxkG2CoLAxynISQGCtYX8mMOOAvtpCyik9UjzNgkL7ljqmvjJZvONwa3/K0ZuPvuusjnlV9xjXJjpZfUMKTBFuGn0995wc/WKU3+nt/01vwiQwvOmSW51QEc725lLWmj7LAV/YpgLGD/ui95aO/fkYNPUIF+EQjCXLNiaJ/zRx59Pn7y009HgA+FFtBGkFIDYis5IkHYcPvLnVaR3/tAGdxs2lsQfwKTynJkjS2AV94DLkAX6pSonoEziPVSOwxGf8i8PCDDIDpwHLFvTbHloSwa+NCtWbTL1NYDrKH6Xc8f2Z/3g7bcdtO5tN2LVDuCAesSuJDfEHhgj2BLzDd82eviS99wb+JnE5iuKq3W9o1f/vrpObQqB/Td1en0CUPQSQNtowN3zhiotvMRBPbBu16dRfzTdu5JJ6SLDER3UsMq6HJoLe6765oEBGTOfbY3tW1b5xYmCXTRnuhx58Uh/i/f9XVLXF6Inmgt4qkXb5q9Dr556eYpcQWYzwWzE3fJu+u1jxjzuusaDYO0b4Ue9WBkyhixMSa70e3MXJuY7T/iAzhoRvPqc/ybTPwtbGAsJZLDjvw0Dro7OKZ4uiuJIThbRnhaEpM6DnMEtjpNaOy7BSJDEWHMXRWmCogmEzMnMkiNFFZwIlVo0XnUBqdx5XDTuN2HmIQBGcqZUyNmsyHQd02k86JgUieyGPcLA1SFiJ4pYIeqbBp9a/vYVJRjThRaMMjpjGqFhwQ+DlS0SgsQrjAAsGcGfUMAqFMBHPCer0mX++ngCx0PmiOsFFYw0KsCLwZ3p1C0qoXmTlMqvKABVb9eAKMzD+CDJtphOFYhvNNxNYSARzpy7mwhg4qxPbuh86LRYgGnDgdnB28fBgYhlQadLVRFpnN4gCM7+j/1sf9Us7+QJcAV5heduMXhVpQnpBmW1M2RbdLCbGhgvMttm+SiGixoSh+/cXcMLnbjPw3LTekfxgv5U3myg8bMUNzxp3gQ2jkkXni6NOiXvNCNjlsLyyR6QEZ4dhG8ShwHKwvUUDSDbQOv+1oozepco8xdr3FtuU6AHc+AntG/fSZPym979HjXWx+wPlVWA/bqBEVE/NRnnokXbpzi0LgVALcVPtDHKhAcujZVB2f1QJPsEPsHLUBneRWBO3fnms7n/rsu4q5rB5Pf2lR+cF5a3eOBXfyl+x4ff/76GFf67RHxf/r33x3333XNZOeYMwNiuxmS8u0f/8Lj8dzLl9YXaNSC2fu9TD4k7DxgKmkn5wq8iyORctH3kfcy5yob0E7b+GrBqcAX4J/mMmnAo5lPwq3BRz2cUOdnWV+hpQELIYRsQmDB9h43Bh96x/wQ5CDvA5Zp+0Mw6QA9qvOi3RK7vUnYEcAZn2ukTKf+Az4kCA7e7rRXqXedj2sQpWbZ0x5KmBgkTrugBDMG/jQ4IQkG4Ba8uw9+aAwIGX6i56F3yqe5NqKn0fSU9bSdAuMBX4K31B3esyZjNEiDYCjwYU684kEc4PyVACVs57//rx+JH/7I46mXdAsCYM+gleqGmHEC/HmQrDl9iG6s1Qf/0Te8I77iTfcl35jNkLaM2ECLlgfU7e/ed9eFHdAKtjsUnIxzN1z+nFvzqqd1bLVlzBYN0mPvDHrl9Dp/NSFLearrBr5wXtKmclwD81oBcTzO+v1WttvKiZ8Vs2cIq0HJRROjTA0+Ebj1IBQKe3cSZuNv/K2ZxV3PpUDJ7OaCEHI8uQmRpt8NTmEMho8SiWqMpKow1fmo0sVAbVds86c7eFKyGtPjtW6CwoyDnl2nY6Styb3pwDicftrK82KY5DPhxiwdMd6jUUsFluOFC/+sdhBYamCh7dK/Gsw9etx7Bw4Ja8RLzrVEwk1Z18wlI7zq/BMfzQSYz4t9gTci56JGVTXgJEssVQEquFzZkAagiAAT5pBrcnCnXNfmmHiUdQs1bouhKLyrWHnihRt5jafGj3uqKJHd1L40mzfmzPWho9/SGQfNaSZeaQ7vDedflIbR2rkgSglA2LrP4gN0XA+e1PkhmIJGeRDxvncOQ+riOD73ozAM/oRhRINPA09pDIL3Kj0OYsi1sGyPrDNwVINdoJPWHDc0cBg8AU7V8fBtQ+Ici4KuMlMDVz0nQUPjf/y5R+Pjj79g/dvhVbJe43efn6wFlpefmOPhdbolQA8h1fGqPE46DuhBp5RPP/XieM8ycC3h9L7CZF5ea67rSGujLyvthOxT+WGBMcGxPFMzTqprp+xc174ERymnSnAioDtctmA+tb3mrvkUZ+XXCA/kQ38y4OfG6XjP55NBsnCHtDqyESw/rgGxxHs6txrc6RJkKAF84dmaPT1tW1w7jNOaH3nu5fiZh59dBg8toC66OLrLHwzrcqBnXwqX2zTuJGjVYOon6dNlkh+0CNpQ/APXO7IYSDuIQ9Wc1uAc6rkxzMSfs8c6hkgYYBOqPFWaBQ+q3JsqBkqDrBkBO0020daqa1J1qup+rLkmNHrqdNGj2Eq3gClbd/1VdZzTP3CUr1rAur6l+pp2jrwvOggwRzgd4lA9vc/E0Pg3qtXQtyWixB7W9Y5Y0Th9FQ1iJ/+E2I0xl/v/6d/1tfGetz1oWzFC6aq9wloEt1H14Ngrh1sPM4xg9Riayt+c3/5bA/96X/uotiF4Vc8sitaSDse49I1Gn+A98K7LK620Vti1qlZlhMJ8URfgFrfbyonPaJUg+iCGEBhYlYW/GyKsIn8jmOWiQbS/Z04TiQz912w79mjocyaoC8GT8ZX46aT5HCBc3aHAPRhHlqUMJ9DVd6+VmBOurg5pLO95FtubZw85Vz0srwo53YIwr9uMczCnZrFMCYqjqf21cMNUjTrAog4H5uDvuWDCd5epfIGH8fxJ8bEbTzQ6Io2FLvfN+QfdN6WncQ9lbB79JB1rSbTiBV6KKqWBRxiWFGp6cq/SgO4LB62u9sIrrYI+NLvvdFyc7BTPXAulidfec0capJrlBP5RcqaRZj+kjdFudfD0QDzAjH5RjgZ6rgYKFEkvdMiyfzg6xNFPP/xMPP789YmXojuNokEmaSlvSJ89eCCYNtAjHKuLwyEuT33Hgxv9vjZ7Jsa2LigPAtzO521N9ntCQyojlEY0wwJzcuvM+DCISEOybvFpsm76Tfa81zXL5TwPGIjrGmg9b9hMy6f4E3yYbNnnw7Lz+UBCykA33HQtaom4tqPgo8IHuQjnFPCiQW5E0CHQsVU3QgZy5dxp0uFrubS21iLetH/mZ+XER4OhDRxRrrV9gf/j/9k7BU7KMCtBFVmC9s7XoVyYN6bMTkDejcqcnMNg7MmYdkdCZER3h1S3OGDcKTO2/56EpivP9h527VxAuLbLrafcyP3KtYnOIpxF9+CZGDqCh9MWh3YjDVwrTo0+dxDeJwhOV3CKUk8EZbwuMQ/ypYxW/lTbBGuRNpTYcV3k78V0sN3ujOx4d13CoOWcePGqkVo5h0DC2XWJolODPM9g5cKOQ+WAzDmCZfSs6mCFRBP4VoGFiJm3Bnyr52Y9BhzXZ9AA8yogjBd7yKfsVG5n8LXF3//gv5N9p8zts9xR2PTslVqxq3MHKDWIpWsBmwYt5eo2BzcHjM1gUJ5YBfVruzgcxK5NwZPAA5aLwyEDkhEM5Kh9tRpI+UVlJe4pvYOG1JYHjeXW0gQPNOG6XOlQ9aGOV9Go6/sPfvZR+8KPZeIPr66bfVs58VVQbN0P+UFEu0bjWxNhHO6kRewEqQu/P9yVydKIZkQUxAFYzCAVh3Q2LMUY7FJGa0p+J7I82RZOmhBviGERLpQdb3TOqqAFzDUTrxE9KBs1EPWenqjNObvDneNFJFPnPWM8DwjoemEuqWBTgHkGKBJHjo9qPKZjFM7wUPhJQzYex/nkEy/Gv/jkU9avZRu7r71mBDpgOLBELXa6ykMDJeINsmzhAmys1YAbWWi9h6BS753f/d4VF/bEE8czb6BZdkLWBNlDleVwbtkn6Mszp3ogm1dzzNUOWJvoErhLzJCu0rhAX8Hn9RunzLKLcw08i7LV36qIleerM6IOuxtL4sh178s+uyNN10YbZJIax7w3YLq2MACUdyOGEXq5bZMRro5ZGhXKN4oX/dRep1OIPgkT4YABrAah0jSNLDrdLG/VbNAM88noyfmyZuJbSGBAjAsYaFjTCnvi8+CGm61FI11l//leMyc0hJ5cLlT6chmv+9grjrXpnCNGWXqYPGVWzbLleLf7GtV+4TBmCaToNA2uGe0IrqoOioj4wNe+cX/fr2vFkrbk52K4wS5I59oCMvPYq+CXHm4EuEE7dnpzOvth69R2Cf7mB+5K3vi7P/W5ePS56+aQ5gD4s0c8dM+1HQ87HgWmdK4O3MI0stF0FI81eFJops7zYjdc70hvd8Yx5oCbasvAGWSgz+Uq5bAH7sfXEuhIG7+0Zges9UJf1J1eKq76pTqKCMBRvpFGo6lz4BVUuD4qoQaOrh1dV1Xn2+VOtVN3G0/6h91n+IC+lkBaXZcITa749h+tNOjyTj2zQuUN7RF/dqy8VkitHfbVtau2zmigI4K0ivXShjXvPeL/+S8/G8+9fCk6n89Y4HiBL4e3Ja4qmFjPvJfCMyhb0vbCLQaWHPb5EGPb+gh5ukCg27de2ZS0s0Cx8p1WU6i9hPFxT3XicZedrfRXYQP+howpdkvRLyoDaiAyE1GNsAw4NThHvpl9AdoMy0Dw3n78U0/ls5g/1v7fZOJvYdPMRURk5KZmLXd+ihZeWqtGEk0IRniyJLe5UWZRn3CHT50lKLDWWgrmCBhGM8Ebg5R7s+PnjDsIu0lfanRLdiJhl2dkXjnOKhOf3zWuRp04RiIM7P2ggaOw0Kho8/OLvmBoaAZiWufG7CGz9M0EWvYXQgNixFDh6bzU6KSSP8jaRsLQEj4V/olHRLl7z4wYaLQKXItGikIgDfhc65xBH0knwXnAmDunbFmZELvTtMN0KFnK/fnL08asdCo/RvbVaE8l1tRJqwLXHUZdb/TtBzyKHAgeetUU//s/TBg3cTjCjSs6726Q6nP4JnNVhlw/V5ScD8rDqNxaOD3VtUnekD3S7337Q2mIYV5zhY1nh3J+B8fLMcvpGeQx+SN9kk8dx7q+Ljtn413EcYxv3G+70y+BzxxH+CxoRIG+gD8ETWqwLHEaoBPKxBr0tQBLFCfh4M7G1ut6ExZtoOc0NoP9H5fzo/OuB9uB3yJEJgmOafQsAsIIRBzIn61F/Ks//QEGBdFv4kjXcA5EYgDlCXWy4EgpjiLEUUo8rjP/jpP5HuQHnFfFA2WYnErdZexGOaLz06b/ZrUd4CRttMa92BE8XR3026PH//rf/lIsRMQeyKwHrlZa23qPjzz6fN7/ovtQkeDwJb63nt8uh9OVAf9NDpPb25d/0Wvi67/0dUvdbfM5KB78ObVxrMJx571axp+HyR30PZcRF0fqLDiTIXOmY9zzOaBW5XnyeI/42OMvxMPPvDwzZ9DWo8ykvB/90iZU+j8KL6n89aox8kI6awfSx6GpXAj5TBjlMHXyAHLQztrmihC4ZT3QZwRpHc+Bdmj7gnb47khUiG4ogVetNFsebBfEC/Huz+l0VvdwpaizszaojmkyPShLaH/gHW84R8T63fGUtqHo8FUQIx1MmX/b6es3fslD8dVvut/0J95H4gP4rq2Fn+lD3S/6b7EWgAN72wGPziHCfRxt8x71oTtWQRnQ0PTlF5ERaG4nMfhYE4EM8s/BWE26tcZnq4z54G/7CsNjBBMoiv+sulwEdG9lu82c+PDyuRRobixRsDC6RWU7LFhzKiJEYKLETQ08z+SY0N87yb3EQWeLBmktLXfirZ+JwBM12z7gREaBc2aPOmf078pvMhoPzQjc4BKlVo12ZEqTQQQ+hbOqGuDYvrUbQfim72S7ILPIfeM4Xi7DIIoGd4BHDfxs8n5r4ghL5rlGSBF9Jh6Jb8z5H/zso/GpJ18UOqRTApiAR93HqzR3FPqaSsp3/GMdgVtz0kr2RQ1s0o5E/4MBi7puF0XhmaCFYE/6qOWADHzY3rcdV7p3XMsVld+IW9Ix9qPTeGdWpB7uVANVapRlIKHP38flGQHDssG94+HAtemOL1YhcJ212kfxArytbDJco+PBDCYMTc0CNnkPtFCjyJBbp86S2Wt7OT36xZ5PZp72e/bFAHd8WoTgg2upz0HpNqGTa8WY0EwicEV8zCWvoK3TpvRI2ZnwiRx3Rz2kgsVpXEh6Mua0LffEwzASIyR5Qhwkz6IQ71fviacBl3NokFezzE04sy9/AnNW4wqBJuKP+qvCbOvby1kQgbniXwXHMq+VIdgi4mN/9ncs50N9rX2F0YfyPHRp4srsCO+78s2dFwdbx77PpUWLx567Xmjcgwb1yy/Agy6D0tpx5+2fefiZhI9zBmGNH55OX7JYQQeRcp/9/Htf99b4C7/n3WsnXoLsGnAy2COsz4F36qc8QyUgA+dqumozRETuxYcOAp4jdP/w7miKTaJZS2TWaxBw5dRwfz2DV5osAt1H6l2nL9hvwAGGUzmve5epP7vRKh0Wp2OV+9CeNfiH9pve8dp40wMM9jC4TzmKM2iiwqlfxEGgaQf26RdvxtZ5aOA4rdvXXZNNU1voNzz3J7/1q7LaI+n/TIJnwOv3QPc9xoFvlGFerQD6/dDHn4yff+S5vKYBxTqmwlnhZtCY9n5N8qkE3HrE737PF+cceh9723//+98uOpFI+tSTL0760+FoeTr9HNCdZXxt6hy3aMV20+Rk2G8NfIA2P/pf/ruErQRHp0x8C9tC4/y8wyV8A35ozeGBvZB2e3gQV4d1GsK1GUcHXd/9eeqC8zbAL6fdVk58NbIyWhXFKINyaTBa8bwznkZqlAFRHvnMSzezBB3CXD8d5sabRiNdYagjXbNDq1IkdeS0FCphyHmt7lUHswQgxGChobE62I4KjpHO5n1K0KA2dSRWBw8pczPqvDZAlQHRJ/CH9Z1PTVVHQBR5g2LluKbwGt+bcTw/r3ONiGk8OIF5Uq3MJelKDncbSmmfj9KXKAtdN/aDPt1RYeCCjg7Xb2BXDwZLpdjd4T7Ke21nlEPb90/mPa5XdZLNGUefB9JHXbdch4OvN0/upuPdZd2YFQHemJFxQzQsAJEZmS7C/iCZyQjjgYuD81nIe8dCJ7YnvjGA1IMBII/UV1502h7w7/8W3tXXIFtqFDn5efPDuC63jUa/RPgPRCRlUogxuDf9DIs65dvm39yu63whBlwT3ESOLXwWDEwx6EV6Bd71s1jEH2khjdWExWlAppxtNoy63JNsgfSJtnUEhGvmmXPJ+YmeQfUO7uG9lfHZBHbNMmN99VeDkmn0imxX3AAPKjdqoINBL47HqpFd/qRTaLaV9bXw4V+xTY5D6hLaBzoH0K3iD6X52u66doxP/DkGDyaHFcbj/hr4zHmQwXODWWhBWxP89e5OCHHUsm8YsQzqNJMxWK/VwXaYx8rWvzyN4FqEB5xSfgv+QC+pl1vYnEGXSr/VuVbbR8uLe591q8r6HqRbyGPIcyZAZhwCBuCT8HngEhWVoddCdHEwULLq3xMElDGYswbUVwmlhC91Sex6JuKRZ69P6/Z//49/S3zga9+U72FcpTUGBKhX0mHJf1NW6hpdHA5xc9v2TDwPWtR+rmwmT0fnd1yMPvvinr6n9KGNVQ6eJVZbsvLgzzz8bD6zgrm1iJdvnsZ4BZbkrc6/W1CHTIGjttOayHnwxPhHLGXSmCvtwRWMGgBSncW1FwQG77NvEWjZZ8GdjDfecztkFQRR3dAWz8DeJE4jcYr+zabf/SF9L7Pu4MWm10o1jdJ4UKYpn737bQ8mbJgX9ZmcfvkqtNvKia8GQASdICgPNUKGkGUZEAl8LouHEO9Bp+K+O68VB3jOdJCoNBopVBwl4yfvmtJYRKsYFQsjYo2GibgQI7WUU8o1yyqLEz5HP8lANYoMocoI7jyelvXYvEKCL2oUFUO74gGXLPsnzImySgsMhDg7IQaLCN8a+CAs6tgOYsK9qYojwuGze5yXCldkfTOS2pjttcOtMhO/G24LGJg1qEKOjg7ol+OtAhEu7BIhsYrAuoGowRrCJ3jcnRKlBxyuonuKwbs1Y5r3gtmNVelkNagefuZl26vrtOPBhuiUGxGaTQG/qMOy4GfMS0rte7hi1V/L7PW5HxohMfO1iJhjHqrlfD0y8aWcXoISeP7acXxnfmyTGdfmrxEQZhojUIY9rh1HNj8NbZmHHWAY4jD2sKCL8yOj8Al7pwFQvwdds1a69QCwmvzH2oTTgK63O5hV7judRET8zne9ebJoWjA4dO14sGDS5BD34NalaogpLIcZ/xYcKjI0Dz5cGC+qz1K2hPNBlYMq7wAz5qPziibVQmpci6wIw2PhddWlpaled31W8cF3VKbUQOsq2wU48KtBf9gLaH5IJ3gpbL3HjwSsC21XOPGZu/EW7jl8ag+M6g2lGaftSRcXe+W/+Z73RUTEP//Ek/GJJ8YXDRADtEC39GEB9U56d+dwXGcAwulB1yJPeG+ReEyRBx3WvJybeGcwUWWu4rDO4bgTWhdcNYETlQUpG8CfggVdk7qmpMfIr5kAb3pImMpVtcvq79iDv6ZVHb9mWtVW0ICO69t9Lh26Z4zzH7zvS+Ijjz4fT714I+kZ+Kd9StlRG2hCG/BwRzlHIIJJJrylNOB86rb5hcg3pVethokIBqhaZDKAow04Hrjbz6D409/2NXHnxSHXWj93infUsRxwiIzprlt1baxquCldLeyxvFcOSxbMX7UWaMfd9howuM2h/FkXToN5i9s5Pm6u5c6A+Y49uH+xV9/UZEfKto3vKVhVJ0OvQSdU2ZROuaw3QP0//u5fb7CrDv03e+JvYeOBCGRWCKQPffzJePiZl+OTT7wQ//1PfT4ixCjDoVXdP8MCRWwnS/aIH/7I41kKnUZHI5FAyMGJidCs6h6Za3TMe3cCxDVzCMqJv3hes1FqpJ5jDGTZaCTRYF1F7VqsjZgsiTvzzWI3Gt2gQZ8q2PS9/MamwA7jfppX4qoYiEGGhYKsRj/WPveVRzU+aQymABXBUI0tF9QOqFYKbL3Hd773rfHgPdcSdv1W70Hwz3sDPnVQVNmCJjT6m0pOhBVpwKP3iqN0Io12vEqld8dlZtcanLqBr8uNkXAo33SOdbtFo0OrmW7NHEWok0b8KP7r9gmlDRhx6AcNfajxY5Fe9BXkWb6nWSEX7FwbD8HZXv9COxoQq/jPceXb7ElfcSZY1quTIHiLWQEpToGPi+MhLrdxWi4OwrOIeHeDrRoXfe/jxmnztRSFjPcVh1v3cn9mFEknihcYsD0i9/+Cp2Gcajm+G0SCvzKvmoFDU+PoY4+/EB977IVYNV1v84jDealmxPV0ZMxP6fGkuk7Gw7QwOxrmMy3ZeIJ3pYoMUu7wZzBb+CqDgNAvKu+hx2xeXmHC7RqsklM86/vht8+2Fiy51GuaRdFAh+pwlUMavFq1SQ7tkQx9Q/eQ94j46c8+G5enbsY7j3okP//xD3zlDgNpDWN97PFBb8/KCfGazaNM0CAlS8lV364ypQ142f8NOoEDr9emIH9354I0o7YQ5CqqAjAHsaWCRndEyDY21Rc7LDvt6MGJCieD1CIrVIaKfUCaFXykvePPISCjjhv0xRibW7hwTc/nyE+RCs2BPzRYmbgyGpUgTLi+WzWXvTuNilzTbQM5597LON3wDtr+3DMvJa7VsdL1XgXdtERa1yJiBDYjZr07cIQ58YXaPe2kqt9FP4fTKgLbabsW3EVEvO2194y5ZoVNMzlAnA2gkp4g32SeqvsjipyTdSrsKYGV1XorL9Sqs50/Fq+pelL9xwe8grMmF49K+OH63KGToG/Rxbj3ztePL4Dce+cxx8GcWRFIXdJkAlr9of4gYF/ZV+pDRES85cG74437109WWxLx3L/ZE38L28jmkZGZyeQzL9447feKAOyapZeMRcAxX5esZl8hDjTgEWFIo9OVE+BcGS9axjwTerP30mATxZjCce+2A0cKQ8zReCPUw5yxAMyt7RnP5soQjsOWcy7GgTBeN4anIf/Rx17Ig3t0L3Z9bxKAzfvcdmnlhlaf1llhS4M+syKSzQ7PzqcyDTqiNQKo/8AzF8dDfldUo9UqHLg2Lvwxf5ThYxAo5Po81kqdJJ07t2d4pm6ghaZli2YlTLyr2bZIYwIt98unMJ0/d2SGw/7esUWWpWZ/Nj+vUtGy500MKihxzbarYtGobq6T8J7iRXk0gwWHJobouHk8Vl4nYyH4hZK1Hjofz8T9k488McmdNNhy5VUOuDLsQUdY6Qp8Mx1sFwzmpRN/aHF52gLZIczdYJE1IR1j7iO7MQXnhC+zr+6wXIiRNFVvwEjaGwM3kplKvlJa8yoJ4p9Bs3/44cfi00++tDutYWsCeH/2c8/GuVZlSt1e4GsU+/zxSxrtstLoA0Z/Pf8FBKbvj/n1HAcBPKV/0AAdHIFvfxGyjzpS5hq+5laFZMbRuGaB8v1ZlN9q8AQI0qweGg4BvKplX4Kjmrnkp6XcHjD66Ou1i+CXGxTun/jM0/Hc9cvdQPc10S9gvHTzZEZ41cngGwCB+3Aswdf33HmcnBjoo0ErkRl4lbFqDB8PIboksi+9ss7wtrxHo5hOQlfa6ZQt3IpE+yW3G6WjThnG0egkJ3+nDuL4kKvAR622Ut2ofc9/zxU5lfbUOYUtpLLMtwtRV6n9ps4F+tR7NSiqNtTWIz70iSfjFx553oIhq0ZZQ1ndwgPHCLiQnz3IsHXKlIghP17/mjvjG77s9RER8Yb77ozXveYO4i9trzW/JrjFToqIopMJe0TE3XccRyJE7i3L6ff5ZCY+XHdUB1+3ilTbdcDBtUVQO+2QxkDLURjOz/roNl3g/SA0pHPWRJK24y4klnql6EGXLXNf+CfWSHUBOYE+Cp/nPcDOaldPLPyNP/j19ixgqRiGjfwfvv/tgoOY6GisG4NZIXPlFoTOPoGPLQyf1O9jfNg4f/473x1/8lu/alxL+Qr5Qai1wuPVaLeVE6+CLcKFXW0qQLFnV51+EA6FHInywf1zLiiLZWk5jUg1GDgenUrNwmU1QMK+s0GjgtAZ0FEpiqE4ApaBaOjfD0l5/vrlIFAYVTWyBkVSJUWXbNwiMECDqNzrdPTOMbDaEv/gZx+J569f2vOWJRZHO3BPDJUIV75Q/DwEZyWQuPY1A5fC8TALSc0g1AzhDMtAVDrQ4hwfhB5V+FhENehw5Bway+lVgKFKwp0grsN//1Ofj2dfvknDOvibqqY7HquxX0+g7z3injuOY84HXyMYXgpnHjgkveLEb3cUNbtU1hv30HdGoVvy5MoQzeytMQzoVowQQcd4zzMlapBrJp5dunGgfTIgQDqhknc+0flADiCijSlgJiNYUE+gpzN3bbUn/iA0GnBUxspwnzzWKBgIiso3lGbX9qAVspTRNJBABanGTMh6HZrzZdKF8pnK76ZGSEtdgG01VSY1o6vRJ8qVW/j3tn1tYtm0/3ouC+amcOu8gQ8YzpqNp7wB7xPH6P6TT7yww01eTPkvPIJ2TfCPhj+bg7o2DLvTtMs+pRnSv24fioi4CUf9gEoxNjiX0+Fp/Tz+e4yAPWQNrjXRR6ojVV/XTFWVGz/3X3yr4Im4w1z+7r/63JhLE1ewkY6BnepYquysW5cAO57rvcd3/Ma32ns6zuinp1w7bRv1HyS7rJee32N4VDre4fy5/+Jb45993/9cMD3rXS8BFkM5OAc9FNQztC73lZdaWwR2y9yPLfavaQAaOsRJQ2lz6fsRd+06S8fru/Ix/amVkbIGSVeyBSyDCwYr7T7MJ21RyNNit5DfKIPASxHDlutXMUVwvoedsZtct8A4bJOogQTat6TH8X/IrT/xga+M/+r3fZ3Mk/S1goy2xtxWWU6w4jd9xRuSDlXWassqJNGDyl+KEzRk/6vtqg08hGerPZI2m8yxJlciKJvUxrZP3R5oF9SlBXznDvzUyspZF0TUQFXFgdq86ryCBn7T2x+a3rs4uhzAJ0kjIu64cDnFIJTL+6HnZdtKY1AOvoZuEWISp1awMGDdQioaolZnIWhI+RExxmD12Lj2j3/hscRDDdCe29r1y223mRPvDNl7LL99jnvjlwqBxjoy6vQOmNkep3FGMIqtQg5OL4xGMxxALI3EFOFZcJtPkGkmQleF0ufncy55T7KUohDuOB7M6D6J1FIFcigEqkZ0OpMpKM5nvQA7MpNmhO+4qhmBzz79UjG03alWo1S/R62lYPb92JgzMkkLi3s1KKK41fG5nSOm7Q9AQAvQ5Xh2kzWBQ1Y/9fT8ntVJ3GFtmmScuzrqu8OyidHemFFXRxjo/9hjL5iD7nuo5gyoKqcQnP3LTz21bzXhPZ5cT7pypeYVLPqe0hBpTnGmAR031LFeyDJtfc5KD5oh7+a1pqefsnzfaE0UNxbaDW2hAf6Z3z6v36VXPjsUYaYyDPinoSs82HzdelABaenwMnCxQwqcplG8l9OHGBq6b3u3cU2p6fpH+MFeW9/7gmGt2QzB4VgvZomHsceAVsXx6OtAXuqd/fU56KK4rcHb3/eb35bBWi1HruWL59S2rrcasD3vU0bB6FPaAa5SfhufifxBf/L3f/tjn52Ayz7xrK7NgUZrH5FFoyN1xCivfGwN9pqxLnyomSblrYjxKUqdc8q7IO2sP6XEaz/9Zz5g9z6BYMb+yIc+/mTcOA3OSVmGLEqIHC36tgZg7rp2zL/vueMYD9x9bT83wj/O3cLxjLlH7/Gutz6wO4e+3nQ6Bx58uwsMysFfd11j2S++/AADtO0yAlsbNFmh960MvBgg9YApwHLXtWPcvePgch/34jAnGqo9NsZd65JDc6cQ8qTvPIxmCYAzfKMHr+JeHoiXupUOKmGLCeDBsyz3Z6Bb+de3HFRrczbyKYeVDjPwLO9pwGLevkLnJPEeVzes59rBDJMtvUsAoqmj707gaYOsHv++OB5yP7PKaLU7a6t0UnGn91lN1+Kua0dzwFYygtvCitzOPks5veiqkwyMP++6dog3vObOnCvghMwYdoLounwf9zuG3WEZyFV7ZXZMvfrj7mtHo5naNKhgFVup33mtiRyOGHL0oXuumV/B5yKD4vfeeTHJjBpQ9KRgsx+l49rHSQK5ypa4l8/A3o020ajKNPV7ahUYrsFOWgZF9nn9+KeeTtjRNOjzarTbyonHQlUndCUfmKHziC8IoCogdRy+7d3jUxBwxKb9dCGEs6nRSeNH+9dymUEsbqTWrAMM5C2dCygUZg+rwEzDRJQojHjNzG5lziRwp1BVPIym454ozYrHcDy4clqfkot7B1ge6mCW59QxRf/mhIviV4YHXoErPE9FqY4wgzxKL4mXNmej6n7G4+GwOz/dBFMajzuc18SJUUMd41xuLCmHoR1Bp7MabtteD8VM/KDnd7zuHjPmaNCQl+IK4wplTZ944sW4cbkVwwuZFcKuZe0wygYvhfR5kKBNMXrE4M6xhO41uMFKG9mfKIQzgiG1dM+zhVB8Xd5tO2CAr2bidf2Vf/OTT8CjOBDmbO3vn7bN6Ak9/6Offyz587HnrsdPf/bZZUT7eHAlw4BRTwWkDYofc7i2Bx1IDe6wA9DMzicNjWceefa6HVAnZDXga04LijcPurhs5vMq78UQTViFxhYOC2UEnfn77roYNAd5tfGZH/34k/HcyzfZ+aLp/LUiBJ9Lyj2jQX2hDtz41yxzmb0Ne1bpK38FjzWoqg3PnyunV4N92xdP56dbt8CPrnt0DXf632gMaqMMbPnu73jXm+19tPrua+68sH9fEwMb7aOPPm+OijoJqiNn3b9e5z/8TV8e/4/veV/ccTzEzerENzlgDfPb7ZH77hqwPnf9MpwF8fyQN1nuL/AAR//pN31Z/OM/8c3mLGT2Co5iYPsOg4a0OzyQdip0ES2M52ulUoRsdZDAswYn1YjP7LKch1NtHJ0f5dX4/Yk/9dtCzxvILZCAT+Qytqol3lMXEMsIIn3ne9+ak3JOJP2rjKDdojYGcVT5S2lH31slf2w8CRp6hpw2yUqWrSmV94Ej2jTkZ93+orZZXRPVg0hG1Iov4FGTTats5VXw6sGrVY7knAQWz8STNjXIoPYG58m3EICoGVo889/+oW+I/+gb3jGelUPwkkaiT3IEf0Nfc05iY+8D2KHOTQICsg3q3juP5N0rcMokiY85Ocny7mvuvIinXrwZL+0n8Ft1T6z0L5ttqwmvZKhOrsrcarhYBUSb6VZtet2qqM67fr3JEi4i/wlnt+BQbXOFh24naTn3V6PdZk68Z32fe/lyUshoIAAVhDTivFxLhXaPiAf3kym1PFvLwmaHgwIxsxpBBtD9G5XZcGiKGbe9mxJwheKOs0b0OGcSfzrcEo2k8UfcVOEIhbjMzIRkZERZ5LyCmS1X8oy01aaRTRUeWRYlhqsa75bdPNARq8Kt4l8DHVr6M0rfRUBhPSCMs7S5rFdzmJAV9DWcnd07rx3MiUz48P3fmonHPXmemQL2r0Gi1+77ynQfuTpBujZTJn7/xUny2lTIJQxiEEUwS6k0m0bZwdfP13SdiYeA5j3VBlK6LXCqA5fX7KAilmZZ4KIoX90MkAfeBO/lvAoe1QhMB07k1s2TBzdcAY2/n8HhVgs9wsP82DeCUPOBVDPf0JEgn1n2PHxNYXho1zDGNKOQ44ij3mUxty6fmGuEIQ3fYjD3LntScd5ApzHmARlv3M6Avg+Z3dQKqt5HZcy5Q+xWjQYer21C7HoIlOIWvKuOg5atA2cRHii8u5QEaxk9HDNtAKUaNsCLBhlSfpT31YhVJxxyA3gY89Og4Ojpfe98XT5z6j1+/pHn4skXbtgca7ypBgsiIn7i009nGX09jChirJ0GBifDMlQXjJtq4NV2x8Uh7r3zIl5z10Xi5O/8p+/PuWBLEZob+7i2Nh7VMVLZr8HJt732HtOHCmaHrD342TU9qCcpi5jNR2uyPhElk7n/yfMK2m5PdLMnqu3VgoGxYSeE8Nbe18EDT2gP3nOH0HFLuRO5TuM56BTIsnFtX0cE0UT/3X83Km587gNeBLY82K42htlOizkfWot//p99y1gTmbtnBukwZkCmPgOeEhk4ttVwrBVPaLMEU9o01KmoEFMYiFMiVKsPtt7jtPVYndKtfdesLZ+hjqxNz6zQPu39oAxbbpfbec6C9I30MslmicWpMwkddt9d11Iv1UCh248MqnAtSTtmm0cN+srsxJbR8ns9f6E21d0neUYz1oqLLriIiPi7P/Uw78u8dJtA1dcRlAPslwMxwMi+lkEd4T38boMJs7IaeqLaf7BR1EYc9o7rwSZwjrUgfCsaAv7+2G/9cnk+7PnDleGoX3q7zZz4EsEJKqna6JQogZKB1MnLhd+NuSzv24mYBOMCRQV0FcYq7LUMZwWfZUdzrqsyZM/omlFWlDWIf9v4mQbuQQFcFN7JWDJnLbVHaQsQeSiMlPPaBSbhFCNLHIh5vVg6ow4f+lS8UOJ7BQPwkUZnuAE1+pGyeMxB9s5BGEMptcZTonWcKdsVDgOCHBAG2HMLJ5S4kgPBRJEDhktZSzhnXGc6J0k7Qtv63lhTWe/Eq9KtVGV0V6zINiJCrW3KekVdE5YRap962jDe04g+1gYvUUAjI+QOhhn2wkwYez7YTrMh67X0IGDEU7vjYQZND5t/8s1BFYnD9blnXoon5BNSvUd832//qoTXmyhKuQqaqZ/4Iq4Wp9MHHQw8D3nXg/R3KOu3XFMZz0vmHQbjDeCgh+3Z1wyQ8u7gM87fzlHodH7wHrcxuAKv8kq/a5/0tNIlZwzTKpMUPxiTf/N8AzwfQUcL78IBwBz0WdUPf+IDX7W/Py6ctp57FVVvoKkxMmDpRki5r3AHiPpQ8adl0pHvI6iM/iOYacL8tOH9J164ET/+qaeLY7Uw+Mq/H3/+RvzIx57wZ8pD9XBOPFOzPDa/V7Ck/tZ/8v74w980DLyH7qFTCEeh4hhVPLi2mphlDwUeVJswcK1rSR3ewx0+LdXWKiI9I6eAsOtPrpvei6ATDzhVP2N9dT8ufrHOH/78c3H9ciu4go4UWGRs5VeF5WOPP29w6th5Qrno1tTvypdiOzgeuZ48eK9RTybvzs7q8TAOe5t1OPW7BvrA8yrnkMzBe0gUtDKejvxf/b73xNQ64KRdUOUbtr9pcIKw+Jr8yPf91njP2x5MO7I2Pbx0LSnXcoC4m2lu5bQSpn2anW9A36auK7J86z23hdSm8r6eHxMREmTG+LSl5mCPOJoGc7MvQM2Hw7lfEaGBr5U9ILp4t+3tXrgO0Iqo3OK72QucQ+GbijXdVgMbqgkNaZfAh+oSGW7Sl1r5iq3Mun1Lk2Ck5yLHyzOQb6anFvQF3sOnBZ0u5urOW9luKydenVi0c+XZjMZL+VBI9CZCiHG009bj8edvcD+oCFUSthtHGpFTZ1zXW43OSsxgNo3Eom8I/YyoBhXho89dn7YSYBw9DE0PecBvEn2n4atZDa8+cIWq4ywZqXukcTamWQKjzefqwlGFwBAsFIDok/cwR2fc+v5m8/OADteSAnis6Zypxrwi+2f53HDuujvOwcBMOhOabW9cgxRkYjSBBvBMXRvizIVyjy77VHkNzyMavMJ/BIX3Fz94l4xDJdrl38pzits+CJJCP40lpwHdmjJFYoM0rjwFfGbptq2JG8w6L45HZ1XXUo1NDZZURaBOWp4I3RjIqY7Ozzz8bDz8zMvxVW+6L5CNve8ufJvWacrL85rB36NbKbvCXuXVgJM0sD5wa39fgiGkBfJZDXwofDCu/cRe0pmvjcNAA8ydJLRjmZfKKQYdC3+K85m/BynJbev3ImIuQUafoTJpxnVmK0KCDWJ0AiEdhkYw+6q0pMjCn/fffUF8xvh827WjnBWwOY7/t7/tK/L9nQVN12hfgFNpwfnR++8hQST5PQnO8RxhIE4BU8SCp2LdZmeU72GbRB4UFaSv3vuyKg7y/qr20L13ZAWEZr2qnFQewT0N2uiCqoFuvDcYJWGHHLe+9meTpvF1hC7OdOAeK8NwGjNgVd3hmcy29z/uQ6f/wiPPedBK1qIHt2wA3x997IX4uc/zHZ1fxIxzDQhv4JvymP5bcTZ0JmHRoA0wbzpPIHA7wJMjamPo9rWKKx6wiT69oiyrGIDThoRLWJIF+mJle31k3y4SEfHae++I2nDPgt8h9kfH10j88LqUoSJXIyLe/MDd5vzXRhvDA6f+UMxMu7fs0nRcHYNO77ksao/IKgyFC13jS0gRQtPNwfqtX/VF8cN/8put73ooKPi6JnpaxEIHyPRlrvVTmqyoXPC10PSqEYZqF+jahtFcBCv7AMnTL96MG5cbbW3gRZEY5G+87LLccaVyWFsN1gI+T94IvwmOtZrlYIASD2YfBO2V+ilex+O4CBmvn9RenbN0K9vt5cSHO3R3XdsPbdsifue+ry4i4nX33hEv3jjFC3tpHQ+tkgN6QBzB7Oa/3j8ppKWyw8iSPRo4rVkMLzoVNeo0CKyWR41rY0IpxLsrKy0RhZBEX5/cv+M6f/qtZ5/pWGVU2EvCAB/6r3uYDd+tGnVkKA1cYJxabmf3iuGQY/aI6ze3+MxTL6VgqvBEBDPc3R2+CK4pGtZZ+8l9oWW9MksQFAIUAIQFTm6tPsAc9UCxrXdR4Br4EPhSQARxFqzwYCZeggwi9GuGBQYHBbs6PLqWtTKB6/DUizfiuZcvrV/0qSfAomn5OPGO9ZrhVOGokdw0OrvPAfymPFRP+8f7SscJH7I0CyNVM/+zQe4lclqSX/cHKm9jj2oewCS8V22QL3ntPdl/3XOea2qKUlszGtK7cLbq6b9mkMp4455vCUA/4Bc77E7mi/kDZ15uR6gUx5iXZvBzVmqYFAOAlVToww2opJNN8Uc+hszQrwuA/yve8e6qGf3L1zvQZ9K6ylORERiX+yvd8VgFiYDvO0pm4HLj2RrKy2jYS0465j2VaXQm8AwCEO7MzJVXY7D8VnoaYqsAo2+nsoqZaiSVedSWdCWs+NzLlwYn3vfg+4IOfxEGmsmYMj8LLO63DiaTekT0+OxT+Oa2zqfKJM5Ty6QF8MCWmVOnzs93upTb7r8WhA0PTNr+5Drn/aHPPfNyPP3STdKHOtnd8V71B3hSA0Jacgwc5Zw22lkGSwY+ul0bMhRePINyVr1QdBD6ga5XWdGayhbAt5BJxTlQe8ccdaWL7kEGtTlgl6bDIlnTF2+c4jr2Mi+CIHogX7mRtHnt4pCZaTw1BbZkXVuLpK/aID8wv3Pt3C3j+StYEOtm1SLF7vNPzFGWb73HQ/eMgMfvfNebLTCl/VwcD/HWh+6xceuhZrm2WfE1wFYbWWVe24mo6jrqB1ZU2tbTXX6qvtamcz916m38Ogzj93/6498U3/rr3xQR4zDphG9/9J9/4imxd/okJyN8T3yEh+IMzOa2sst5hzXFB+hIErVWJdsor3pnIB5dP/XiTcq0GHQA20sriddfRIBOpmzB8/8mE38LGwUiEM3Sp7e9lsyHvz/62AuSzeOCbjvnrQR6hJSgqqGoTgUehFEm9+AQ6IIn4eUV3bc9MilPv3izGBrjveuXp3jp5ikef/56nLpHT0VfWWlxNUjTMS2fQsmyFRMwdLY0q1yFQhroRXj3rqdzu/DG83VP/MW+hiiTtFLQcKWpGVN1+PJe0DjwCGWz9UflQxf6AHJ64l+zUjwgEHNHaXkPMr9/XolltDUqP/Dhp6mrQYXns7Q2jRmvHtAMR74njo7+ZlY/VJHItoJd2P3Tjz4hn98aAMFRWcg/z74E8abzwriqqLj/l7C7YaPvuYFcK2Ci9+K0jt/X3HkhAQilK9ATAk+sQNF5OXwSgJATbiPCKoT42RjhpZ33almf0trqUL4bp834y2ye5jSkrbW2NLzglEWoM095Wp0e5Q016tR5w7v5/N5PC3x5wY0XGopzUEON7pqFimAQVjOFgOfi2KZ9dKNPN5S1XE/xqBm4V2qVTmJ//879RPEXbsDQjgxCYarP7lkQC2wJr6rBkbQnM9KDmSIiLrdtlNOHyq25tdFRjlfngvMMiKtIp5+f3CTNcs0FD0F5oLIbw+Hb6YZLOKgLa2ZVYr+clzQNvNWGeeXnEGOnwwUPnWsaDJ+MXOGNzB4KL53r6/PPvmwTmtaw+/PDgZbqiK6OC50XyHTwjR8kVhzhhXD/Pb/pbWPcA+eDMdKoThBdfp+2Hr/xSx6MNz9wlzk34IkagMY904MxG88rOQ4bDEER2kDqNCzGE1280qmtRTrAEdRHDg//VptDt7vZ51ADMskzronHnd8efublXNv/xde8McdQuVUbzzBQh55ycuvdDjJFY5JKdEGQzrcey0NSW0gA6YzwrNst7N5Cvk1VQhGyHuRZtHWQfrY9IyJ+3Rfdl/LnCwnc1T3xh73jyuMt1E/wMXHvoPJx71+Dy7WiFXb3uW0MgKcGbVvzTDLo/u2vuzfuvBiZ5i99w735LNpveMsDZi8Cbm3QdZiXBRsXulwDFhV2syfyeWyLAX5YHYpKl6rLddhRgULZguefeenmVHkY9b2grFAdddV7t6LdVk48Pl2TznVoZp3PKa41k9y7GhiuINwog5HEPtw5dqGDgIAqKm0abVUywPM//JHHI6Jkl/bn/8lHhmP7rz7zTPzDDz+2R5vVwI4FYc97ItGn4kcVl5aaeOY5MqOiTpRmrMfzNKo98+zR3ZXiPveFAYVnXc7kpTea9R2wEKf5exAlipP/mwtcdQzUKIbRg3Hf9MBduWCYI4w4ZJmBdxjmahBrFrVG+DEPdbwVH4bbgtAWPOhI1w3bJhDh1+d1nRMGW6PxXVGUrCn962GRgJ0C2oMaOWBo6TCVPCKxOs8EqbHKhME5UQJ9FrRqLK7K6X1LRQnICB2D53ULgeJJac0+dRbumP5/f5IHylT818z4qlUDR+WBNmRVpz3xvcf/+HOP5tx1PDXcQJfPvnwzSy+r86JgKn1WgwvPwegxubqALwMrSjN741cxKv2681kFigaAucWlys61/NYGY3ocqEgIKAFH+96/85MyJ6eBKl+Jd56ez2z9TLM1E3/zNA4IfMVARBtw6xrAcW/NHfM0Uns9KNQP/9JKmAxIHiQbWwJA/9d/9LEKUjbMmTi+ulU6Q3vxxin1dY6zzy0rxYq8+kX48PPnFEMCGrt+qZ+X1F/ra7c1nnzhRjwijrwFBdu6SqjvwoXOquoc2jtwcOZAJvV5xDrLeX8e8rsI1EUkfURQhm05bo93vfXBOLRmc/Bge51XSycJqk1pNZ/BvaY0R9uN66IViGuaSbXUWtLO5HiI3F/teR7whcmBDBipnXVohf+1qk7sjyKHf8NbHsjx6hcRtPEASZcDsDW2PmTFzdMWofhrXjKv8r0FM8+1EfarbbhzzeW464tVWwbi93mh9J28AGEW8e985Rvi//WHv8HWth5Ou2p1qxqy1JpEwH3VXQoj3gHodxyZ3dJEktq5qS8WNs2Y8/7bnMYxpso3yH1tb9srDvDIWx68O+66dkgYuKZus1VZpLbkQfgAMARkhUyBfxP/vVNeVdmXgYLGecE+qLxoibZwW/RKJ77YKuq3gAZ+13veMr13K9pt5cRH82gVhJAaEvtj2XqnY+UKHM7M7HzTod0z+OGGnkffSgS3EGyEOki4R0NUaXBmxBkFyrB5AFmnUWVwioCpEasdfXkPGaR5Xz7Kl0XpijGqTlfEUFgXh5bfrzVFsnkGTOddM/3q7+nTyvCJU+kHwg+GMwWLZ6dx0Ig6aTo2HWgPRGjZ7Erh1cACjBXQgEXqe/ey5fB7CgOEV0ZsG+en+OF4jPpXo4cG9o6Z5IUWZWlEADI4wb5wj7SH8nHiYw6koaVQTVzNJdHAS1YmCP2jQkGjrquD3PSgOTTNrOCeloGTFli2rwblyjlG/xf7p/OgZEZkmTLF3yPe1Ek+F0yhYdXy5voTNDAaXUU4L41WMxgR7PN/+OnPx+eekSxhyJqW+aNP/VvnrHwNWb7aB0052lIR59gHz66BvsGPeqhnFFmB33rSMmQg5ME5fEVEfOOve/0+3/JcL/Ozvp2uvJSVgi7lTpctQlJthTW/djGrfWaAXcbUBnwojVslVTCYlzICOm7zQGlWGCSs5CnIeJWrERHf843vXMI03hsPEcfrioLaVs8cymKAh1HFoXPW6qgvpOm5G+knyBwAd15LWmsJrVYtoIEutq3vX97ha+AphZPOxC53jmJ0Z9aKAQE9+ybCndoKC0+O5pxtjvKb8HTXVRGsylM+wFdXVvuozb5qY5Z6D7Bg/mjYHqN7uqnfBe4im65fbnH98hTPvHQzn1tVWKh+T+cgeC2f2ekL60/ZLlsIusCXNsY6WKMHfKF99ZvvD5uEND23gX155vLa0bcSYbzhRGG7XLd7sOtqUzlyzotXXqhtxXf1SpMO8swDs9eRoECCweXa1nu85s5jfN2XPJQ6/dzYE3zV8YNdBru4V8dbZIL4CVuPePnm2BdxcTwYjWMtqkzSs5RmHBGuybYX/Yf/Vvz/kW/+8v1RlQda/bhvhyqH5l1IcLJWtig6GQiYAwjTXHY5RPyR3jVo1oJ2h1bEeuWuBsbouyl86y8cAFemlcecd6J7/5e97sp5/FLbbeXEq9CL0DLYmRjRWB7VSSRBZygayzTQLuqJyV0cseKMaF9KQHhv/PbJqIjg8zq/0ed6P+GYT1FK4UKrR4+Xb245Z6JCnISdUHlyfY+7LvjZIlXWmlFXJahGp4K59RHh1MyWBgZW2a4WES9cP5V5Qci5IFOGB041aheGfzGGIZh2nEH4upBUuqIxAoXdgmupp43qu/Uk9F7g6/kklKbcE2GMbMblttneLd1jlE6uoPPFG6dorcXLN7c4bVtcv7lZgKWeCRHhVQcmvqRjdUw54914RHZB1gYNNKQnClsQquDjoFns7gEZZJUwgiqbNGhTQEMxMiNujtv+m5lPGPZqHKTDOH5fuH6Z1ReA/XLrcf3yZHyfwZcDMmM0nq9dkc0gzvx+/TSUzkFpTa+vnNVzjXKOvFBfU1lSeX68y3sJbrMfC9CEGLK1nxqIVIPkuK95zrlT9mWFhnzWauvdeN1gwJxbi+evXy4NjjrPVTln299To+a9b39ohxpGP+UgjDldd6xlbjEpxiNkfITu0VO5yuDcKmALWOqc1MCDfNOyReAfc9Rx0A3WQvfE6zrq2CjjVNzpHBZAn21KV2h3XnAPq9oFdJ76tM61FPeVmspj4A7zvHb0dYvQQFWVjj4u3vkffvrz+/woHxkQ4LtYp6pDMAID8Kw8WQUfQ3CUfe9/v+9LX2dz1vdUN2J21WbglqQ20/pCl0SjzEQQLh8rcOo9BPe04pvBqLXMjYj4Gx/6VHziiRfjc8+8nN/NroEw2Hh4r8oET/pAL3EfuVclkicSV1YROAJj995xkX0Dj2irhMtqfh5Y5bxWwUrYO9f0SyUpv11m2jgSlDpXxQTZsWq6ll9IM5ppgP0QvbtuxZkCmAvfIZw1uLpqNROvtjbWucJXHVusRdocZUC1rdV3gAxboUbpfusMF9RqL8y54vcdr/dM/PXLU9x5cRAaXdOXHcrX3N9ZZrNj1kdJVy3iL3znuzNIk/vXq91u+hq8Pn+CVudKP60n7X0h25rUd8BTX4gN9ctpt5kTL5/qChqw6qxFOMHognp0q2WWAQ4px2nWDzOJNF7UwWAGGN25oaeModBVhYB5Xb/c0lmr7frlKRlV97LCgUX5vZbzIcM67Y8NblFAdqdmAdUZ1889+Lx0P1d1FDneyzdPU/9ound2Mm4rjoThoQSBD1WiqsB1raLLXvWISYBqFluVL888GM+tFFAearZQNmbUNs++AhaFwaL3+zpCISB4VasYIiL+5aeeioiIH/rwY/HSTZQH8hu/ozSOsOscT1uPr//S1y5hV4NRR9TPNg7BiZVj0OaguA32qb/gKQ8chdFx7z3+wc8+SpiU3xZGKs4R0OCfzgvrUPdI63qhy4efeTkdKODhL/z/Phw3T55t17Wp2bJve/cXR0TEe972oMGotHrH8VACY/xHnUM18LQtnZOFvIFifvlyo6G8X4PTVXlQlffolrjDo02ex7+VxiMW5fQSVDpnsOmecQ0SpmwvxnTv4TIp/HCb6zdP2WfNPERE/Nff9XU04glotGjxX3z716aM0rm/9aG7iQ/Q7/4yIvq6PzZCHEyZOytYyDd3rPamioyoaxMR8Z9/+9eWtTEtmfIN81BHnTKCTsWq2qlWkmSgXOa+MoiYGSvXpye9r17+HRF5gBWq6NBg7KZs0dPA+xcW7ELzc0wcygz8yXkwKms5t92wVKezgqAyKp+Z+V/1UcVJHmwn/9bWOczSuMUnl44Fn11+yYsehNUS7sEjWOcB6MoJwnPKT9UJ1yq35P2qS6IEDQVf+Ps///avneYboXol9nl1ke2Oh/E8YddfBLb52UsJYO4PWmBMeJL22P+/vTMPk6uo+v/3dvfsk5nJMslk3/eQFQhJWLKSQED2TRQQUYEIEhAERVZZ1BcVX/VVX4X4c8F9BTdkcwEEeUmQHSQhQEgCZN8z0/f3x72n6lTdure7Z3pmejLn8zx5etL3dt2qurWcc+rUKT1+Kaw+5RCnUJZOGbnk+/FpnORbglT/Noyjut4AoKYi7agrVmfRbLDnu7+3t30Gf1j3INr+DfnDmgcNA5Mag3ifDX733FvbzOc6UAY7JmNo7wpTvqU2o8dzln9fp2UHa/PBDE5hWtpzwnfKy7rPRueX4Pf2vGumQdt49meDK188dQpOnTFIlyEcGOwncwOoR8+x8qTqA7quzDQ8df8pMwYBytCtDRc6eKiez6j/moZCei69X7YIFz6PTv1JGuNVvDA2ltmyUHvRrZR4QxGj76BfqL5P/8YljKgJIvyDJo55YxsB2IFK9ETntihrBZ+vUnBcx9pQClnfx5xReh8TALz+3i5DADLS8gNFnu7XLiPBtRF9asJrZuc2LXO6bDS5KIsj+O/MzsIVTerAdj5N67seUIHgbOC4cgHAaTMGsXIxwdjn79R0OeMKEpXZHnDpXq64c+unbZzQg4m5ssUt9MakAbYnngwJtoEFZlko3QwbrPjEYAz6rM16LE0uTHP2NZuaCPURvhWAVst029GC19LJAyLvhvZ5c+WHC+ZUR9EgaOYExt8luY/qY4F8o1y8X5sTslnXVK9xCi21i7iopNxoYAsH9C7pe1oFoefsbwmu8HZIbn0k0AfbSILfD+0d9M+Tp9P+Kj0+Ue7KMvFKPB8/SDiIGC48PTa4thccPqqP+j2gBcRNO/epyMdUvqUH9dfRzcHbqk5zcK8q9l60O7HeK8rbsR48A6UQEVRfdblOsgCeVB7dDlPmGA8tsJlt3Dbo8PHD7Ew+fBw/ZUAkwBG1lA/OGqb7NaK/p/xTPwOAPrXlxjUdnVinr5QGmrvCcn7+lIOUy6z11p1CK3HOrGFG/nT/NAUxPsepeQLmWE7vzQ9fQErVv37P9tj0+GubgvJEotfpfLq8MpJWG12KgQqS55nXuSGfxkCjzAUIalqw588NyKRShkwQLVcoJGbhuGZi6G1sTub/95nAy7fX0bWUZ7oa962rwLVLx6v048YWV5lthSUioFsCNo0/5BFBtypFn2nxxskc0OMhT18ZIlQdmPMuYI7x9HutZJsLG+fMGmaUkeZNW47j85fy2GKY++tDgxirI5pvuVcYX+ww3ZhDeUKVOboVTMk/4eeMoT3xhVMnG3mKGnviZFiP3WNtEVRpBZ+ZSN81xxFXf+TPcF3n47h9P/tC4dzyEbZx+90H6XuRNkT/VzGNEnAdS0b1SWk3Z/1QlgoGTV5OD1pRpzS4wUPHpfDQkuXzCx+zovniaWV93ygjtXuP3WvXPZVr1RtbcO8z6zBvXF8M6lnF2r3peetKiy9s0v/5vXw+sl3ejfs9qPqjrTZ8HuTeXD5rx2ocN96Nrn8yBpLRO+MwfhNchwDMcVFW4osIHzAAs8J5PbsmG/h8UGUWHuhONmFAXZguEzqBUFDhip520eAKH/1fN2JTYND58o3fqWAk/G3aEyTjjU36eBqaEKgzr35vJ8u7/r2tTAJBVGPb/Y9b2mjAM+rDFn6sCY/2vfMVMQ6teE4b0gAAuGjuSHVtYlj/HqthO30Szsx3SVXmKYWa9iKblmLTuhkMBtwYo+uK3pdnPN8z3psZyVW9tkCwUpOTGfmf3JTUhJri9a7TiQ9s5Jl513IQ6K/IyoUql95OoOI9cKEd5qoDH77TqZSlVLOJMcW8VHxbCDGFraCMXlhGcivW9ahXIk1DC28LZPRyGT6Sj8GJXqP2nk4Fbus+U4BMF+ygvFQ3UbdU06gBmIqDVuyh0uZwl/mou51ZFj2Jmu3Lxh2d3jzJg9Ihdu3TLqVBfnUkY1MI4UIDE9AdWVG/S+lfUF6ibro6fdfEz+MvUBr8mg4E6Ss3Vd52aGziwirBV2l0hswyGGMEfQfdp4iRjbXqfh96LKHnLJs3Ul8L+wsXXoy6DjoVPM/DGYcMibh4queo9+2eN3Re7Hdn9U/qs+E1PtYGq9i8X7J2y45jalHRkYPre0LjkHsl3qxb9T38yHdUJ/x+fk8LU465cSLF3kPESOG740rEYbhPM4GR8sKfAZjeS/qZwUWuGNlvzWOffE62Mbw2wjv1nBa0d5rnKzNpXHDEiDBdXQ8Xzx1ptN+Ih4E1l9PfhqwFJiOw9qL3xIPl0zQiRAR6NrfxvgAw4x74+/WMdIw8OPqLiz61FUYedLnMeCX2i0qxF6X6D0hRZ2XxdZl9cPmKzU9WX+DehTZU1r51leoUAcLcu8xktSzwn3eCM9Ntg3jWB55ft03Vn1aewznPZXFlhmDXijEviwv7zHTX/R70++BGfY7v677kO37Lxwr6LXnDJRkKI1v+mAxJxv1Vb2zBo/95Tz9P3asxjfzMwMfjj/Bx2E+O+K/lsqDNUF8w5yed94gczt4lLUSQJyaXB+3Hm4Yw87oxH0H3wci45mgQFHOIz9O6foLv9XhgetVRCoCW57QxULdjar+PvPxO5Pl20LtsNuox2l50KyXeHqhp0rIjZ9ru4OQCRW7IJPjZEznvZMEDSAjUAqFhxQwbVeCibK5AAGxSA7tGCVu/5+WjO+JWrIk0H6jDfFEUU3vQz/r6+BUi2DNrRjrWbv988DefYShdKdOlmU8WajWbPZOEiuPZaq9nvVeodxJ1NdOToHbR41Y7/h5NK6GZXypHoEjAXYbYgcxcReftSEUBpijuLD/cCkz1bJ4NHqRDZVQugimzLFmed5amrk8rv2E/IQVHKTo+HxR123YZLL1wJnDuK7fqn2eH6lEJyawcJHAbCgT4pAZjFdzzgsF1fBMZ2yyhCfFusT7cKwlp9R5SwRGOTHFIedqLBtZEb68o7tjbjM279gW/Y4YZGovK057xO55Nz/OwjQWy8jwttAdVZipd1EaCay7DRbj1Ixt3Trx+DmfigDqmLISCW8oLj7bke/rI+MXHMVOJMXOjy8n7iu1BReXhCqONEqB4m2F9z+y72oiijv0LBRWXVZ6MByTM29fA6s4QFK1slqU99KwuM0rP6y/lebhy8TiVP66w2CcUqLgKrB5twZL+1u7ukewDAH76rzfx9NotRlp2WbhwlGJtzOVtpvo6ayuUZyXA+YHnwVmHDjHyHld3Nq7L9J0t2Af51+3XXIELKlgbl00ZoZCVeNMo6xt54fvY6ZoZRyS4t4Wu8RVW671xY4WrrLaQyYPP0W/00XI6LfV7lu5VS8YZ18rTKXxozrBImXVe/cg4ZXq66JVdHqA0yK/Zz42yUvrQMSaoTo89qH+0DlTfRwR6Ji+XVrCincQVFA7QCxP0HPu3/CQJU47Q441eMQ0Mpb51jY8BpmJkKjWAaTCKwwxgqFf6s76Pv70SnIYUeGhQXQX9pWdNuaonO1r8zr3NkefouTKqrPF74nRRvsAQBy+nKwgrHXNnByvV8rc5DtD/aOtNEpE98b7+5LLh7v30Tk39Q+XBtxeUdN6515LRdsKxv6muEsvm6cWuIA2zDvi86ll5cBmenEEKwRe13O3LSEo9R4+H6nlGHZmLmHrc0v8P5mkyAPt4a/NulSZ3p+cyr23kqK3IqLbO5yd6Xlkoe23fs99ZLv4ZV/72oJsp8cEnbwSkiPCBvYU1WC5w0F4L202aH5cGOALF+HQP1F433pm1Zc5UWqnjcoFGNxI9eHOXaoIa7BS2d5Y4Z9ZQlT/+nKyvFRy+SmAr3zRQBEcT6bKeMn1QcIVNrDyAG5+IPU9PArbRJJM2lULO5p37sH1Psz6mh13jwqlWMM39PT94fC2eW7dN1buhJNNeI0v4VO8Sus1w93G9kqbLEPyOKQthObbvbY48l9epUgrp3YDXny1k8ej0bIXc1+/UuAbPGsjsFaTgb7Iwf/LoMcZzqf3zvJPSzgUOHaHWnCTMLQTmezOMV+x3tmWV1zOtxKsJhZQFVWZmbGDtKZ0265MEEFLGOZ6n+7fbOBEaXcI64IO+jrcRfDO4V1VEaKQtIADQ3GIK7Xxflo5jAeMe/p5NBQA4eVrgcm+vxHN8HxEFxPOg2nYkOr3vUKTYJEzP4icH0Gq2XWf8HRtjhtXptbDFxg+YBjj7fu4Gy9sMtV9jHy6rb/V/JRSbXk/UxsuYcYMLxVkfuGrJWH1N1ZFZVxG3e0uZ0+9dj2VQ9WWWU13y+dyj7/Wt56Vj5gvbayQRJXDpVQde73z8piFVb8ehfqpXfQFzXzJX5P517SIcOryXkXeVDV5XlsqeTzEoDSLL3qVrHNJtwRzbClqJZ4K9UuJ5vhEKo+E17bHF50kzLWe5HJf07X7ku7Qlm9C4y41WxukzIHlFvzcik07h+uP1nnHu+s7zx+Uge07WxjNfyU/0HO1N5htlsJUSPs5QsEi+b9vIn4W9JYvGHM64ph7qb5WXVPQ+1xzOn8PzbssRaiHJB2orMyrr2rDIZUQ2HiCcm60guvaY5MJ0O9fpuxa4gnIF6c4d2xeXLRxtKoXh/c0tVsHZteB87rjcxCv4BB/jXeXyrXZipO5ZsokxWbmNIssXjsHkQfXq93HoeuRjLa+zaDvhfQKA0gsaqsoj9wTjb5C6Ee+LjZ+1FRlcuXicVWbWHqGNLrrt8TkrSpyBnLcTPl+r58Kcs7iXLE+RRALb64muAeY4ymW8rB/EBaN7lMc0PDYHmfGSeP5o7tq6e78hK7gWS+Pqg6eb13zaBrqZEm8KOC5BGDBdU/nKgtqrBrPBUiPiAzVgCRges+L7pvBCeVATFRPczP1O0Q5hD6S8rFkfOHV69GzC0f2CiYc8DGz3E0qLD/b2qjTBgyTdcfoULZz50T0n5HFA+ePnn/LBIx1GMrc9E/rUVmBfCylu+rlqImACF1d+3PtMEcmfqQCaLkwk2JNipa11ejDgZdCCXlSJCQQGnbZ9jZRPhPVOCoMRpAOkUPEANuZWBTX4MKVEC6euPfHBHyouAmtXXIDi5zzbWyK4q7FR31Y7ozwDXHniAzy1R9NQ5TNthty4dD2a3hU6n6arleGuDj1RkDLO0fUZN3izFcysb7QD3ncB3xjY6b2RcsLr217dcP3OjvJq5NmaFbO+jzH9ao3y8L/tUnnhP1d0eu4aaj+fC+XGSnzWj9xnCMeevQJqTdpMSfB9Pa7ydqHyxyZyPr6bRjJ3O6RTEmisJSMkN5iSe16GGaooCB29L67Qcc8Zsx6j9e+Fz710/mhMH9LTqHPfqi/6nRLAPNMl3zQk+5YRQPdr/r6i22vc0DswyhLOg9yTCh7l3VfGa66gU59T9c9OdeEKP4fKddMJE1GeTiUK0HY7IqLtV/+/V7UWlLlBXQXz4uOdWvWK35Liwjhizrqm5xRPySGuIKeHDnMZNWz5IJonlysqN+r4vo9HXn4Hf3pug1IUAT3Pm8K0qVwlVQGdCqFyyuUd6HdtxsMJt7iE/6fGao/b9B0vn7N/wbzX6C8OITyl3oXOo8+uA8Dli8YYv1H5M+QByxvRqhteb9yTia9+06c2WOs0tSylxwPCNd4RSX3HHh/1IpO+h8tHJE8M7lmFyxaOUXMxXYuDy1dx7vSEy/vBVnhdGKcbORYR6PfmnnhPyVN8vPMQlPsTC0erbWVJPd/eisF1Ddug40P3f/0N5QWoDD09uIyi27Qp89G1uGrh45rva3mdj2keK3Q0sJ27PdnytL7mOb/jdWsay3RafLWep6G8gK1r3DOKLySaY2u0L6pFAV/HneHtOMNOXrCxjwDm80NtZUYtqLQH3UqJtxsXNSI+GAHAv9/aqv7m7hdcWE952q2YGodaJTMsRD47KkQPtDofJOCw4D/st3xVg7ugckWMKyU831t37zdW0vSKHdT9gSDFGj8bVOEHwVqCI7CiQiSgG7YtoNOT+ASi9pyHV/kZp+q7sDx8H5weAKMdyiXsh9WqBX4/OpFk2Tsx3bmZJwSrM1ux4vVHD+TurXQfXwmjLOhVTnqXzNDBhGnKAxduedvhq8O24EBCDtWHzyYEw23RdRShGiTD56bMMtPvuIJCz/Z5udi7fmPTLqPMfCTUQXuYVZjVlbG9AEFdfWjOMGUJNxR8T/9eGeB8qLriq8skGLrqTKUH3RfLYlyo+YqRD1PpNFzjWP917anWK/DmMVcvbdiOd3bsNe9hgqhLuQPrr1kfOGX6IBg3Qbchu29w4TPqBmv2dfU89Rm2k5QuSzZ8qdz6H9yjf8eFQ776zR9A/dVw2Y4YGcyVKZ0jqHwZaTMBQR3PxtpzlrVxnnc+oZP7PHnyJArMaizj17QrpO8DlywYjUnhtiY+LnrsfpUm1S1shcPMr6vtga1weV4wHv9z9SZs2RV1F+REhGnqJ9DCEX+2+luNG7qs9DsAqCzT7sjB6n5U4TECqIZXeT+1SQxsp8bEgLMOHYwe4UqnLRTT2KuNjbyfJK+I2xiCvT30QiuXOnCnbmtUHoq/Q9cWju8XUWRc9WEYMCzBk4LIKVg/ce1nDvotX0mLrwNbKaRxnI6vA4AX3t4G8nagPsED27nyxj0nKE/Bdb3gYo9Xuk/oPvXO9r3R8nnWSrynJ2A7rZnDexljhW2wMNzprRdlexDqv5l8pOZ7vW/bNILq+VflFXpMMw2LqoSRMhN/em698X96nu/7qA6VyRbby5KP4X70nbiUdF6PsQqnF60zni9dGrM9u+7jV+x2Ye+JpzLzccCzypkLW9n90JxhWDShn8pntM50PdC1iDHJHrf5nGXlncuWHJe8zt8Xny/4WE3weVcfy2m6ovP2zDHkKmee9JzF07Qx9CxQPwv0slE8pgyrg6yv3ynVK+UnkCeCT5c3KbX1qQ7vZi6vBs/Rz6wuz+BLZ0yNFqBIdDMlXg84wf+DycQlyBLKhRjaikaKG/3ODkykLe36d5Fj06jhGA1VfxLKIpsyG4bKXxZKweGXyHOJDyK2OwhfweSWb7rmw0ddVVlYDnMQsbFdzmhlpiVruVwZwo9bSbDPCeYDE3V6tTrtEPTU6itYvVn36EEu2gFToSTFjRp0RA6ViQe/0G1Cp64mVlLs2WVl0OGCDeU9dCtTdewzi6Ony0IClFaWyEDisbpl9cEGTu0hYNefh5pyfQxM2nou5c/wTvFpj7Ov2on9TheO76uVH+5BQXWbDvLSnPWxbfd+Q7ii9k9nuNLkcP3xEzEm9Ci595m31TtVx7FEhO9oUDIqwwMvbMBLG7Ybv7MVHN6OOUpxC/NpGmTC9so6rbrGDDgqLXXNvCfIjXnNPO/Z/AzqwvTmcO2DDq5FioTArc70gNDpmkLttCENKtFgH32YT6YY0O/s/PJ0TIOJ7jv8/hWPrsF/3tkJMIOn/Up81jb5Nf1OtAcVYBoJyXjIV435uM/zrM5D9rlxzlQaKD/8d7wezf/THmETqg+XMKHml1CL92FuxaDKC8Yflk9jPA6euK/ZfRRRHFzgMsdoc1+zzrv2jlBGQKu0ShhM8X3z5j0qFgEbv9oKlcVnL4+vhFI5fd/0piMKXYkHgGlDGgzFxUMgHHrh3EOLBABbPXQIszz6Nb0/qkdnWcHKSmk4xhvA7OsZ50q8bYyKfawxB1Gb4CvIOn+WkdkLDTp8Dgrn4lRKe/k4V+LDurTd/Y0tXeGzd4WBE1VgNjbG6G2E0f5pb50M/rYUWpiLIy55heqP93VuZNfyma5Dw1jm63rhD3B5NvF5LY61m3YZ/6ctM76vPTn5vGIru7xv0lzlVOLVu4lX1JN6Vj5DFtXrwUN7Kvnjry+/gzfDfdOEXmAI2tuWXfujimZM+nHYfeq0gwfjqDHBKVauMpNch/CTj53mIpUeOWispIUvnq84BdjwbmMlpK0z/F255iUOjwFje9A65zNmPLUNJABtz/SNOSDlyAPfUht4m2ljxvBGOmXLWm2nT197gAZjhZ5JuIzI5Xb6bnoYVNssl56TgzRiq6vodCslXlsjzUGdC2k23OWYOtz2vc3aYg7TGgaYlnblhpyilVlz3xJNlNx1hE+02ppmtmLfh1oNtYNnjOlXq13xDAu4eR9FIOUKsz2hpDwydEQFUcoHT5M6jXbTYZOnJXjxFQzK2+p3d5pnxWaZ27mvrWZcsVVHollCrmnJtjOuFTxjgmWTI7jgHNYVCaGktLdk9fEvehAwraA8DkB5OqUEE8Pd1xAefVUWH3B6WtD74e+eT9ZB+9BCC70HanPGkTVqwPbVPcH7omrlbo+6HcOHMXCmUqayS/n5zrmHGKuVVC6o5wR54UdnESTM2WlSmYFgpTq4Zno78HfKDWhpq15oBZCnyRUIKr9zNcrq88H9/NlRAxKVGQD27M+iPKMVE4BFyA7TPGRYT7ZtJdoW7Mb9y6ffwpNrNhvjW9oaI3QTdwhWXtRIZFxnn7+6eI4hXNhRsF2GCFvg9sB/ZxpP+H2EHq/iV0D5WGYYSlKe0ed5v1XtmPVnewxTK5PMUg/o8nDB1qgz1Zd0Icy2Rl/bQl10xdowQrMx0RxH9PPIs0H1a2t+OvOQwRjfv0eioMbhY7iaBz3qq+Z8mFXClZ5L+ZxK7tIAX4k3+yvHiEWgPt05z7UKNXlQQ/h/Nraoe0ylhK/aqHKy+ihQh8evLp4DeFpg9wH8etkcJfimPC9yFKBLCXIZ5649bkKYZ7rmRe7/8ZNvYNUbW4LvrP546YLRaKqr1OM8gPdCT6B3d+xTafH+G/w/vrwRYTqsPz6/Uxr2WE3b7uj3yqOK5kr2bKaHxSofxj1h7qvDtrd1t/ZCUXGM2Dhkx67gZ3ebRgadtjl+cO9Hs94Mt2+P5lw9JgVylemRpu81YwjpMS3eUySpydrXuJx6+sGDcN7sYYbSaK8Eu8rlUmz4GB83/iS1K5/1HwCYMrgBlWUpjO5bG7n35xfNRllGJ7ZpJ7Xl4DvX8bf2HO7OZ3wG3XMBawvs+3d37I0YxoJ6N8c43q613GfK75Qv7tZt5iHMnzH2eXhry2689s4Oy8Mm3sByzqyhzHvJg31Ciu/7OG3GIIxsrMHovrWRNt6SjXqYqT4C6nM0D5p5sOUIGjd4kEIzWGdQWakUxQ/Q8oGH0HictYyybE51xXOy0d5hbrmvPehWSrw9GJB1M8mSrhVZyyLnmQMxb19pUyZXz+J7Do2XzSYu05VaB2+Jrkr7bGA3857ytCseH5i4YAcwCz90Gbm1mv4fTDpubwU74A2VhVa1WnzbCq1Het7h+cpiJoz0TfXxr9c34y8vbETW16sTXJijffKqnCkYHdc1kKn4BlxQo9XssC640JSh+rAMHy2hokMDDqA9JtTk6+tB0hZgKS8E1bsWEH0ViI0MOfQs7ibHFRBKzVjphG7jemVD3/+XFzZi9/4Wo83SuyUBHOAraXyV0mNtNH6/FP1efcfKTH2QBHpjywtM92Xu5gVAubnzejPbla+UK25l9cLJcdaI3pg0sM7ML3Q9U6Ku6PS2ssoVqYgLKC9zWJ5hfWpw8rSBGFBfqRptbYV2K9bp2MKqnoBU2lb/pP8aW1qs67bgxdPifVfhI6LY88meoHv0Vgf9IKpGvopIxciQ8S9hquTt38yftsZns5ZhRb0n00sF0HWpVuJJcGBjHyX1dKj4ZFjf1QYjcwylvNp1w78PrlEfjgoIar7w+XPM9KlP8D5ueznwucr2FLv9lMmYMbRn3ivx9l18rNWGan1NjxHhWJIlzyaz/ZlumTqoGqfM8jqzhV4bd9sOPueGK2Kua9roQP8P8s/nYroYZ7jJhctNlQTmVAroUZEx8mT/DZhzvw9gze1LceLUAc577fsJfYZ5eE/Y90kuALSBxRVhnJfHxcjGGmTSbPEiHHdfe3cnXnt3Z2Q8oTqmbYhU1Ya7uh+3Eh+kMWVwA06eNsgw5Kh3yfqu5wHHTe6Pob2D/c3k6uz7epHEUErsulNjn70Sr+/k9ehaCLENrPR3sNVA55nH2zANTqbMEYmmHtM+k/aqR1DvAJgzsg9ueN9EQ/7w7DJzJSb8o1dNfDR3es8uXP0EAAbUVxrzq+cBv1k2B9XlGdx/+VHs9/q9GWOnr38H6MUgc2w2xxfPQ7QRJKANaRpaYHNtZTTGTuj2Zy5E8bbGDc7RNhRbp3zOojYTfvfujn2Reo0rsi1PkHGT6ypfPG0Kpg3pqd4Jr3eeZ92eQxmWp5VjLNM6imWYZx5fQVpaDudbEj1PGwx935zfPet5jbUVODgMkmnD5z3PC9poe9OtlHjdgUOFJFRE7FXmJROb1N9KUPQD9w7am0qNCyxFW8AGdC/Se+K1UIWwc5CLJw3+5r53bUiwXe0pD+6zc/Vzo+UP+N2qdXhry25lbQoUS32vEsig8wCYwjEXYEF1oBQy8xgSrjR4Hp1DTWXRaVIAvAde3IgdTGjwfe3yqYNaRAcBfiata3CjutVWal0GUrYB03LMzzJXx/t4YO8tqM//vLPTUKbVaQTQgyG5n7uCa0Xc0ljdcCGf5hL7nHh4Zj0EdWWuKJguT1CJ7t2fRSqlI5SWsSjudE/KC97pX19+B6vf3anqduP2vYYxhOrYVrh1/evKzfo+stnAaNCSNQO5UZ/QK59RoWxauEfJmBAsJYav3LhcIO18GpMhzPrgcAUQsAUocwLiZab7jxrTiNtPmRz+NvwdsyKrOrCea05gvrqPQ67tkX2dDNfkTH3KpeD78JUQ4px8ffM7l/XaXi3m4xIZyfh9tgWeu9fxsVYpjModnpeJ3lNKTeRBWky5Vadi0PN136V38vp7u4xyBXvAzXK4BEV77LWFK5/KGyMtZfkEA52mLRBR3rmya7fxlDEec8XI/Wwbs5+5hCRWHkAJTEZQuPDZ/B2aK/HJSnyQD/dqBxeCC8FWfrJZoH99JQ4d1ksZeLmyRM8udE+8fkZUiL/nibVY894uPL12C1a9uVXlhbDHUTtCs/Gd45l07bzZwzA2dIvmhvvgEypIJ303KlzZrGbbrVSemAzgUtQeuGIuqsJ3e/L0gVr+YfXA4Qq0YZTibR1md9BjUfDHogn9sHzRmIixrK4yE1GEv/b+6RjaO3C/PWRYL6y5fam6P8iLrk+7jxhKLMy+pJRq3zfqyCYyNkD3E2MOYLKKMW6F8/vd/1iDt7bsVrIlpW0bO7knaBx236F+yuezLKsbyoOa66hS2HPG9uuhjCWq7Ex+iYPXLefRaxboNpBj8OIGJP3s4JMMU2Yf9tCjMmMYSFRaVl6SbCGuccHw2LCyzacAe2w37zHHXHuRT1+L80Zi8hHM8axPbYUy2gTpJBhYrDLs3t9iNCz7Z+YUZ66um4YFy4PL8WxzntZzCcnfQHSOJE9RPraRnOpB9/F0Wl+jh9P9g3pW4ecXzY7kp64yo8pG7/jRaxY4cl5cupUSTy/DD7Wdd3fsw3NvbTWsrQBQURZUS3kmZShkW3btx7vbAxccUsr5/lGC7wFX7vSqcfFB1Hbf9CyhH8b5xHawlCSXUq3sMgGZKYYAlILM93/ZSqFL2OKPsy3geuU0pQQB3qG40EKu6Haa5Ipv40NHglYeBp6nBARjRd3nro/xe+KNbRCkeLNBhKCVeNOFj6/cBd+9u2Mvsr6P7Xv2Y8feZvWOuZVQezkEab+8YYc6EsN2S+OTNX+OSssYrKxBnE/yWdMgQxMD5eXk6QOR8jykPBrOtKFkWJ8azBrZm9Utr0c/0i6SVuINJTL8c19zFrQthOIN8DJnfVOBttvcBw4bGubFNHjQZ9b38dTrm7E/6xv9ha/yRPIJ/R4oz1UOAdZW3Oz3lc36+NE/12o31PCiduWL1osyDDAjir2iz6s4TlFUe+uyzPvAeKYpYPK8eOwe2+JNbdUOJEQCBQDUhKuIGTYZ2nvcTY8FPV75AMAUUh/RFUcS6g0DIQJjEjdA8voBwuBZfMsHyw9Fp+fvgsaRiPBu/J6NmTHjsW084d5BXJmOCD3QY5GdKo0B1O/5GF3G9jCre1T/dOxvBiIKcxL002fe3Io9+7UnFHk28TzpecQcc33fFDIry/ie+ODeFqviXeeVx+XatzW9kJTn4fBRfTAwnEv4/dyDx/d9jG2qw08vnBUItdAeV7YR0rXCmgtbOAeAbXuCOfnF9dv1fcaPzPJqhd3tgUXP4c8EgnpszmbNNNj82aKEaLM9Ub92kUmn8H+fXRR7nfcVXoaogUu3Dx7Jn8aIlhY/Um/2nKDTMuvhmRsWm0YRD+7fQfcdW1kwnsvqTp+8o41Yer7Vc46NSh+mUY0v2mivS+51Zs49LsgQRs+dM6p3pOw2lWUpzGCnYwDmO6HnkuxDeTAWtZgMQ2XoWVOOR66cZ6RL97Sm/wDAgPoqdZpOXBLmwlfw9zmzhqJHRRkAYHvY5xrDLX+mwmztRy8wfy5ZiHuPROd1LzIXBPlnbudG2Uhupz3xes5b895OpyGep0GyNlXRwIYqjG2qNd4lza0uqI8AiMiwKccPzTbu3rNPbZ3Hblq3dQ8eeumdyH2EH040PBaMKh97ttqmy/UsmONAdE+82XfjPFieuWGxKhtvM+1Nt1LiuRJL72Hd1j3I+sDmXYFQPWlgHWorMmjsUYGmukpkfR/3/fttPBNaxYeElkSy1HuebpiqY7BJgwZ9agA//deb2LmvhVnbmGXf06tnQT61gujBvBY8AOCrlEF6wScNDjTof/rYcVootjrWk2s2Y8uu/UpJDfLO3LN9GsTNegz+hro/zJLqBC1ZPwwUxQQj/h58cxJkxUKL7+Pc8Dx7/v3C8YG7G1+Jr6ssM+5TrpqwVpwZhqCg8mcOaHakZSWE0hb8cBB6YvUmJXxRud4LlbTg59bkRoIsG+DJGqwUYeU+zvfssoEdXhjU0BbYdJpcWeWCpnJXzOr6IYGZzzmUh0UT+uHb5xys6pYL1sE7pDyZz42RodU1AOhXV4Gq8rRS1LKWwqSi64YP4ZOLLWDSZMav0YQAAHvD4EVmhGuec42af3h9ON3pzQHeEK5CI8HGMPIx73Ybtu2JpKWV8fB5ajsDMxyp/Onnqf3kVvZoDOBtLdeKMMFv+8+tx+r7ETVm8AnQHu/46Rh0H2+HVCa1XSPsg/aediMPPvUFK+iUIQBbQe/Cv197d6fhjcG306TDPmG3D9d2KyUAsOe8uH47tu7eH7PaRr/TYx/PGhkTInvi2f36mebvVD9j4yk3AKl77LywFRYujOVGj5Gr3tyi8+TR+M5iY4QPV+NMytpWxoTMigyLTu8HXlrNlpRbzoK2kaKk/s/KQsQJsD+4YCZmj+zjvBZ8kvCuISON7d7a+pX4+N+Yine0zRAud+aklXgawzLplKpbepbqs2E/eGPTbtz37yBoKMXkqCpzrMTnIaz+8dn1eHrtFl0uS1Hif/OVRVsoB4C6KnO+B6KGC4LPn2r8YavZcWXQ269Y2o4VSW7A5ifAcM9KPg8+8rJWRPR4rwfQqMLB5Q/tuWjKY5HqULy+aSe27Wk2FZ6YMhMv3nwMPr10vFkf0G1Mt3vH6TjKSJPsfUDod5LQFygPjvY/pHc1Hvzk3Fgl08YwmFjp8+qg8dTWQ/c2Z9XRto6fRUheiQd46uTFouY332d/69/f88RaPPvWtvDZ2shgK8QvbzD3tht5Zu+G3puPYCV9fxjk1B1Iz8QlX1HbdSn//Dt1n1WDlCdq43Hzkuo20PKEnuN4v6H7+bZPU77gaQU6QdTz02WQSaTwKaFVdDMlPvgkpbiprlJFGuRCNW8ydgM6ZFjPMC3dwO3Gqt2vdAOiydYInKKEHnPisgPtkOLHGxQ9zxQgdIcil9cMy4t+ZrRTBPtgrIAQAB577T386/XNllWYTUCWwEAGCdpf4tq3TWVo8c09VYSvymU2Tx5UJO7IG8qT75sCF13977OmqWfQpFTG9n5zJYyjVs9DpZKXiwuaZWzvH+WZFFNl0fN0pGaiOZwY6JfuQG7WKrhvejJkfR9/fm49Vob7dpWCSe0rBVUvJLTzFQ97FdK9amBZ3MH7gn6ejS1IBd95+OenF2JY7xqj7dE1ep7vm8fIURpk+Cjjrk9KgYbxe/5sHXWfC49mPoP0gh/S2OAaw/meRfqNMUEa6SEyyXB8BMf39AzPqjaDFmoFFTDrmE9S5ApK6VG7yKTMAnrQp2rYeB4bLxzC7RA6H9eqMw+6wPRO9L6z6N4y/jwqA63E79rXoowF9hyuI+hadYTgfFclmLBnE7NH9jbcQHnadByevUfVhzYU9lbuwrztBH9TtGMukPKglhwu2JPAyKrPvNc3+xn3BILv3udXzveO+6Rkm/2UzwVJLpOu/BD2UYdqBT1LcTPsU0J4vzYfSB5wzVnfGC859nzGM0T1QsnOGtlbtdW8ysX+pvHReG/WWMvfsmvMywX3QInkhX3Nu4v9FG3EZd855lRifxg/piztqTnHPrZyQEMVJvQ3Y4RQf3a50+cjrG5n2+JsGcQ+uZPqneYsQslSTk+X4PP1d3ca3xvzJ82/jnnGqehAj6Eq39br4kqs8rq0Trfg7Z48LOxjW9Xz2FxFChzdb2/71PNX8Hnt0vGR/vHGpnBM4nXAnsHnC445P3GPUf2tEdPIC4OFcXf/mDmEY3vOOe/x8h2b3InwenUZe5TM5Zgvgt/qcaBfXSUOHd4rkr84ytLR56nAtQ55LqIDOBai7P3qfHuSnZO4eot40YVzUEN1WSjf8j7hlhOCMuhxl2JT2XK+8dxwzjLaE82zTKegPABRbwX9bHPuZ+KfJWf56jua37NZ4Mk1m9RzzZhe7uj0+XiL5DuHFpNupsTzARCYMawn+tcHLnV6D6F5j92A9Ao3c6eHOeG7AjZFzjM2FD09UHBBP5C7WBRxIwGteOno5ZSOFg5sN1Q+oHGqy9NGMKjgqDPzRl1/et90xHUPWunKZn2Vd7qXu7nyVXpKmdzls1k/oqhTBwPsKMWWAkwDoK8HJ7sMfBAxFA5fT8JcUMuEmgEftGxh4hMLRqNXTTl27mthz2PvWk3IUJZ+uwz2nn8+wJC1XwvzfOtG8EkuTXQ/5ZNPDNoaSWUNV8iyZvlclkdaSWMZNyZygLtQR1dB1M8iE5F7BT/lmW0haMPB32QQK8tEI/YaiorvY97YRkNRDOoluPbIyxuVp42aBFh+123ZrdK0hR4q+wtv09FEui1TvZMiwfNne4/Q98/ftAQjwjNO+btV3h8sbfo/37LDoTbu++b9HJcl3PMQWaVTabLv9Ls1J8Agfykjn64xp76qDHXhvkO6TMp579oKjO3Xw7j2/84/FEAwRgzpVW24c5pR3B0xJxAIrEsP6m+eDMH6k22QoXxzgeSyRWOMenEpYRE3P3CBlr7n47+n2nWcEPDO9r3qnWglPhw3fL3qYa/EI7zH7Y5vexX5uHTBaHcGAHz/w0H907wE8PfLtmR5ZKSk+tNbeWyvHXo2oFfi6yqjAd0Ic088VH7ok/fPL50+BafMGBRJI07o5u9ZrbbDbEPGNTYOJ60kxpG0yuTKL/c8IdKu9m+NgYBub3rs0+70egtB8Hn8lAH4ycdmmXkNr1U6VuJbg20IMvsu8MLbgVeLfQoC5d1mb7il49l1W83nQL+3/S1meblyZqdJSrgdh8jGVMCpX5rBxni7uumEieHzdGwd11YA7bnC5n7fd46nfJ5vzrpDghqxE/JYt9YLXsEnBb1tYXniRoUUKzNA9YdIueKek0tBapNuZNWrStP3MWlgHepDz46KsjSLh2AaTonjpwzAT+2+kZB1eyEKgLH90+7/eiGJ8qjlo1hjiM/1BPOeIH2HHMfaDM/B2H491ElCHnt/ccMUN0RUl+txm9TmiGcZ9LsM0nfPn9roEt9eXX1PPYfJjxy1rdT3VXwbHtQvIouyvpuPt5VtAOoIupUSbw/GXztrGi6aOxKA5abHdS6r/djWIs+LWgq5wGwrliodlj63tBnWf19P9FFrnK/2OpPA9ufnN+CFt7eH14P77D2EcRMSRYXmQgEArL7tWDx2zfygzI6fpqzOQsln0rQSD3MiQnSycn3aQng65Rmdm+/rVMIcTYopc6Dg9WZ/BkYQvTJLg0+QHhsMaCXe8yJHgPE80jXehnzAEKKVkGspC/zTWJVmEx3liQRzLYBFB1pb0ObbSbjAzQ0afKJwuY/b+0H5SsXmXfvD58UPK1lmAeDKIO2JB0zln9q9K7AdlYtWHZ99axve3mKuPJDywL04bNdy2z0uyJNua317VKh8Bnkw6wMIzpoPK8RSBHxctWSs+h3V7xFjoq68BNUD77tqlVE9Vz9fWfutdEgI5JO70T+zvjqpgLO/2ceOvfvhwrfaiJkXnb8yqwz8PsrL5EH1WHX90Ua/Tocd+rPHjcdNJ0w0jI70vm87+SBcfcy4SB58mIYL13hFwo47QFTKyDP3VKCkylJmXdPzOK5V2cSVJqMMUWGEvtvbHBgHqQtR3dCYyl1suVHaVu74c+04K0kryk4PGzamkDcAPDP2h+p/jrriaVC9c0XdHtT4Xn/6tMf/XHNdHMEYzeYq3+wb5tyh87W/JWvmOU/IBTYXKS+Yh8OqRXk6pYy13N2cB1aLgwK4laVTaiVeBycz760qS+P8OcMpefW7aDnyh4k2+js2NlM7fpcCCDveJR9T6HdkkFj1xlbjeTz+xTvhtib+W10uV7uEYaSmeYrDFzHoUlnKjHXEFzJoHksbcgTPk6/kPnvPOVcq7bgxgN5+pfLO85ngveCCywqm/KHnZsPdP2WOhaaLcgJWGZy3eNF6t0m6zMc5z2q+v1l2OGaGK+u24YKencvQluRp4GpXtCXXLjKNk3plXacfV36lh8C9v9x3fBcmGvzekC18fOPs6bgw1In4rbGGH/b7GTxie8xzn123NQiIDC5zWmWyxtzINmLrPpr7PeOalnf4/Me3dH3sqBFBViN5cO+Jz2clvq6yDAMbqsLnFTb/tJZupcTbhfU8T70YUzjwMaC+EvVVZZHAOmrPp2euSAaDGw1ofGA3J8objp/Anq8VKtOdnuWZhJ+UaY3jghFXttaHrr/O1WLfPREtndw/XHk23fPoGbaCTQxsqFIrivZAlkkFge1cwU/+9sq7WLuJojzrcgJaeOKuslcfE+zn50/IKMVFCwDaehf0XMMVSdUnq1f4xkq89hQI0uKDN60W0J5d34+uVNPKKwDUsGPCtDXeM+7j9UnBTmi1gC7ZCi1XUrJMUcmkUvABLBjXFx8+fLhRpyqAGwAdYZmdv+vrADhcEUs7JiByzSf4xP1KeF67cYycmtSD/ysXaT4phGmm2VFx7BJ82HvO9bMBU7D82yvvAgC27mYxBnyodwr2e+o/r9xyDF655Zjwmhf87WnDy7yxfVVeWM50+oBygac+w+uHVvK5QFTuEIaVASdtCmXcjdG177VfXaW6j0P7u7nBiMaK/vWV6FlThm17muF5QR385YUNeO2dnRjRWIMeldF9p6rkqgKDD7WywBRGtb/WEdhOT75BUFA+JpHiRwFDvbCf8vLxMQlh3lV/QVTg5bEtPMA4Oo+3J75KCVDgyOAuSl8dqUltfuMOpUAQccYDXne24KACwVmyEq9T250eTPkBzDKXWeN4nPGF94kWP+r9ZJQrLNimnfsiK7sPv/QO3t2xVxlPeMBP+s61UkTP5uWLE5ZeueWYSNwHfqsxLiWs3SXKVmx+4PNGczarAvjRdgG6ls36TmE9F7z+bU6ZPghTwlM3VD8I7x3Wp1oFAUza/27zyi3HoDqclzIpj61MI/yMjh/l7Ng/+l0xMObWlG0Y1ri8Wui7+qoyDAg9KenaeivWSHACTlCGt7cG16jcPhuQ39thBho1VzfD74z+pvMeXjK8kHxjotJ9T3lNhgswvDyGJ45nnihD8xif++ztAeXMAw46meAeRz0murlb8kfK03IqXePGUM/qu1zeSWqchShIyap0fL92BY1V9ZLSc6t9Yonyas0mjxlJ11wLITovZpnUnOCTYctneYGzHj1oOZB71b30uSX4f+cfaoxh5u90vZtGCxbUFmwOial8+/fqO+jAppx/vPpeWNZgTt20c5824obtt1dNBfrWVbD03Q83As35psLN51mjjhH1YCYZlntWKb2J62N5DH3zx/XFw1fOzX1jEelWSryrs9F35FJDgtRPL5yF900dGInYy4VUWsm0G6vLnZ4Gu/KMuc+TIsLzlTYeHER1Tquz0ABKliWjTCz9jOF27q6IikwKFEzK3r9O6Tl+hgeuOApLJ/ePXPPD5zaH7vTUIbj1X+/VMjudFrx98JVWpWAq4TEaYZkEtxfe3o5Vb241V5iZAhA8h+rIV4J5OmUqWtxKGCgX2luCr4ITJNwBXPHTgiwXVu1xiZoZuYiTa6nPCqnriARz3xgAfd/H/3xgBq5cPNZIW0fd1s8iQdtw2aYBP8xcmXMlPvjdtWHgG660VoTKnDuYS/A5eVADXrx5SZAWpYmgTsvUwGm2B0OQYtdIwOQCNLkcv0x7D5XgpScDPYEHbaYsnTKMeGXplOpDnudFVu5dQuby0M3a3pfmA3j0PzRxaaGsoiwaHI7StQVmMmzxZ7sszXa1+76esLhBBwBuOmESbjnxoLBmPFX+197diRUfOhTL5o0y6soFjVPj+9fhxZuXGIIs9Sn3loz4RIN2zO713GMZT5cHNuSnQNAe9SCvUOUx3eXYihYp8eEXD730DtZt2WOMH9TW+PNp1dBVPrvNqe8NIxaUEdUeU3i7sE/y8Fj6wbN4n0gZ9/Bxza4TlQc/GsCPw6+R98q/39qqvntv5z7DGG1HBubtn/ch28Bhuv5qytIpI1q5Krc24wII4osklSP2imtMDm/uX1+FXjWBjECGTMpvc9ZPFNbjCLLoFlB715ar+Av8vXke8P/On4mPHRmslnFBNk7QJsrSKTWmk+s1lcdFCxN07T7CKWTFiQvXhGn0NRV8lx5I48BZhwzBr5YFRz3RvPuBw4YYz/N93VdrK83I+tw7jvbHclJe8G7NBQYz/8Y1yp+SDYP7tu9tZkZAPca43OnN/uKI/s76j6obSpsHEQ0/VbyDAtoJv5+ek0mllFGDR6fn8hTPS5whxobLNLH35KE95doiYMuy/DtX3BJ1EkUeabdWwSdPWvt+9VyfdADPiClh3688dZlXXUUmHXGVd+XL5Q1qt6ukbV58JV99l9JzWVJb4x4uANC3RyWev2kxPnrkCLV1juZrFxVq8SA6irq2EgV/k3FO943HXntPBTYnbzIaM1a9uRV7WMC+XASekSweTQfQqUr8sGHD9GpM+O/222837nnmmWdwxBFHoLKyEoMHD8YXvvCFVj/PNZjQd/PGNuKfn16AuqoyVJdnUJFJ49lQQLl0/ih1Pw9GQhO5F7YiPdEFn8q9ELrBcEGUBopU2HN5msGzdIOz3fsMBdXRXOy9qaRMcoVoxYcOUWUhIdI4fou6hhpozedUlqUjyjTdUVORCYJksEmwPJNSVnDCPraBBjHekTJprYipbQLcOOGbnZ2EamOig/nJV7O1ssRWugM1WT2DlAtS1H0/qqzS+bpmuUKFm63mudohtasHX9wIADh0eC88e+NiQ/mnd8jzrhTadLASX55JRQJzUaA/NaiyNPgKme2y7RKEaTwkDwxX9E763Yvrt6tVSj7QV5alLeuvabShsgZ1BUOJ4kYDcoPjK/HkykQr/jwgpBKQ2HuIm2S4sJMUSEkp5WpfPozR2/d9NFTxuvKM+4lsVqe1O5w0eN+wg3bpJqSnMFuYJnd63la5y3Im7VlpBZRnUpgyqD5SZv5Em8qyNDOYRNvCW1t26332Vjq8n3JjWXBPNAAUz7NOS7cPeq8UWdvYp+aZyipvT3yVDAjGkfXb9hhCgHsl2R4H4ucZWvEz2j+oPycrnwDw7I2LMT08/kmNLWwcoHZlbDeiexzpaaUhGmwzrgyUrgtyhd7fEu3P9kq85wXndquj5SyFAA7h0a6fntXlyhOExv+WrO80QPLnunj+7W3Km8hWWL50xhTc+L5gP7MdpC/rJ3swJOUjTkC9cvFYfOPs6cHz1NgXKJ18jOcGnXz211M+y1h0ehpvXPUSt0rfWnidqWekrHbIt1yxVmuffJFKecrYTWW5bOGYaBnC+4eFbsxcEadi1VaYnkdKLoOlzFjqgmkED79LsxgX1tisFwzYSjyLE+H7NF/7xv5zGlv1anE0EjePG2OX3WUMScJYUQ/LQUYJSsteBODPydedXpUhyejmAblbdvxzeNM1vB6sVG0DBM2bifvRkZ8Ry3UH30YSPI8dzxnWNTd8OtOA3mJpu9PTmODKH/W/akNO0mma+Yyvf5eCz+fsOANI0L+i31eXZ5BOecoYHRf889kbFytZjwzQ/HmUdK/aciMHyrjsaw8dIDDibdq5Dxu27QneO5Mp39isYyIVQpGGzJx0+kr8TTfdhLffflv9u+SSS9S1bdu24eijj8bQoUPx1FNP4Ytf/CJuuOEGfPvb327Vs9z78YLPdMpDv7pKfOuDM/CpY4KVTLq7f4M+T5ZbYONcwLggpPcM0eRpDrRckSIBkwu3JDDY7n08gJ1dLM9jLrk0iIfX+GoPHdXCV6Wde0ngFvb5d3YD/69Tp+BzJx5kHFtGgsPcsY2YNDCIfmu7A5IAHpnArAGKhDSqTadCxpQ/W4Gm+sz6PluF1W5AVFfaBT6lhNzAQqrzTivfXBE2LNS+tfLg6HVZ38fK6xZhWnhaQsoDaisyhkJDkbuDtH2jPWTSeqSlMiqXS0e5lEsoU+b5/wH3udH2Ng1SEAD9Dnn5tNISTctU1EwhRKeVUqsaALD63Z3Yta85/H3wZXkmWqE9wlUXWiHhq9mGK5mdJ/bJ657n1w5KBmj3eBJ6AGDP/hb4vvby4c+yV6i5F0y5tYrNtzAot3NHP7UnRT5h0aXn1m3Dui17IvVgwwNVRq+Zn8b3luGDj4W0J9UeK3xm+Yj0YyZAuI0pWsJRQk84ZnJDCW9rfIsPmHKrgsJZz9m8a7/6PY0VXGmzBVD+X9twREY6n3351pbdWLtpV5gvq3wI3nmPcCyorcgY74aUf/oZKTUVTDHO+oFBglf7yusWgdwQKSu5jAj8Wpzy2WXnGAoAAIURSURBVJL18fKGHWGaetwOyqHfF73jv31qPo6Z1N+oNz5+0bYkwlZKfvSRw/DRcFVajxme8xgylYZVD8SL67eruB7Ur7RxJI3ytBZ4aZDSgnbhEhvN9y7K0ikVRE7P+dG+E/UsS8YIbBca1KlNvrl5l3EvNzomliP3Y1l+g8+oO72+bht4+SfgNjRRe3d5/mRSHlZetwgHDax35D24/xzrOFvykATcXk+7QsMHX4HmW0xoHLLnRvI2S6XcK/FAeHJAGK9E9YmU2R59dj/dY6zEh9+pxSN+DDGSFSz+e3oOtXFTBoXhuRmUk8/hVK74FpJrC02QJnJq8bnavj0O83epT/LQeaDxkOT8pG6Q7EWQ/LuoAswM0eEbyuXJQAEvdX51YnHGW/KI5dvMbI8EQxaKqWAuV5l5SlZi+Zjp1CugZaF9LdFN8bUVGeNeLjMG+Qr6PM2RD730Dva3mFu7XKFXXtm4w1hABNzHapYSna7E9+jRA01NTepfTU2NuvbDH/4Q+/btw1133YWJEyfizDPPxKWXXoovfelLrXpWkoBCDYpW4QGoVuESXrSFLgpZW7mCrd2adEQl3gGps2bZSG0HHuNdZdWbW5WC4srD4aP6GOUC9ECmB31z4OUr8YY7vSVccaKrJ0G+q8rTqCwzj2wqz3jY35xFXWWZcR49oCcpve/TEZQPurPxVUQaqGyLnQ/a08rKEFY/7UvnLkja0kz72C0FOvy/PfnSgJLy9MSsg0Oz4E5WnXFafKChujwyqXGlkIQdyicvLu2Jp3oCgIaqwB0znfZUuYBQOfe04ujDNwQpGsxf3bg9kk/bE4LqKajj6IRMKySR2BKWoJZlllGfzTwkEPE++NTrW4y0jEBHYcJLJjWpvFAd2hO5vReTl4HaVSalt0hwYcR+l9qoodvMqxt3wAfU3lZjdcJqA+WZlHIPIwuzXnGKBrZzBc+0lUnt2qzLvH7bHjwfRtKPU8bN+nB8B/1sG7sP8vemlbRo2vxvo22w/3PhvaG6HBxDCAkn7ovnjoqkF7R7na9mtppE6ZMXx9kzh6BfuDevJRR6yDAwtl8PPPmZhY4asMZcS/apVsfm6Qu/W7UueEY2qkSTQNSzphy2LKMEbfZ+qS+Us+0h8KPtt6G63Hh/HuA8EYSzj518ESfU8W+ZXREACcXmM+urypBOeXjyMwuRSafw5GcWqrJctXgc/vecg430bQWutiKD8kzwu1F9g1MdPnDYUPz+0iNiy2HXgwtlWDd+p/NNZfFhCoQ5HCnMfCC6En/XeQdH7sup4MA0ILvQYx/NxSll/KRjz/7nof8Yv8n6UAbT1kTfT4Jndc27u7CRBZ0zjqNz/MYlxx01uhFA8D7tftmc9YP2bikN/JlkBDAzGXxwt1/K9v+9vjm4xrylfHY/eWrYMhTJhpt37lPRsc33G2zNaMmaCpy9wMAXKCIr8axuqar03vX8jD1a/mAnX1AZwzRbHMotPY+PSfnML4mKsDWO5Eor8r2Rv+i7PHHaQCMPalXXNw1Msc8tyIylWbtpN3awts51AOe443mRth2MRXq84npC0uKb7SHsmovjZBUiGKujYxhNOUmejv9as0kveCUsFDRnfWzZ5Q6yy/F923AUjAX/eWcHtu7ej5asj/Vb9yidKphrdZ/f25xFTXkaUwc3RORNfnxwISS1+2LS6Ur87bffjt69e2PatGn44he/iOZm3agfe+wxHHnkkSgv1xPt4sWL8dJLL2Hz5s2xae7duxfbtm0z/gHus8XVfocEYZXvuaWGp6PTR1+wyy1Y7Qs3rlFj10JBNqsHHUOxB0KFU/8+rayE0cxzBcAun70CR8eMkfttcI1N/OGnq/60MhEtM7nVKHf6dAr7WnxjFYqfUUvWOx8w3F3sMxx5XuhZzVnfmJQB4Jk3txp5efTq+UZawXOiihsN3Hxwou948Lo0MwjQZ9aKXL9p1z41UGuDRXTgtF2GlYDO/i5Lk1ubp4RHulgexjUw0qUJnNUtwC3MzHgSrgzwSd4luNHqjYoWj+gE69xn5Rqo2Xc+dFswFIGwvkc01qpTErbuMoMQUZ0tmtBPrcCRIS5ox/rcYfN38cIBTfI8EjTvlzwNQAtn3PI9bUgDfN/H8VMG4IlPL1CTzKNXz48875cXzVYBCbVCFnUpsz09gvdFbcdM0w+Vi/Xb9iQLUvGXCsK13zJljXcu7GNZ7D2x/NSJyDOtZ2tXRF8rzOw+bhwDdPA/ng86KqcxPJUAAPaHjYd77fDrRpkdBaXnff3s6fjZhbPwn3d2Ru7h6avyhQOVa8Xj3e1s2xCVULVHPQjEtfHHX3sP/3lnh5HHJIXx76++q/6mdzTZ2nZhr7CCjUk8fXsVkOqysUeFGj+qytORAIuu+YZ+xxXU+ur4lfg4Jg2sw4JxQSwTEvTiDNd6z6dvjF2F7I13vVM63omTpAwpJSiVX6R74sSpA/HXq+YBAI4YHRj8XfP7X14IVumTxohCRFvKL/fyemvLbnVEZ9z9/H3bSvyjV883xhm7X9ppT+hfp+YSSt9O07D7sfqn13VMaCTmMRqyvK2rz8AjyFa0f/zkGyp9bdTUHmlZX68aBveYhng+ptnxOoL8WDIey6cqY8KLM+IUhHIcGf75lgiqtz3KM4HGV3a8bPxjIvlMIim/ufQrbWAJn8v6Hh/Tdb5MQ10+hgibR6+er9qivY0UAP768jtWJrnHBW19pNwE2G2bb/vJhnJcXBwWzsCGKnzt/dNyyGrRa5zGHhVO4yHfix/3XnbuazG8nmzoq0de2hhfCLqXy9EwZaGfP/WmukZjJMnyRn/xggDBZWlzTzzPS2EqfOuNO4XSqUr8pZdeih//+Md46KGH8LGPfQy33norrrrqKnV9/fr16Nevn/Eb+v/69etj073ttttQX1+v/g0ePBiAvWJn/iZ53yv/HVmwTIE9uJ8mcj3Iqeu2sM9+FwSlCG7iq/eko3Gly3ye+1gJowyujhiZuEKlNWsHtjMVBtfxMvaq2js79iolK+WZq0u0J567R/PoplzhD1zXzbS5ldGIthp+fvWBV4y87W3O4r2d+1SZBzRUGZN21jffw7bdzXgnjLC8tzlruquntLtS1jeNDDwAmbYuBjyxWgfMsYfGQT2r8MiVczG+f50Sasg1n7ud2goICX/8mhFl1Zqw0+FMxJuJbblVK0/sJpc7/evhqQJK4PN9tVrJY0HY0DFrBG8DfMIkuAGNPF761ycf3TGwoUrVfxkz8mirsK0Ae5GRWQtswbXyTEqtQBqGMCY8A+6j1MjDpiydQt+6StWfB4Qr7Y+wKKa9ayu0+6xl+Et7XuRdGMIdqzXO7v0tbNU8Wmf2KpEL1zV7OwPPk3LVDNO2hUHKs50nLZBG82jXhyt/Hpg13ose4Wj3Ccont8hTFav9eKFgNKhnlTJeuaKQ24qYIRhZrquVZWlMHFBn5IW44ugx+F4Y0MfGJSzdcf/L6vm8HngeuOJhs27rHjU+kjCYFH18cM/otjJ7JZs/S+/jDXJmu+vHtbskgb5Ye7NdVJWl0TMMJrevJYu9zVl3n7fGTjKCAm5DUxyud5NkANq4fS+27TZXpZSXlmOM4Gnabac8k0LfHpX42YWz1Jxz84mTIr/daylnLvLZi09UlWVQX1UW2ybpKZctHG19o7HHgQFsu6MLO/6I53lqLlFpOspHX+kTYzwAPv521TwcMiyIx8KVZK4EcUWM2dqNE3fUc8Iy7t3fgvd27kPa89DcQkE66f2a6XBvNTv+kSFbsgUGIp+3ZRs7XTJCEMcl+M/jr71n1FkuxZcV3sin85Y8+3yc0sR/zz0bYrKC1e/uVEGZuVIcnz/394G8GVxcML6f03gPQBnvod4t1CJC8EpNmdJ+Ni3GcKMDv9+90u3huMkD9IJSQnnIGOUiaBPmd5lwC2TSa5sxtGdy8NHwx8P61MTeo+4FTC8V9a0JBTKm8ZBvw/QA/ORjs3DxvFGRlXhtkChUje8Yiq7EX3311bCD1dn/XnzxRQDA5Zdfjrlz52Ly5Mm48MILcccdd+C///u/sXfv3hxPSeaaa67B1q1b1b833gisnq5GY0dJ59gCEaBfKCkF67buQXPWx859Leoe7takkvXNa/QEn6VFCxf8J9qd3j1Z8qNuXBhCrrJSmQM7Pdf3o8GdeD24jsWyXdR+/+/1WBce5YKwg+t4ACl2rI0p0JP1LrBEhlHt7VUpQM0qLsOKs/zWp/Fc39xX/v3HX8e+5izKMl4QkI0lSyvCgbcEGXKsekx5EbfxJDx4GNq7BmP61ap3Wx/Zy2m79GvlkE+oce0DiBqCqMz8iDkyJHG388UTm/CXy4800rKjc/PpxXViAP1tr6iZJwaY7YT3m6Qz54mG6jL85fIjDUHK2Baiswj+J02ULjZu34O9zS2oyKTV+dy2YMO/s10Z/3L5URjWu8a4145cT2c2x6EiGTMDjd13qe6Ca+bveR9JVtTzV4yqy9NoUcKqlQ640OfopyBh0/wlr6OWrA/bmEQkBV2zBQ1DYfTN+zjNzIWcxpEnVr8X5p2MdVpBKnPEX7DbEH8GlY2fQhcnbPaoLIusxGphLnmllVKMuEkiqJdeNW63cZ5n3gddPWNueOJG8BzzuYTtkcbfLY/2HtzrzkuSwqjeaf5NNkLcT79x9gx16sb9z28I7+V9SCsApKRE+mUBfckVk8NVdnqnr72zEw+8aK5MaYNh/DyYSZsKPh/TDxnWS+35pO1XHDIspjzg/uVHRq4DhQm3l8wfhS+cOjlWKaAC0Yqjq3yFngTgiplCkCeKnabvAwN7uo0Dg3tVR4w2KU9vGQvyrI/Y4goGLYScN3sY/hZ6QlDwV1o1TKuTfUzZglb1AdP75ldPvxWWITreRwPP5XYPB6DOU/dD67+SEXxzrKF6OOYgOqVIj7n57Inn8kvsPWi7AuWKQB+Xl73NWfxrzWa1pTNnYLs8BqPyTCrW2EQBF9XIS/OfD7W1Iv7ZATv2trDFCne5XLjqnfe54BnxbcZl5KAg0En1MjQsMy+DkYfwc/HEptg0eH7zKTPFs6Jxmy9K+gjGnNqKTGjMZtfCxAttgu1obzYouhJ/xRVX4IUXXkj8N2LECOdvZ86ciebmZqxZswYA0NTUhA0bNhj30P+bmuJfbkVFBerq6ox/gBUZPvzzjTCYi6vC1UAY/sFX+mgif+HtbfhH6GZISXD3TL2yHAqBat9veDNrVGo/jDa3KksXCXE8n3rlNZpvbRUGfrNsjjF4pzzgVxfPjijStlJor9QlTYZJ7tI0UNARcz77jq820iBE9WOvCvFonvl2EAruFg1wB+ZOb/6mLJUKzrlnFymoHG2jIMMKYB4b4xeQQZ0XpqQ5FBwe2ZYbdrhrmzNKqMeusWdqV1C9L9yOikrlGtW3h5EmBUSh90Zn7/Lv8oG7eJO7nlYf9N98Lx9ht0PPC/JJxgqAK7tQXgjc3REAtu1pxk7r6Bb63T9efQ+r3tyK75x7MD5Ox63xZzraNr82qm9t1L0d+bdbwIwJoc8UNvPJI8G6AsbxKP02diRXF7ZSwgNi2fD9cbtCoyaPQcFXdThVZWmUpVO495LDMbKx1soj6yeulXjV/vlzQhdnhyGSr1wCgQBN95GwtPSgAep5vk+BBYNrLkOmjasf/PCCmdG859MWPO21YgtzakWfKZX0ajKpFH778Tl6pYa1oZjHgAdX5OMOUVkWFWxuP+UgozwtbIWDFA9dVj8vJTdpGClgiIklLguNPSqUZ4Hqz+xe+lMHu9IXbWUpH9IpT235IFz6aT4r3XFRqOk5vO3YYzr9zPYy+eYHpuObH5wR3gSM7mf+Tj87Z/YUPWvK0b++KlExAUwjFAD87zkH45IFwep8Hl3QIKn6yGiednjY0LvsU1uBm06Y6EzLjCGkx2japww//E2YFtVxZVkag3tV4zfL5qBnNR0lGN7DFDfD48oPtgLce8nhTrlFtT2WSXu+IO695HCMa3K/T34/X1QKFj50PnnQ4sqM2Y75uJ00ZvJxO+mmXE0s6boxb3sefr1sjvM3vP/wuEe5VpVzdXl6XvzvPePTB43pvjqqOe459BtyzTf2xOcxFvHYVOp31pzqJdQ/l7lUmuG4v7e5BRu373H/jmsMznIFn/nMty7Zl9pvTTi+ju3XQ+lQqbBuXZ7FHhBdiffNz1Kj6Ep8Y2Mjxo0bl/iP73HnrFy5EqlUCn37Bhb/WbNm4a9//Sv279cuZPfffz/Gjh2Lnj17Fpw3EgI379qvBsmzDg3OFXW6U5GgzqyueqWPK7m2oBtU67J5o/DlM6YCMBUjIFRUPNO9gzqEVmbMQYRWTgEdLItyGofnBffyLKY8D9OG9IS5Eu8bq6PU0Hk9uBo9f07cd1S3ZelwpZo9xz6KjSfjGtjtPcH7mrNGcJBIHqwBybZIc0WYOHf2MNx13sHWnviUYY0mhR7QVnxj5dPKx8Zte1Te6ehCY5C0VtAIPm7QSvye5hZs3b3fMOo469+RPv1txz7gblFxqySepwPVUZnf2b5XBUrTilF+o90rG3eojPJTE/hgabuD96opR1NdpTM9w/AUfhcYPsyorZTWPU+sjcRRsOtxcK9q9KbVUZKR2HVqowMbqnDPRw4zXZvtd5LDOm2jPBtCI8wvL56NI8IATqqtJST3uRMnKbdN121x4xfHvBa4W8cJFalQUfvlxbMxZVCDkc9pgxtU+/p9ePQb/f4Lp07GhUeNxKSB9SoII3ukFvRyCCWkcPt+0MbL2Firy2P+pqXFZ9thgk862cDzgr2eqZSnlGOnsEljOzNIWpcMt0CHrB0Lvfsde5pVbAbiO+cerPbmRpSLtIfJgxqYgBO/N57yxI9Ks4MrAeb4T2MZuSVPG9IQGDuywKkzBgV58LTnkIcwWKnDkG6Tj2tt/r3ImUrOO+zYJPxvPlaquZqE/gKsDCdNG4j/92Fz+4SrjScNp+XpFH7w4ZmGUdmG91kXaluYNb8vmdQf/cKxtpjbGLih2MY+opUY3Ktaeank453FiTMYcCU2Ou+aY8Y5s4Y5lRk+Dvs+8IuLZmNwr2q1jdA+4cTO+5TBDZGTi8jowheBaJ7OpFOYNLDeMHRTQEfXVhUe94gzaWB95H2b5QrrgclqWgbV19Keh5989DCM6WcZX9kLLsvkbjuJsqUhEceT1ER5e5s6uAFejuR4O8w1TOfqG1MNWT3+99QvqC/TQpa9+MCxvyJZPu7+yLNJ/kZ00c6IXB/TYbNZXy3sECSn/vL/3sL+FvfvjHE1h/6Si6R6ofJRwDryrAtW4qPyOulkNJf3rC5TY0Eh24Y6kk7bE//YY4/hK1/5ClatWoXXXnsNP/zhD7F8+XJ84AMfUAr6+9//fpSXl+PDH/4wnnvuOfzkJz/BnXfeicsvv7xVz8yEb3vlG1tUwJZ6dcxatCXYAyGPJtuSZeerWvf3qMzge+cfiv71VWqApd/ZDUd1WGhrKxfyzKMj7JVy3Vm/RRbzaCnUX/tazL29eqWPuWdDl1mvKgcfeiUm2pipjk4/eFDkO6XspgMLc3C+q6n48hVhwj4ezziyJfzyh/98XQ0Ul8wfFVMHUWU3FXZWl0W7sUcFxjb1MPZpU3R6l6BkR9F3sea9XSoK8H7LH5mCKFEZOUaE/LQHwMf/PBxGETaU3ehAy/U8bmXlAh+twBNkbad7zbzoADZcGN9vKRcDG6pUlOV8tzoErnnRvJMll/4/e2Tv2H2nfO+nZ7w3U3BMek9JE7J9BE3wSW3bw6yRvQ1DVGRlPMezbWh16JL5o3DLSZMwfUhP1NBJCGEdZFKejoxv1fWwPjUY3LPayK+7XPHo9k6eGykl4NjtY29zFrv3t2D6kJ7KA0Clw4QROyLuiMZaNNVXqjS5YY1O7wDcCrQO3Kk9ZVpCV1QeX8Pe+3fQoHp8/8OHoiWc1H/w4ZmYMTSYd7inR3MYJ8Q+WpFjX8t3e0IhIsG6rXtwzxNrje/611fhfz4wQ40R/Kk6tgnbK5n4QDOOgKutVmRS+HY4z9hpzRnZRxkIG5WyZSaQ9dn57Ql5yUdhLGQLSPS3+dxFbZz9jhn1bSPHz8gVugAlvqG6HOOa6vDTj83C0RP6hXlz/T6+slIpD4eP7mMY4G3slXgbau+5Yk4UE1dupg9pUPlM8mwoZCX+tx+fg/fPHOK8xr0TnWVXn1z+M3OuV7+DupoxtCfK0sEYuXt/C5qz4Vjmk/E7vib5GfLN1hjGA+oCpgfhq6ExPKlezMWM3CMPD0DJZUJ70SOV8jBzRO+Id1wwfgT3jehTi7s/dIjzOZSTpHoBchs8E+UMz3HdS66FZtYOXQZNK6k2kbL6GPeqyaRSESX5k0eP0c+2Hu5aSEoa70zjVXTMo9/H1RUthBlphjIXBcyMI1EmSZjzI/ci+n65fETP8qEXrHzfjxjFKbWsr2WvI0Y3qq1wharwbZmjCqHTlPiKigr8+Mc/xlFHHYWJEyfilltuwfLly40z4Ovr6/HnP/8Zq1evxowZM3DFFVfguuuuw0c/+tFWPTPJgpscTEd/klXmF/+nox7ajSGT8nDUmEbjOxVV3XKn18o7X4nXAyh3zeLRck3hwtw74jpOi09YdpR0Utj5xGC65QSf/Cxsu6vT/2aP7BP5Tu0bDp+3fOFofPrYYO+hPVnzPhs5bomVK+V5uOO0KcYKAxlMiPnj+hq/5Z8USZ5b3K8/foL5LJ/dn/aMSTXuNAIgqCdXh7cFKSMoUXgpsjeP3WfvdzIDJ0Ytxh48fOn0KREFlrextPU7D3qwIoWdQ8d9uPbfKZfjTArzxwVCadLkaxiRmBDK650ihRPc4GHDXcKU50tKB9eygw4600i6RvIaK5Tdxn2m/dhpJbm8uqAJdlifGoxrqjOu0fMuWzhG9aWkPCcFtssnkBhNgumUFnDsyftvr7yLf7z6nvP3pEwCZuA4V355qtzbxKnE87r29cqFb60qq5+GnzXlGRwxujHYEx8qQnRUJLmGVtN+YCZAJ9UVP4ObSBQ+87Ds874bBxl5yQWT54F7ViWtJNC48N6OfSpr9vvxPA9Hh/OMqwvaAQUj407WN9yW41ZgiuEyn0QhyTsDYHl6rqRqcB8Xlh+HDu+lvH3cRqLcaZCs4OLapRPUcYsuaF53/V4rAvHlKnSBisbic62z2fkpHLwN2RSyEj95UEPsXmQ+JtlKpKtMuQxhXFHO+j7+8ep7eHrtFsDjizjxeefjR0uWYgeFaVtz/869zc7+CcDwTLQXL/JtnoY7PZd/uZXaeLb5/2D8CCjPpDCPxdMw7qPTfJKM53nmOSEFxzfxAevK0yn0rNaLe7nad1t1NTvYHlVxMN+yhYmwHEdbsr6RlmOhK6nvuvqZbbhzBQDm91Za56i//t4u+Ai8Jm0PDZ3v6PNc5DWechmWys7kfIXvq7ky65sBL7muwwO80v/tPOdDO09jik5T4qdPn47HH38cW7Zswe7du/H888/jmmuuQUWFGdhn8uTJ+Nvf/oY9e/bgzTffxKc+9alWPzPJ2ueaF1ydwdWhK5RQqu+LzYPlTkirz2RJb2Gjn+9r4SvF7gF0ZFz+PLLmc+hpPSq0MkTVwFdr6Ig512BPf5rHurkt0q7BIG1ZxUY01mJMuL9OGUhS3OOA7jejrdod6pQZg3DGwYPZ86xJjf/NJiK61weMQC3c7cnzTNcxHp2e8kRp2keUcMsvNyT41ifBg4NE3PrYJEpnx543exgAHcPgphMmhtZIM13PA06ePshsK+HzVUAeOtIEWgGgvGzaaR/lBhw/Jdgv7HLFcykJSYqDvTpqB2K767yDMaG/qbzyY/xsePugI8E8Tx8VZRulnHnKQ6Glfum8xlYuXHvUCxnYk5QZuja8T43qS1S+jx2pY44kCW9Jbnr6Ofod+b6vY0Ug+m5vPnESbmCGMEAr7Dzug/4u+jwvLAg3mDgnZH5/+AffNpH1ga2hwSlrGD9pzAs+m1uySimgZ5LH0aKJTfj6+6crA2qYo0ge1HjlFNCj96v+nI8SD9PQ6IJcd1uyvmG8AoI9/81Z3xiT4vB9baDh41u+7AtP9DDinCCIuk0GWDMgppvR/XrgjtOm5MhrgZpjAXzp9CkYHe4b51Wgg5h5kWtTwqP2Ct2vbePqE3FFpX3awU3xRpFJA+sxNmH/c7nlFWfmR7cjF61VYLK+jwkD6pzfB+kmyFBFsvLkjkWDMC/60253cX2T920aOwH3MX4EyREZ5jmhjXDmvZt37ceGbeZ+Y5Id/vPOTmzctjd8drSt5tN1lMs8+61L4ftF6IES8dqzthHEUVMRKID8KDCbfMbAJFyG0AS9FCdMHQBju6Gf3M7buuKatuQgfkyqq0s/vXazfrY13vBtsHC8exve7nUdme85Ku1r+MIJMWFAHfTpSe6nu/QLZ/7yqFqSffe3+BEZj+p2f4uPljBPZBjh++2Vrhf+HQmMjLa/5/aiU4+Y62hoAO1XVxHZV5tsCYwqZxzblcjV8OzASOZKvF4tymZhBRcylQY+qPCGBwBnHDKY5dPM+6yRvXHHaVPwX6dN0cejWEHDbFcp15Fc/esrlXeAWUnBh+tYJ7USbwT/gnEtzcppu9QRwZ5L3/jdBw4bijvPnKrqxsiSY6AwvQ+04eKqJWONVXAPMIwa5CJkuHzHKBeep/dUzRkVdSmy9yxx5dPpTg/guuMmoHdtBXzfx/lzhuPOM6eCoqbq/XrmS9HKpPku+YowD8hj/MjBV86chrND10QuSHG35UhZ2d+fs44wst2qleAQlnn+uH7G/mR6Vpxh4MSpA3H9cYFgS8HXvvKXl3W52CRlH3mnriRN1qpM0clVT8Dm5MfJV7Ah6qvL8IVTJufIDUs/LN8JUweyu+In8nzEIkOAhXb1BKLv+4OHDcV5c4Yb3/Wvr8R1x00I3lvWx00nTMTo0GMmblKMy5dTyVACkLn9hyuTPnuWSkKNeVrxovQrwpX4gQ1VWDihn7Ea4mp61O+2hsd/xXmKUJtTnlZ5vAA+lttnsqvnM6HjD88G8QaoXn7w+Fq8unGHIYw4nxN+ktGMH/dpM6KxJtIHH/1PENzVUOJT+gSX1e/uDD0ltME7TjCvrcjglBmDnNd4mVtLrj548vRBatsKv5fmbj2u6ounhcbkQqLTu7Dr/OYTJ2Fcf7cCfs6sYfrv2cPYsWyFQYsQw/rUmIYB6L4YPTWl9Xieh/3N7val5n7HogBRrP35QTLxDSmy0g1HHwq/yIayBKXLhwCuMJYleoMGn9og5xvzng3VFZ08we+h533gMHsrQe493kZaPm/n0blEjXVW9vI1WJNMSCfAuNAG3eS0YucThxJOypoLbtzRY3+SfpCcr1xwrynfp/xqD0J7MXE8W9iwH2163ObxbHtCBPDcuq3hN1qQiTOaLpnUhFtP0nLdNceMQ7/wOF1XHi6eO9JMG8nKMV2bNqQhV1Hw1pbdav5T7vjh5y/+7008+9Y2Y6GQ6yNV1vG+/KQlJTvnzIGd9wJ/0Eq6lRJPneXEqQONSLuAe5C0hfFAsYumq1biLaWVQ42aFH6KBKxW28PVomDPOM9DMIjwoCf2mpAa6BNWqvrVVeKUGYNw6oxBKliNeSa86brKdR6ucD92zQKnSzP9bvqQnuq8WXsCKnMENTKjuwYPo2PobIs7DzBFvx/cq1opLdF692IVW60wBt9ePHdUpN65JZH2xBN8TFMeCuoZ+h0lGN5NTwH1HNfeMuD8w4ejsixw0x/SuxrHTR5gJMInnugDzIE9ON9V/87W4X02gXHeN2UABvcK9ljzLSRU7bRKz+F5+sBhQ41rdvquo4N4hP0gv+Yqx7J5I9XfY5t6YGHojULtc3O4Gss9DTwPuHjuKBWAy3xe8DnQ4YLJhYno5BleY3m1m2MhK/HL5o1ERSaN0w8Z7LyeuErviC0Az6yrID+mQcydlqkk8/21+QR6qSxL4/zDhytPm3NmDcP7wnbieipNmnSNjJxAnDs9+x3/zgeGhEf4cXd6rYDx55lpVjjmBirznv1Zox7njdXbpj59bBBEME6JJ5dm/ux8OXJMIwbUu92CubHxkGG9Iu+Z38cxPY+CBPrUBgpBktz62js7seLRNer/H583CgPD2At0LBNgzkf11WWReSzfAJj5lKXYkLGSC5tlafeK9bVLx+Pw0FhbSGA7F3ab+OBhQ1FXmVuBnjq4AbMdBuN8KE+n8PF5o1BbkTEMA0Ag23xiwWhl2HJR6Cqph+B0Erses75OSR8OEK3PpNXsgvJhzX2x96n7EdH566vLsHzhGPx65Tr86/XN4f2ecRKE4V2YkPeLQgVn7ti+uOmEScazkwyY/cN4InzcJxlqchhgtNAxx3XEsOsUFHKltpP1rftykRRkL+mIM/W8hOufPW684YKei1RKJ5hXfI68UzahcZof60kLOiSHuRYt+AKky/vUXtxLKgJvM/SU3ftMg4rTeBUysrEWSyb1V///2FEjlTfASdMHYvmiMcb975vKZUS3nMShueSDluxo5M/TY9D2PcFWEiUz2P3N1/XdNzzG8tql4yPxt9JM7mntNFVIEOO20K2UeCOSqH3NURP2pO3aH3PFojEAPGN/havj23sqydpGzyYBvzlrumzTKn2GuWwrF3wrwJT53NyDkGEBtK7xCUsr41D5jQvwMqChSnU4u0MYx3CpsutP2te3J7TK2h2QB5hyGl0cZeCrc8ZzHRZL55FU6loqsieertnKJ38uP+uejhM6MoyXwPeAqzLaQiAzJPDJLFJWRCcyrkzy48SMPfEpfTwVtUkatEhhd+FSVA4aGF0pzMftlepxbFMPXLpgdJDTmJWYwJ1ep3nl4nHONKmdUFvk3iOUpOsMUqqXi+aOdMZkCMoUbX/Gfn7VX8x7ChFs4spF5B2Aj31np2kbAUkYNJ9j/p+U+I8eOaKg1Tm+/3RUP1qJd+edN60bjp+IQ4YHnkPOE0SUkYdbzINxoq4yg3NnDQ2NVtZ4w8YB26W2PJ1SW1YAHd17+cIxGNizyqhHrgi8b0pgTOR9o626JvX5spQX69JMp5Zcc8w4nHbwYGfb4XsliY8cwbZd0Gf4B98WkotPLh6LhqoyDKivjLrT+8FReJVlaWO/fCbtJR55lwtucC6ESxeMzku4OjRsc/wZZY694x6AC44YgV6h8aOQwHYu7C1MrYW331ykUh4+udjtmVSWTkUEcU5bSusycu7dT3vBtaxmU7SVeCQbg+zHHDG6EddY8UcqMml8YuFoLJs3EidPH6gStt3p4/becxaO74cPHz4co/rW4pQZg0JDmku2C6Dx0BUEMLptRV/LdyvKFYvGGF5n6lQSdo/2lHPILQW8ps052r1rNT1fTpg6UG05ywcuA2XSnmEkjbu/NVDcIGoSLVkfb2zehc279ivPKc9zeXrGy6mGrGctgLjgHi/ULnrWlKvv9LX8y0X3Tx3cEJGx4hY44qA2PbxPDZYvdI9DXC7W8nHwu9NmmIsg3KBfVZ7GubOGBkZ6yztWn1gT9ZwtNbqVEl9m7M90K6Hmd8Enb8yR3zFXyyRrJ/2qR2UGHzxsqOFaq5Roz3RjpL99trqR9vQ+Jb1vCuE1LdDq/DmrQuXdzi93ndf6b1TwtTu1S6lLcqcnjH35frBa+4GZgeIVPSc+qP/TZgxynlnvskqq90WCumOws/NC13mamVT8qr69V8zTj0NZeO30gwep+2hCcY0J9oDN5nHTtceScRInGQR1y48zTMWk+dEjR+Doif2w5valiUragIZKfPjw4bHlUPnPa6UjSKFndRkuXzTGWLFeH55D71pxjSPYwxz8vXRyf/07ywDkMv5zBTzSpsNrfFL/1+ubrBRYNF+XQaZIE0GhgYCcY5JlxPrscRMi99jPof2anz52fCSgTa78KsEopQ2Srnzyfnbu7GHq7HjXWOZq/8E4EaR/4wmT3Cvx4WdL1se3/vqfSFo3vE+7FadCw9EnFo5Wrqv8+T6A988covZ3DmioxAWHD1fH2sTlOa++QUJFOn7l+o1Nu/Gbp9/Cx44aGfEgmUnKqGNFwa4zyt0p0wcZRmYXdhDR4HSJoJ4Md3oE5/G2ZLPgR/e0dSWeH7daEDkEcsKVdpkREyacs8Jrai5oYwdvqxGA4O23vSnUUBVn5AzSCpVdy7uNU6w98UnKiRG8NMzn2KYesZHur1w8Dl86fWpwP8x0jRN3kgLbpVPGGMwD10bnGT1O8v4WVw6XbJKLSxaMDn/joSztPuqsQQWAM3+7ryWL637zXJ5PSj6WVhkW22gQtdOM8yDhBmcViyohrdbG51DjCUudVpL5+4rG39F/0yXu3VbISry9Hx9AJA5R0GbyL2NSG7N1KvvZkbTCi31qK/CJmO1CXCa0daLZI3sb92Z9U0+68YRJxvsmD1Mu01PT9H04vTdz5b296V5KfEpb0u1FDeeEEn7akc05pBz41nec5QvHYGro1lRZlsbNJ04yVnV58DoeTI3y6vumVwBZJfMxHiSuxFsKdFDGgG//9bVgH6MjfVvBOWHqAMMTgeedf5Y5JhmtUAVGg+MmD8BJoUXbnpSonr7oCHr0saNGGOe+Un5J2derjrrO7TIbLmSWQYTOluQRRImI27/nMWEkGtiL588movdZFn27HOanZWTgii9T2FqyOsIvWXzp+ukHD8ZhI8yBz0XP6nIlcCTJ4kkDma1E6rrVgvZ7O/aqfNI9uebMTCqlLKv0bjLplDraz34eR0/e0XTtFTgg6nbPVwxcZw8Xa1x312t0pcQ29nAobkDSvnn7OemEFWGbJcwKzy3aSYoOCSGud5MUnR4wWz8fkXl6LgViSsTl1HxOJqVPj4jj1pMOUvvqGqrLca3DIEIUsnIT1EcQUDDpmLB1W/c4v//YUcFqe8ohtJrtWdfPHadPSdz6UVeZiQgzFNHX900BKJi7PDS3BEdmqWO0XEayPFkysQm+77daYc7nV3a8mOBvPXfYKdmeHq2lvK2R8TqY1qxCxm43AjAyNA5RfY7qW6uMxURShPdCSIoTweWzQoksJrD5txAjDTfg06kRxnVKk8lx/Lf8s09NBS6eO7LgVdUn12zGv17fhP0tPv72ShD3gsvBC8LV5La6DifVSz4pF76lI16OsPfE5wwIWtCTNa6tk0bQzPC5cTJfcF/wN23nMRbf8qg4zzF/9glPynDJj/nAdZP453mJeosrf7H3QOePTmaIm8t9+JHFy1RKv286zi+T9nDsQU3GGOF5wH/lCLjaGXStGaONVGTsSVjjGkOiSkbU6sZXOJQyaKX/iYWjUWsF6OKrQ2QJ8mAeI6fdm/2Ia78HFsE0yV0mYXA03bBMBWcK2y9J8OB6vJPeeeY056qcHfjNZYU2Iv6GSdL+O3uQa8n6zn3TAHDNMeMxrE+NGszo+faRfrzO7cHRZeHn500GbtSsfKSs2SvxXtR9jrZBBHlJsjqbedi5r8VUQNyLw0YZiZVvbAnK4JleFYHLa5h3w5iR/0TM23hr96fGTbw8uWbLsmq3PWfeUkBLSxYnTRuo2tySiU3aWu1Q5Oxnu+YO+92suX0pJg6ot8qk77Obe67VzUJwJUN5d+lGLuUia/UJV964kY0UtXyVr2+GZ4pT2tptPfl3ScJV3Hc//debwXFO0NZzutsysap7iGMPaopNHwBOnDYQC8e7j0jiAk50i0WycFlIr0mnPLXPtRBcRkt2leVFrzzR/+OmjpasHxkrKUI+xXoJUg/GnbJ0Cs1Z89i/dCrV6pX4b35wBiYPasBHjhye+2aLfJ/I59noteDTVPCDz7auxDf2qMBxk/vnvvEAJOVBxX2gOXVQz+qIh1B5pkhjKMy5hJ9rzU+iaeuQHUzbPhaO7+tc7IgjMKSRcSh6nboPbf0w+rOlxddXl+GqJeNapWzbBgReH7PClU5XHTX2qIh+6eCI0X2SvSu83Ir0yxt2FLQibiumptzIt2Ylz9vzxxX2TjmuaP/2Fld+vBvdVl2eVvMR/dbwXLHkuaQ3/vzb2wCYx6o5j3YuRImHFzvQunWp+By6xlp3mlG9zPU7Oq6bP9dztK+05+EbZ89Q1z5w2BDlEZgvxRmlctOtlHgehMNWBJJW5bhVx5Y7lFLh8++iaVGwCL6vlp5Zlk7pIBZZvQqpz4n32fFuocUuFVVw6Kk79jarVce898Szjj99SIMRSMJWetwCYRT7d66BmpRscr0082fe+76pAyLuMTY/uGCm8Xw9l5n1wVfLKVfuffY0iYaxCML/k9sTwAfQaH1qoRVhYK+h6rgfM0JnfJn4Xl+72o1B0bq2bstuVT7uVhcET2TlaoUtmeeX+kShK2tUR29s2hVNP6wbvVdJ13Gux5wzaxgmDazHl8+YqtrckWMa8ZHw6DVlXEpS4l1eN3QPz491G58MXIGbiqTDu9uqp58TueZIgwf645+u59z377fxt1feRSrlKWt1YfnV+UpcjfKon0VxHjHnuJHOAHYZa9z1nyzsnH7wYCPif/S3Zj0aVxxVVVATCIW5BeP7OmM46Dy63fzoWS4DNB8x7P2u3OvIppm5zPPvytJm3BD6+aP/eQ9Pvb7Z2BaWSbd+JR4I9lvmihvhIl9Dmmt1k3AHkPVirxVCQ3U5vvb+6c5rX4/5vrMp9C3GGVEpIBaQbAwp5ko8z/z3P6xlB1PYL4ynQtf3208+CICWB75z7iEFbUEKfht8uhYvqK5mOjznbLnHdS1fqK8fPLSn8f0hw3pGjlfmVOVZ1u9/eCbe2rw79nq+r2HP/vyNnHaaptxobrdNqq+7zjskMehjEq5mbO5RNxeEfvD46wACPeY75x6i7gNY+/Ci83pSBfYJt4fxxUO+8GSkUwB+zO+4p0E+w38+z3Z5Z9rb55RXoB81nqSZXhdZpA3r/3MnHoRhfWpyZ6bAvBeDTO5bDhy4Ml6wZQmmS+KsEb3x2GvvqYnAPLYrmsaovmYwJy5kBsJPEJWe2f+0Yu/r/TOBwh8ok/vC/Rt2Z33flIEY2bcGP3/qzeSVeI+XS/PLi+fgT8+td5YfCASVfM44JkiwceXFDoLEofr8xsOvAgCWzRuV9zOD3+tOGU07OjgnKQlf/NNLxv8BXS/OwHbh38pI4QXnm1PU2TABAMBRY/pEtgJwuLHGNchQXuxr+pgks26zbCUtUK4Kd0cjzps9DI/95z2cPH2gM6J7UjOhS+9aln4+AdjBr1KOOrD5NAs+5Gz/Soh05ckye/Of5TEo87zv3t8SvVYk+6wtAM8d26hOneDVk+RZoN8XtYV4wwWRKbDv8/yS0pYclC9eaHIHtnPfy7PIhTK6nfLwvikDMLR3tbqvLURd9+LuKyBNBGWJNyIE2FHF7Ty5DND8/83WVhP48bLfqTMGRTxQZo3ojUE9q/GtR/5j/JD31cADSBtt26LEtzdcVrDhHmn2nuMu5g3fZjygMF9b/luramkuApKNIUn7ygvLQLxX17s79qoAu4WOCr9ZuQ4ADLdd3tTH9CtsRQ9I9hQlNu/ax64lyD0Fvq+ytIfaioyxkAQAP7twNks4+rv549zeSy4GNFThpQ3bE+/x3Y9h1wsR6uNX9+2tj3FG5bYwdXCDks/0c4Kgry9t2K68uPjCzao3t0TSIXmC76+PvPOE3M8YFhhmHnrpHe2Za+2TD+ag/Os2qY3xnOh74tPmC2NJxJunTbieRim+tH4bO3EHxvP4VuNSpVtNOR48DGyoMqxbSdAd3KWDXvKlFPTDc6/Y29iRu/mKRRA0JMihIYCD3xO8Kj6Q0t5Ue8/+JxaOVkeQJVmTU6mwPhwrwklB3vJxaQbM8gHulXgeLCiyyhx+vrEp3kqbhNsVkg0KloLjVuI9DGBRu+mO2ooMs4KakxsJ3oB2/bOtu4Au+5JJ/XFuTDTh3jXleQm7LqMEr28esbQ564MfL9ga/Z2vtmV9H186fSoOijnHOo44BdNnCoTtQeyqxyRcbU4pcgku5q5u42pPw3qb1lnuArlzb0v0WhGkgQH1lZF0VnzoUAwKj/nqVVOO6eG5qrqmog8eGuadt1ubqLGgL6YP6VlwnpuzPnZa+9Vc0AqEC9f7ovzdetJBhkcBP4GBj1f26sJXz5qmzt1tzbtJmuSzjhXrQiFhLheuQJ8AN1pEx2z+f3su8RO0+FtOOoi58AacdvBgfOzIEUbftQ0yWR8oJ88kr3OU+HwFfVvQ4+hVnugcWazI6e48tVvSraaV0weAaF3t2Z+NBJZy0dYtC/r5yauBrd3usWufqfwH/UCn9eflR+Wdlu6/ZplnjegdMUzub869Et2aqqvIpI1TJ5I8FjnRM+rjmR+zXQnIr41NH9JQkLKV9O7thYLWnoSRxK+XzVFHR/KkJ4XGUR77ivIyc3jU40LFm1KnV+m6yifPZWwBKu7YaPIGyxd73OeYcmPutGyDgvN5YR0dNLBeBZ6kxR96BEXc57KvK8YALVDobbetP2KucPNf6+hWSnwqBfzj6vl5vxhlzQz/P2dUH0waUI8hvaqNozWUPSkhTbsx8sijmVSwum4HH3IdYxbcGzy3Z3X0KAjOgPrKnK5nQX2Ye4AA93FrfBAvxBWG3I1cE3OGBRuMrjIH908pUDnUCeg/lUEmFbmUrMQDePSaBZF7k9ymuVtghgWQs4XofAR8e8UqaujQiord/niAEu0mHkZ2Zt4RPGp9vuh6aP0Ep4+9sxPQ7X58/2iwwkJwrdpEA1RpbGUv17Pt2BG8z7ruJ0W2LTx6zYLE6aGpvhK/vHhOmJ/4vBA6KFf0mmd9t2zeKHwg4czWOGorMkZfSIIHNswFXwHVZfUMwYuPV3FCMVD4dhB6fly/iXNJdx0t2RZGNNaoKNGu/AHuFRr+f3slnhuj8kUZT7ihxHomzUedtRJf6HjlutfcnkHzevyYUixKUIdvlWdRnNGwPJNCVVnyGNGntjzWYFVwPpCsnLR1T3yh2w9dKPnPmsdSqejYPrhXNSYNDAySdK0tJ0AAwIVHBUetLhjfD6PCPcGu6ti6Oxp4rxA3c5cXH5HvnuxCSpok76RS9mJa+4xTSZ6fLkPoh+YMi9yfUYt7elsD337J03SRz/aOIM2ct7EfeIYR3bqk8kb1n5Q2syPk81hV9nfCgMhEv7oK9KsL5GHb1X5Mvx7qXahju5kRt7WnD3SU0bVbKfHmOc/6+zhlamx4FBi9w2uOGY/3zxyCv141T1l2VFC6vIVOngfTKqUHe208oPtpRbcsrc9TV26gMc969JoFEZcdF8G+aMpf8Gko8Woy0vfnc8avFpiDz0w6mlN6zs+eehP/Fwamsn9/WI598EnPT3Qt8szvktx1a8rNwc533GMczxfeoIOFRJWEslwRvmAexeTaBuIaFAFg8qB6zAj3sHFhxfPCFULW9nxfR9/Pl3yE1aW5AjTl8bzTDjbP+RzbrwcOHtYr5u4oSSvxLvsWN3ZEfkdfxi9SGi5/rmGFx1JoE3mON9pQkjupYrn6O5/h6bwkR6dPFtji7F7U95ZMasJ4a2uKy+3ZlUyxjq4ikoLDcchrwkU+AuyDV8xF3x6VzmtckLOFET5e0AqEEqxQ+J5gGoO04BWMO588egzOOjTox6TE+wA27SrOmeiFUpgSn58xL8kQfKCTj4zbVMe82WKU4xlDe2JsU6CExtXjv65dhMqyIinxjj7BaauRTQXFTbcuKCWg++/UwfWR76mvklwxuFc17r3kCBw3ub+6ZitphQYpI7nlv8+ahrljKZha9N2844ieX1HAe5rqCKRM5OONVKihJGklnhtmPS/YBtkec2PyMbF8JT73/XTyk2slPinnVeXxSrwxdxRgyEiUNTz9SeXK53SjpPon+ZbLx9voqD7H/ZHo9Ox926cTFbr1ujPoXkp8+GJspfs/tx7rvP+8OcMBBO6pQ3pVG9e4NacQ5UfpAb4ZnZ7y54Mad7BSUa5c0bXFjVwW9f4NM+1C4R2KUnGtxMdFp49P1zM+y9OOCPYJmaZr1xwzHmtuX5rzea7nR/fCOp7LjBM2uQbaSFrQijJgHjFnV1k+QZCCFStydY0fTO1Vr99+/HBMCrdw2EqMsRLv0QBYWJR5nvPWrD4dOqxX7LRAniYuzjx0CG496aC8n5No7XY+w1T2jN/l08N85DXxtJV80+ar07FpufqE9fu2YpzikaPPJwVVe+02cxyg/JFh4LPHTcDx4SkEOk1PHSmatDrRuza/aMpG2gmredlsfgrjnWdOi0/fy8vWlRPXnngOjQ9kMGxNEEb97sL/h+l+fP5oLF80BoA25PauKS9OwQqkWHUZfOrv1CkO7bkS34XtA/deejiqLYXB7uOfPna8Ok4uqR6L5e2QS/HTc21hzzsk3GfMY+a0Jhgof/QnFowxv2bjQl1VmXUtKNfIxhr0Cr017fTyJc1XrBPkzBaHkaLCIe/FkTgnhJ/Jp/oUpmhSoGLnNc/03PJbMRbmgy2b8Pysfncnnn97mzG/JBkItacvC1KdKOeYnHXoEEy2PF75FqtC5YDYLXFshTsfeTOf8ZT0l8kD6zE8DD5XF3pKU7wl/ij75BE+DpAMwK+1JgZQR9ItlfgBDZWYEO6DzMWa25dibFMP/PWqecb3ak8xiwqXz6umPKzbuger39sVfqcbDHwopYqO7QG08PO7VevwxOpNmDyoARMHkNU6ZaRTKNwzQVunmBLvuJbXfhbLSOFaiU/qyO2hBPEqslN3K25ueLYj58JCtwUqc6HBAImMsRLv8Cxgz45L3bbm+j6M40TozOVClHiaNOyJMG9jC6sye/It5pDpXol3C9wN1WXoQfvUHC++zNF+bXyWfnsK3fmmneRZoNJS+Y3eVazVab7qlWhQAFBIC1Dt2rUVgI0/+pQDuubOQ6HGQlefVHlD28ewQIhs/e/5Hr9IP2P/1UYOfa017vT8E0zRoLTKWWwXEhI7En4EXjGInHDSrhJVCWrxXnQOcNGntgLP37SEfqI+4/pbUj0Wy9sh57adVva7UX3D02fCtMvSHva3sq1T9uxjzPjpOvYYTX39gSvmFhynxibl2PbiqjOXPFhZnn9nKIqsV9BKfLw8Zi9StZcK51pQcsqk1tzlgivu9pibL3HbrQo1JNOc6JSnHd8ljR/2qrnzeWEaN584CR87aiQAqKDfW0JvL9dc7Fq8II8Q1yp9oeTjrVwMupUST13kjEOG4O4PHdqmlHTjYvs/fD+nEMiFx2fCaJOGiwl8FQ2Tu9zzve3NWR+XLRyNT4TB9ezAaoUSeAVoCxlgulLae4jpKLxc2PsFXZNv0tzWHq6Jdp6Cv8PnOSowrk5dcQR4DAUVcIRHp2/FYJBOeWhp0c+JV9TjLcvk1vrTf72JVzbsUOnStawPvLh+O7bs2l9w/toyTMXld9POfdhjRXZvLe7gdaTYmNdWXnc0xvSLHv9HeEmzbciOvc1KYMv3SLT2JHLcjAM+YXHW3L5Ubcf5wimT25SPpLbryku+2EdHutLIpFJsr1th6eciWbDKbwUnySOnrfnl5baH7H1s9YwuVZdn1P8LXomHF/m0V4XUHs4Ct+8Uiyw7Sqm12Fsz+N/dzZ2erWHkTT4rhEn1WJZOtcozz6YlR1uwAxbny/XHTwh/p2W3/c2ta+wqDUuJ9zwtO0XP9U72Di1kxZrLLcr44qgQ28tize1LC9oTn5SnJEOpuifBI8pFUkBSvjLrtUGJy4Wux+TxvxCl3KX05/pV0Jfi56pCDcmuk5IIHliaDFNJSdt6ifN51hg0tl8PtRhDW0Cee2sr1m/b4/x9n9oKjGg0AxTzmFGtVcY7an7rVkp8MQW4iFtIKyYzrhQHaQWDBwlQ2/fsV1ZQ29rqeZ5WrtsoOPSqqcAQ65ilJNfy1gZBc02YSYN3awWiX1w0K3iu4xqPQ6AGx/C7mooMVt9mbq2IEzS4hTrleVh927Hq/4HwHvxOrcR7yQaLOPhedc8erWCuasQq+NCCJx17poMUBvc84zi+JB+4oakQeH5dTeldKzBJMVHtMWH0SyrSE2s2YWuCwWPr7uCaO1Bixwr5eiU+t6KYzz2tpZA9i4UIDK79grYymU552K/OQS9+/SeNhUl9Qxsgcj2h9dJAVXkaDdVlxsodUVOeUcILlaGJTuJgY1i+2CsbLpsXjYfp9l2yjiXrt32+dAVkSgqWWSw62gCYD8N616C+yh1UMRdJr6Ejxsmks+BHNNbktRfZhS2rZdKpVu+Jj0vTFTyXcMkJ6lqBz+VyTtJ4sL8dNRbXyUXRm/LzCNG3Jy96GCvxHaSMxeSmwOez+Ef0mcdLb6ytwKCe8cEFC5mDyGDseizPCx2Jmzx/0g8TnmcpX3+87AgsntgPgJbB1ry3M/J8mgfmjm3EA5cfZaWp72mtO317BUS06V5KfBHTsldtW5O27W5OVm1yZexdW6EG0KQo82olvhV5AICzDh2Mn33MVHxdkxvPZ2uUeJdSk5RMa5X43O66Qf5d9eZyjXdh7Jvygt9Vl2fQr67CcCXSXhKtW4nnBhPy1DDyxwTm2OTDdvWxI0eoKLBkOScB5fxwL2I+vHLLMervQiKJG1li+XXXS3F6qyt4oK3k5QMvMwA8t25b7L3kyuVqh8Ua2At1CU5eiTcNOi7e3uq2Yhfy/HyErLwENgdJ238yaQ/NLVnju2JRkUmr923Tt65SnSCSRD4BjlrLzOG98ORnFjrTOfagJvz5siMBBONBDxYEtTXHKrlu50dbAro/NlSVoU9t7ropNlk/v2CDSXB9zO7j7bkS3xnR/HNx7yWH46RpAwv6TT7bjTrEYOEnGOm9qDKUL3YbGNhQhbqq3AGGXVBK5Zb850Gv9FXZwesccgKnkPHE2M6XcJ8d+LfY5F6JL4wkeenFt7cZ811rvJJai/0cvg0q8Z3Cx79vONooF98nn4vLFo7Bf5813Xw2D5ZX0Ep80rVWGobz9FYI/q8XOOkkiz8vPwovfW6JZeyP3k/QfZmU16rFN6DjxutupcTbFsu2QEn5aL31PW11snQ6sHrSoEHKIXI8I806W2vwPE8fUaHSiCbGV+kLda8B3IoHKXBfPmNK5Fpr9+Mm/YrqsbaiDI099BFssWmFF/uE9+5nRzHZrsqLJ/bDI1fOM47X4IHtWuuWxd32I3viw+c89fpmtcpuQ6ugO/c1460tu4N8hQ147aYgLkOPyjJ1BEcuuEGprrIMvWoKF8Z711QowcY12BVr0qyvLsOLNy8pOG17ULeNaElH9zS3xAs9u/cVZ5tAz5rySLlaSz7W7r+/+m6bnpGwOBQh3xWVTMqLeJTQs+z7mtvJnb5fXWXElZT4zjkH4+PzR+VMI2lsf3Pzbry3s/VR3D3PQ1k6pT3GrGs0Ph0+qg+evHahuubDL1gw5q6SL968xBivKK2q8hRWXXc0Fozvi79/an7hBWojPSoy6ujN1kL1+OCLG/HXl98xrrVnYLvydEodbVsqZNKp1ntshK3ilxfPjt7T5pzlpk+PchUAy/X81q7E8+OpAOAbZ0/H8oVj4n+QgA/gxZuXRLxHyCj34s1LlBeluob4rSr1VYXN1yk2cCeNyidOLcyQY5OPF1jS8wuZX4i4+//8/AbzvlZ4JRULz2MenAkFbMn66FFZFno4ur13k0ixuVR9F/73X69vLngOijM4GEG8lStmfDr5xheKkxlqKzJYdd3RSKc8VGTSxjaKfIyIKa/1sVs6yoOjtGaEdqaYVnI1sLN9j4W+NB7tHQAq6PgdStM3G30cOkhZ240UuvFGr1HHfGn9drz27s6C0nz2xsXY7BgI4qzJQR5aqcSz39kdlj6vOHoM9jVnMfH6PyWmRfXw3XMPwcIvPaLGG2PflBpoPFSWpc098cp91FzBSeLZGxez57MJ2bFKSeW595m3Y9MjAf6p17eo78it9ber1gEAjjuoPxaM65tfBhnLF41plcXxjtOnqPfrevfFJHrMTm7aMlK8tGE7gGgwIgBY+caWNqRsks8Zr/kIovmccd2eygln47Y92JxnbIanrl2kDEFcyLUn/kw6pVfii6weXHF0fPvP9zzrpGnp3mfWtSZbzmckzU80dhFxgYmS4HNHZVkaL2/YgTc37zaueZ6H+vBM+3zab7G5ZMHoNq+QkMC41+GB0VZX/STmj+uLx69Z0G7pdxaVjr3THTHcfOn0qbFjHndXb2te2nKu/b7mrLOfpLxAcXNdS8rv9cdPLMgbjCvHcR5HQPu2eyJpTEoyXLioLs/EbgP51JJxuOPPLynDb0cpYy74fJWUDX5kMKHaditfDf3+4ZfeyXGniefFnzDDY1JpD4OkxPJ5XvJNNN/Yz83HcBScDpU7Dy7aK5aCTfdS4os4M5BBgOlXrYZW+fhgT4E6Uo7OGZeXKYPqsfK6Ra3PCHTDdjU/Mkg98nJhnTrleaityGDn3qQzsl0dvqDHxKa06rqjIysYZelU5KgJZ1rhpcjxOHAHOALM4En0bu0jTZLeUy1za02lWIAdxFsckyCr51FjGrG3uQWvvbNTuef1qMhg+95mpFKeCmJWCGXpFGJlcR+x3gFc+LhyyVh85++rC352W8kVTCfxtwnv4YnVmwAAC8f3KzjdYpOPwMatznG09WxmP2aPnM3vEoxRNnxydrrTg/qghz3722clPrH956KVK32tIdcRczati04fGizDz7+8oFe08jEUdQRtel8hiQHZ2rF8rR2jSw2qITXudJI/aJIRia8UdmaTbYmRGQJFyd2hk+SE1hgUdAyI5AGkLbJn4lwcri8Xk9MPHoTjp/R3XqutSKN3bTk2bNsLgAJXdwAxRaSv4973quuOdm7XoIWa1rbftiyixQcNjH6XaFy2PuPIt3V4Ht/uGH8fl9/rW7kVRgLbtQPtsRLvJ+yrSmLe2EZUlafxr2sX4sgxjQD0AEsWx6zvR1zuXfBI4w157MFMJKEorXUroerpV1eJJz+z0Lxm3WNj358PtEKS9X2kUoGw77IU53p2cA+tpAef5WzbQdwqp2tPvH2kSb7vKbon3l2GJKgMly0cjV8vm2OU54b3TcwrH63CyydoFwqKYlsMlAEuDzeu2Ot5lCuV8iLtt6OjVytvn3Ck/6/TottWPHVvfDpnHDKkTfnw89xYuKmVruOGO711Lc3Oae5cFdJNRyi2riPmkuDeRAU/y/XDti0KlQxPfmYhDhpYH3u9u0Wnbwuuk2KIzlz9BMjTLveKXRLF6Nb8/HUuM/A9+67nFkuB4B6HudJss+wZA8laxWwSmXRKRTC3OeOQIfjTZUeid005KjKpdg9P5hlzlxe5pk49itsiUV2m+tKrG3dg47YgKLBanW9Fnp78zEK13bR1xBiY2KIklSdpXsrkcXx2YLTKL1cpz1P6QVK90LXzDx+GX140J7/ELTpqJV6U+FZCSZGVLinaJfHo1XoPYFN9JVqyPvrUVkQUxGy4BycQfIP781E0iwGlNHVQAx67Ruf30avnq6BohcIbMx8YHrtmPiaH55i6SuB5aNVA8vhr76nnJgeNQuyzI/eEnwvH98U/P70APACX/Xv+3Aw/Yq4VM6vneewM56iFMx9BgSaCyrI06sKJi/LXux2DS1WVpVvtutqe4x/tA05a1Uqq13ljGzGA9QXer23s9jtzeO88c1kcJg6oA6DftyuYGJ9Y46BtIa0llfKKdua8M33XSnz4Wc6iQ7e3vpzUFmzU1pwOmIVdY0cSbdkHmnRUZ2evxLeVxh4ViWXoCLfiro49b7qqs7Nj+AUecPrvziIu9oqtqPNxp9Dj1pLwmPGvNV6ARclD+ElHLzvvKWK3K8+k0FBdjnsvPRzzxvVFNtu64L35kpQ0H2vyqf3HX9uEjdsDJZ4fg10obVHgSUGPk+kBGL4Vcc3q8WsWYPbI3ur+xOfl2eKNbWV5rMRXZNKGx18hyDnx7UAxJ1huEPA89yqpDRf8A8HSdPEsD1ckqQP4iJ7fftMJ5srpI1fORVURI4Py4HX963V+BzRUqWunzhhUUHCguDNS+9dXMQXCJfi10gIefuY6B9bjI0oOSDDNpFPoV1dpBIqKuNOzlfg0c2lqzRzITwJobRR3PmCqdMOe356r4GnPQ0srx7H2FBhIIR3Wuxp/vXKe856kWh3QUGW8ywF5Grd61ZR3+EqdHXne3c/irxFtfR3XHDsO3/7gjLYlkoA5tptjZnkmxfYvt2/959sWOImKbZG6AV/RyYe2vG/30Yo6H12dxK1tB0D52hvbTT0p/k5n4YGfj174S33kyrlFWVyJM4J7nrloxMcdr5ClyRzwpNpTJykk+njsPUWWGfrXV6E8k2rV1qLWEJd7aoeFbtVpbq3wVQTinuw+ZtpNU32lESE/jkJX4sc19Qh/l3uBry10VO13/Q1WBVDMlSASeFvbwS8/eqyKVE2/V+704bFdG7buxf7+egXp/uVHqujixNDeNa0ug4t8SlJXWYaeBVin/vPODhw0KN4FEYhO5H+5/CgMoDOLC4Q64G0nT27zwE4DqD34cDczO3L5/ZcfiV415bjxd8+rgdd2p8+Xb31whvLQcAVFy28lProKR+Vp617nJFKp1nkfAKbB4v7lRxYrS3jgiqMwLOwznudFIvsSSQa/pP2IE/rXxUaQzvrta9FPIp9jF9tzlbQuxnWxWHABxzZKVGRS2NvcYlwrJTpmT3xhQnhrj46Mf74eB7s6VIKHPjkXe6yYH7ISnxtS0KktDO9Tiz9dZo7xrT3WqVikWH9pTZMd2rsGz74VfwxpvsT12ZRjTidae0xnbFp5uD23N7k8g4rpfWCm23Fu0UC0rdHiz4NXHIUhvdyyShy0UNPRIxIZwFyvixtz9TaBttXv/hbfGWQ0JnP6zyTDQBvnqUKP4W4L3UqJb49VMN5YC3ln9VVlKjqmXolne+IB7GvJ4o/PrQcQuGUP61PT5vOac5FPEZbNG4nzZg/LK73Pn3IQjjmoKed9dp8Z1bc2r/TdaQWJuY5ScXWsJCMMCRO2cJZig5AdXX1QTz3YqhX5VOuOmOvbQxsyXMeTUa6+csZUXPaTlc40XEonCVBtiZybiyuOHtPqI9W48DK6X48i5QgY2Zhfu0oKepQkQH33vINj21M2h2dIe2J79LiYOKAOv/v44R2ToRjqq8qwdXd+0ek53N1fGyWCz0sXjMb5c4aH35WektURWUraQ+uiLatPSVtoOtM1uWiE1TK8T9SA3lGnOHRl7GMH0ykPY5vMMd7zoOK3dAaBDEHGhtal0VZ5s1dNeWLwuthrRVQgTp4+EHNGBS7N7bkSnyuwXVsMKm0hnQoWXzrN+B4aJ0bkKbdw+tTkPkK5PUjyOuXHkCp3+nzSTJiLHn55Y955M2JMJd6Xd5IJz2lbGvkiSnwRaGuqfO8mgPCceA9fPWsa6qvKcO5dT6i8t7c7bj6Df+/aCvTOc0zJJyDWDz48U+1ZbW8KPZNc7VuNWEiDTvrDC2bmtfqS8tq+umCv+vD8LZoQjYROuKzUfM9Pe9GW85g70vpdKEkKEd+CYnPPRw9LvN6euI6gsSlLp2I9ZmaP6o1fXBQ9z7nY2F4t+TJ1SAN+fuEsANqIx415ZNArJRWLjIBJY/reIo2LXHjJBx+tF2TI4+iaY8bhtj+8CICtwJTUG2gdSYq6BLbLjWqFCVVVnklhfP+6jsiOk+Zslr3L1r3TI8f0adOYGcgM7j6bdGSk7V78wwtmtjoPPSrLVAC4/fmudhYZWrXNuWLbDiJDyvPQkm2/6PQ/+PDM2BN8AGD3/mbsSjzVKR7lit7BY27Q/uINTBHy0+JjKWTbwPY9+1l0+iRvy7auxOeOkVYsDgS7eN60h5W8tdHpOdTJ1LnS4Ur8+6YMwKQwMFU6j70hxaAzgpccPrpPUV21kupoUM9qfPfcg837E9LKJgjangfMGdUn9rfcFR6e1+YyXn70mMh3ZJSoLk/jf885OHKd8hl1pw8+XWeZdwbfsvdLd7IOP2NoT/zgw/HCT2v6ycQB9U7vkI6grduuq8szmDG0Z9HyE8fnTmzdaQkVmTQOHtYLQHQlnrOlFav87U1HudMX0mbbsvWDDLJj2Opq0v7nrkYmYeO7uNPnhtphXLu/67yDMbhnYa7Dxebzp0zGhUeNBNB6mautY2bSsZBeglHOnu+TZJRC+PXKt4qSTmvQ3hvul9FeQ2hwTnj7CSOHj9bvxjU+3/PEG1jXRu/bjt4GQTEMkuLvcAo5BtdFkhHEJusDP3piLYDkcbytcrGXYIArNqUhwXcQ7THBHjelv1JAWvvKIu70pMVDRzdvz8jOnM7ai7Zzb+vcrl0kRdEvz6SwwDq/O+m9JQkcuWTixRObkEp5uOO0KfBzRMrPB5cruI667cWuxgdPNTPL9wuXAosn6i0Xs0b07vSV+NqKjDHBcgpd1exsvnrWNPSrC7ZllOJxTpwxRdg6kXQsZym6OycN7fuKtPrFT7nIizYYp//w7HqVhkpOucOWXv0XSjphT0Aptq9SI+5oVmL+uH7tus0rHyYOqDe2xXUGgUN/gqIe8zvfb59tK3yOLjbJQca8WKWwvUnTKQUd8Ohvn3Mwlk52n13f5YhpnOXpFL79wRlBdeYwzHCS7njmza0FZY1k5rix+o7TprTaI5DoSHf60pDguzD966swZ1SfSLTQQiAhjo684vsRa8MgWR3lGtNZ8vxhI3rjG2dPL0patCKXL0kKWTaHwJEPp8wYhAXj++Hr729b+VyGnHwCeiStxHe2sOSCH+9TiiS5MpYi75syQL1nuxl/4+zpKjZHRzI6JuZFMdyRKZ6Bq8uueW9nm9MvNknC6VfOmFqUZxR6Tvze5myrZxqX+ycZC+3ArF2RJIO6uNPnj9g7ksm1tzhO3sy2IZ5FEsdN7o+vnjWt6OnmQz6ydXusOHeIl1T4OWdUH7Xd7pTpgwAAx0xqu+Gko2WVpCCDnufh6IlNQGiEuvPMqZg2pKHD8nbOrKH477MCOTwuj6fMGNTm50hguy7ClYvHqr/b6lAP2HvigyskFGQ6yJ2+s+bVxh4VOPag4lghC1VKkvqajk7flhwF3gFJHgL54BIQd+axX8rlekdGoUwbLY7tQamvdKdaGaSwFLCzXaw+Vyj3X36U8/tiCE0V4YkLLs+rztrOYDOisSYv4WphQqyLQrjoqJEFeaK9tWV3qw0eOmCRLiCNM+UlON4USuI58aKZ5oTa/Zi+xQtYeiDyuRMPwrCY01M8JBu626MZNlSX431TBhQ/4RwEHgnh3x3cvZK8uorF1CENkeNXjxzTB7/4vzdxyLBeePild9qUfkdLKoVs3Tph6sA804yv/++eezDufebtvNK56YRJAIJ4LZXtuICVFPy42IgS3waWzRul/9OGPh6NTh8NpNFRe+0OBBmkUJfGfFbiS2GFxR7IqsvTee3XcrnepTwPF88d2WHbNAqllHXkIHBLZ+eidTR39tlNOSjGOFcZBmt0pVQq20fyLWWxlN6ZI3oX/JvWuPJPGlin9hK7mtr4/l1fcdu8a1/stQPARtHu9OlRjisWjUF9AcfUdkeSgtUmB85qv0BsnUExo+0XSkfEoupTWxGsTjPUNtp02/bkXzp/VLsqq63FQ2Gey0nVv2B8v8gW2Vx8LJyj2ouObLOixJcA1EArMtGVeCKfI6KKkpcDYPQvdD9Y0iBJA43LEtgZ56aeO2uo+nvXvpb8lHi4zokHrloyDs0ddCpAIaSKEASwPUkKKlTqjGuqw1VLxua+sZMoxvBDx825VkWH96nBZQtHF+EpbSefFtSZ211aswf13kuOUH/bBqPzZg9DQ3VpeELkAx9rOUl9XwLb5aa6PINLFpRGH8yHzgj2m4uTpg/Epp1uY1I2iwNDkAvhRvPEAK3t8Jo6K8YFGQPTKQ/722B4v/zots/1x08ZgN+tWlfQb3K9iqSYDnH3dyUCb80OelbHPKZ70NpBhIQltW/VSuvMQwYra9qBEBiovSl04M3Hnd6ms17DjaE7EAB8+thxmD+ub87fuNybSMFJpzy1/6pUSHnJhpXOJtjv1Nm5aB1N9ZW4eO6o3Dd2EsVwR6Yx0qVP9a6twGULo6c8dDQ+8t+ic2oR9ui1hgdfzP/8XRfj+9fh8kW6rm94X+tOHugs+FjLSQp6tGVn6Z1+ILSeD80ZhsYelZ2djQiHjeiduBXqQJIS85F520supgjmHV2fFDyzLJUqSK8Y2VhT9LycPC0/l3fCawdX8q52NGlHbgkVJb5IXDx3FA4ZXlhANYKaZ5xwcPspk9WewvbfE9+1OouLdMorKCBIojt96S1UKz565EiMziOaN99TRijPDs/DHadPKX7m2kBHRvZsDe197Ex3pqgLmaU8lFnR35ckRH7+r9NKq3/my9DeNbi0C6245ktZwtFE+0vQs0loPdcfP7FTAn+2hcWT+uGsQwd3djaKio/O8YjorBgXpApMHdKAS+fnb3T/RDsYqAutgt+sfCvnsW+FbknsamuXqQLiArQVcacvEhfNbf0ei5bwZdNK/P+t3YJXN+7AFx3C2+Ce1TitHVdmulpnceF5Hv7nAzNy35gHvBseYR05VoJedk48hxZfyu+5PSy5xSR5P6LQFoq5olLKQcbsU4u++cHijFdC+5N09Jh4ygmdzfxxxQmGWSr8euVbKj5H0iJTe0zJOqBex/ZrmrvG9OtRkEt8e+zmKXQefWtzfieQlPKWybbiyRFz3Quy3vOgS9v2uKOON9VXOpX7YnDStIEY2rv47jhdmSzrid//8Ez1d1eS1VxHfpSyglNIdNPOIOV5yvAmFJdiNstSbuPZ4BxRoQvSry7evVoC2wlC4TT2qMDC8e6tga9s2JHz9+01lJL819FDdabQwE4h7eFJW+g8mk8Q6BKemovCmYcMxtTBDR3yLFmJLwGaW4KBIpPyMKZfLV7OY9BqD75cpDOJDyS6agAzTtb3I4NmKUTbjyPlAc0lXO9eF94TX+oUU/Eu3RYerBodCFuXBJNSNhwJQqnS2KMC3zn3EOc1w6CfFNiuHVZ2O2ueb6UO304r8YXdv3H73pz3FDr3JcUhKUWuKEJAwXzpWjVzgNJM1j7Pw5+Xu89PFtqPOH3xhKkDMLxPvGdCV9HjWnw/orRv21O6AZhKfU/82KYeWNpJ56sf6BRTCCllhcpH1LAmdH0kOr0gFJd8vN7aayylRZyOHqtbuxI/pHd1rEdDa2mvrQSFrNOU8qJTZyMr8SVATzkvtSS588xpsddcx7aVKtmsH4nYv2tfcuCRzqQjI3u2hsUTm7A4IRCZ0HqKuTrtlbCJWrzpD0w660gqQThQoeDCnSESKCW+g0fr1iqtEwfUx3o0tJb20J+DLZPFT7c7UsJiTvdB9qF3HlMGN6BvXUXBv+tKslpLNrpCVNmJ50/npAvVrVBciql4l3Iz8v2uNYYIJpkYyVbeqSAUF+4mn9S92kMp7F1TuGxYDEpp5blQ76KJA+py3lM6pev6yEq80K35zbI5nZ2FdqfFj67E96wp76Tc5GZkYy2a5aimbkkxXeBL2Z1+6pAGMd52YV699Vjn9w3VpTuuCkJXZOKAeqx8Y0viPe010o9t6tG+D4ihlDx6SsieIDgQJb5EWHP70s7OglAgXeWIDN+xJ35MHufLdxaXLyr+WadC16C77In/+vund3YWhHZgdN/azs6CIBxQ3HrSQTj2q3/rMvJWMSilqavQPfF5zbtyTG/RaDef2ltuuQWzZ89GdXU1GhoanPesXbsWS5cuRXV1Nfr27Ysrr7wSzc3m0WoPP/wwpk+fjoqKCowaNQorVqxorywLQt54QJeJbLe3OYs9+0t3D7wgEEXdE19CgpDQPejbo3PcbwXhQIXHeEtSKNtTHOvouaSU5q5CvQLy0uELSG/1bW6vJyGg3ZT4ffv24bTTTsNFF13kvN7S0oKlS5di3759ePTRR/G9730PK1aswHXXXafuWb16NZYuXYp58+Zh5cqVuOyyy3DBBRfgT3/6U3tlWxDywge6zMae5hbfcJ+XQVEoVUpJeOnuTOife2+joHnt1mMxc0Tvzs6GIBxQkBKZtHDbXhHUVfrtmnqU1kanbw8K9Wjr26Myr/vyNbq097vt6rRbS7nxxhuxfPlyHHTQQc7rf/7zn/H888/jBz/4AaZOnYpjjjkGN998M77+9a9j3759AIBvfvObGD58OO644w6MHz8eH//4x3Hqqafiy1/+cntlWxDyol9dJXp2kf2PLdmsEYhJBkWhVCmmC3xFKQdvLHHOOnRwZ2ehyyHHywlC8eH9qrv0sFIKbFfolPzpY8fllaZ40xeHTpNyHnvsMRx00EHo16+f+m7x4sXYtm0bnnvuOXXPwoULjd8tXrwYjz32WGLae/fuxbZt24x/XYlPLRmHyjIRQEuZH3x4Jj5yxIjOzkZeNGd9ZNKlMykIQhzFkl1evHmJGKvaQCaV6iq7hQRBOIDJ1527PZXCjp5LSskAXWjR8/Ei6Ogj+w5kOq2lrF+/3lDgAaj/r1+/PvGebdu2Yffu3bFp33bbbaivr1f/Bg/uWqsKVWUpZEWCKmnKM6mSspYm0eI4J14QSpFiCUuVZemipNNdCVZKZBISBKFzSeXjTt9BeekInr1xMRpLKLZGodNAvlN4dwpU2J4UpMRfffXV8Dwv8d+LL77YXnnNm2uuuQZbt25V/954443OzlJBVJSlUVshBwcIxaElG41OLwiliDTT0kBegyAIpYAZ2K5z8tCRj62tyBjbH7sa+WwrEnf64lGQpnjFFVfgvPPOS7xnxIj8XIybmprwxBNPGN9t2LBBXaNP+o7fU1dXh6qqqti0KyoqUFFROpasQjl1xiAsmdjU2dkQDhBasn5JBUoRhDjEBb408DxPhCxBEDodWoDIvXLbfgNWR09LXXnRJZ+cd93SlR4FKfGNjY1obGwsyoNnzZqFW265BRs3bkTfvn0BAPfffz/q6uowYcIEdc/vf/9743f3338/Zs2aVZQ8lCpl6ZQRTVwQ2kKzrMQLglAAvu9LXBZBEDodHuw0Too50Gy/nufh0avnd3Y2WkUxg9MKuWk3n+21a9di06ZNWLt2LVpaWrBy5UoAwKhRo1BbW4ujjz4aEyZMwAc/+EF84QtfwPr163Httddi2bJlahX9wgsvxNe+9jVcddVVOP/88/Hggw/ipz/9Ke677772yrYgHHC0SGA7QRAK4IrFY7G/OdvZ2RAEoZuTr1LYroHtOmHteEBDvLdxKZPvepE4ehWHdlPir7vuOnzve99T/582bRoA4KGHHsLcuXORTqdx77334qKLLsKsWbNQU1ODc889FzfddJP6zfDhw3Hfffdh+fLluPPOOzFo0CB85zvfweLFi9sr24JwwNGS9cVNWRCEvKmrLOvsLAiCIGh3+kStz2vXQGndWXwqtOz5yJqyJ754tJsSv2LFCqxYsSLxnqFDh0bc5W3mzp2Lp59+uog5E4TuRzeegwRBEARB6ILwk3XiFETPgyztthOFKtv5rMTLolLxkE1vgnCAI0d5CIIgCILQ1fDy1FLkSMzSIP/tD/K+ioEo8YJwgOP73dsdTBAEQRCErkdZeLJOksrX3uKNBGvLn3yqKp3y0CJKfFEQJV4QDnB8iDu9IAiCIAhdCx6Ut7PkmK58bntHk4+rfNrz0JIVJb4YiBIvCAc4wUq8TEKCIAiCIHQdlAKdoPOlPA8t7agTprqxEj+8Tw2+eOrkvO/Pb088JIZBkWi3wHaCIJQGHztqhEQCFQRBEAShS2EsQMQoiJm0h+Y9ciRme1BTkcFpBw/O+/58th54nic6fJEQJV4QDnAOGdars7MgCIIgCIJQdM6ZNQw79zV3djYE5KfEzx3biIYqOca0GIgSLwiCIAiCIAhCSZJ0ys6hw2WholTIZ+fmyMZajGysbf/MdANkT7wgCIJQMpwyfVBnZ0EQBEEoMTwJ0VvySCT/jkWUeEEQBKFkuOP0KZ2dBUEQBKGE6Ky4PmtuX9o5D+6idOMYgJ2CKPGCIAiCIAiCIJQcJ00bCCA/V22hc5GV+I5FlHhBEARBEARBEEqOL58xtbOzIOSJ6PAdiyjxgiAIgiAIgiCUJHIkWdfAEy2+QxElXhAEQRAEQRCEkkXUQ0EwESVeEARBEARBEARBELoIosQLgiAIgiAIglCS+J0Vnl4QShhR4gVBEARBEARBKFlku7UgmIgSLwiCIAiCIAhCSSLr8IIQRZR4QRAEQRAEQRBKFk9C2wmCgSjxgiAIgiAIgiAIgtBFECVeEARBEARBEISSROLaCUIUUeIFQRAEQRAEQShJfEhgu67Cizcv6ewsdBtEiRcEQRAEQRAEQRDaRGVZurOz0G0QJV4QBEEQBEEQhJJFVuIFwUSUeEEQBEEQBEEQBEHoIogSLwiCIAiCIAhCaSKR7QQhgijxgiAIgiAIgiCUMOJPLwgcUeIFQRAEQRAEQRAEoYsgSrwgCIIgCIIgCCWJONMLQhRR4gVBEARBEARBKFkkOr0gmIgSLwiCIAiCIAhCSSJx7QQhiijxgiAIgiAIgiCULLIQLwgmosQLgiAIgiAIglCS7G1ukX3xgmCR6ewMCIIgCIIgCIIguHh5ww7s3NvS2dkQhJJCVuIFQRAEQRAEQShZ9uwXJV4QOKLEC4IgCIIgCIJQsqRTsiteEDiixAuCIAiCIAiCULKIEi8IJqLEC4IgCIIgCIJQsqTkoHhBMBAlXhAEQRAEQRCEkkVW4gXBRJR4QRAEQRAEQRBKFlmIFwQTUeIFQRAEQRAEQShZRIcXBBNR4gVBEARBEARBKFnKM6KyCAKn3XrELbfcgtmzZ6O6uhoNDQ3OezzPi/z78Y9/bNzz8MMPY/r06aioqMCoUaOwYsWK9sqyIAiCIAiCIAglxNkzh6Aik+7sbAhCSdFuSvy+fftw2mmn4aKLLkq87+6778bbb7+t/p144onq2urVq7F06VLMmzcPK1euxGWXXYYLLrgAf/rTn9or24IgCIIgCIIglAieB/jwOzsbglBSZNor4RtvvBEAcq6cNzQ0oKmpyXntm9/8JoYPH4477rgDADB+/Hj8/e9/x5e//GUsXry4qPkVBEEQBEEQBKG08ODBFx1eEAw6fYPJsmXL0KdPHxx66KG466674LNe+thjj2HhwoXG/YsXL8Zjjz2WmObevXuxbds2458gCIIgCIIgCF0LzwOyosQLgkG7rcTnw0033YT58+ejuroaf/7zn3HxxRdjx44duPTSSwEA69evR79+/Yzf9OvXD9u2bcPu3btRVVXlTPe2225TngCCIAiCIAiCIHRNJDK9IEQpaCX+6quvdgaj4/9efPHFvNP77Gc/izlz5mDatGn41Kc+hauuugpf/OIXCy6EzTXXXIOtW7eqf2+88Uab0xQEQRAEQRAEoWPxPM/w1BUEocCV+CuuuALnnXde4j0jRoxodWZmzpyJm2++GXv37kVFRQWampqwYcMG454NGzagrq4udhUeACoqKlBRUdHqfAiCIAiCIAiCUBqIDi8IJgUp8Y2NjWhsbGyvvGDlypXo2bOnUsBnzZqF3//+98Y9999/P2bNmtVueRAEQRAEQRAEoTTwxJ9eECK02574tWvXYtOmTVi7di1aWlqwcuVKAMCoUaNQW1uL3/3ud9iwYQMOO+wwVFZW4v7778ett96KT37ykyqNCy+8EF/72tdw1VVX4fzzz8eDDz6In/70p7jvvvvaK9uCIAiCIAiCIJQIHjw5Yk4QLNpNib/uuuvwve99T/1/2rRpAICHHnoIc+fORVlZGb7+9a9j+fLl8H0fo0aNwpe+9CV85CMfUb8ZPnw47rvvPixfvhx33nknBg0ahO985ztyvJwgCIIgCIIgdBPEnV4QTDy/G0SK2LZtG+rr67F161bU1dV1dnYEQRAEQRAEQciDm+99Hn99+R3cf/lRnZ0VQSiY9tJDO/2ceEEQBEEQBEEQhDgO+BVHQSgQUeIFQRAEQRAEQShJPECOmBMEC1HiBUEQBEEQBEEoSSQ6vSBEESVeEARBEARBEISSRdbhBcFElHhBEARBEARBEEoST5biBSGCKPGCIAiCIAiCIJQkHiBL8YJgIUq8IAiCIAiCIAiliSc6vCDYiBIvCIIgCIIgCELJItHpBcFElHhBEARBEARBEEoSD7InXhBsRIkXBEEQBEEQBKFkycpCvCAYZDo7A4IgCIIgCIIgCC6+9df/QLzpBcFEVuIFQRAEQRAEQShJRIEXhCiixAuCIAiCIAiCIAhCF0GUeEEQBEEQBEEQSpLJg+o7OwuCUHKIEi8IgiAIgiAIQknyvikD0KNCwngJAkeUeEEQBEEQBEEQBEHoIogSLwiCIAiCIAhCSTK2qQeOPah/Z2dDEEoK8U0RBEEQBEEQBKEkOWJ0I44Y3djZ2RCEkkJW4gVBEARBEARBEAShiyBKvCAIgiAIgiAIgiB0EUSJFwRBEARBEARBEIQugijxgiAIgiAIgiAIgtBFECVeEARBEARBEARBELoIosQLgiAIgiAIgiAIQhdBlHhBEARBEARBEARB6CKIEi8IgiAIgiAIgiAIXQRR4gVBEARBEARBEAShiyBKvCAIgiAIgiAIgiB0EUSJFwRBEARBEARBEIQugijxgiAIgiAIgiAIgtBFECVeEARBEARBEARBELoIosQLgiAIgiAIgiAIQhdBlHhBEARBEARBEARB6CKIEi8IgiAIgiAIgiAIXQRR4gVBEARBEARBEAShiyBKvCAIgiAIgiAIgiB0EUSJFwRBEARBEARBEIQuQqazM9AR+L4PANi2bVsn50QQBEEQBEEQBEHoDpD+SfposegWSvx7770HABg8eHAn50QQBEEQBEEQBEHoTqxbtw719fVFS69bKPG9evUCAKxdu7bVlXfIIYfgySefLGa2Oiz9Us/7tm3bMHjwYLzxxhuoq6srevpJlHrddFbaud5JMeiqddPe6eeTdlvez4FeN6WSvv2OulLeOzr9jsp7e4xrUu/FTb+Qd9Td6qaz0j6QxrIDMe/FGtcOxLoplfTffPNNTJw4ETU1NUXMVTdR4lOpYOt/fX19qxt4Op1uN2WmvdPvKnmvq6tzpiN10/FpE3HvpBh05boplby35v10l7oplfTpHXXFvHdU+h2d92KOa1Lv7ZN+Pu+ou9ZNZ6V9IIxlB3Le2zquHch109np029JHy0WEtguT5YtW9Zl0+/KeW/v9CXvnUdXrhvJe+ekL3k/MNOXvHdO+l057+2dvuT9wExf8n5gpt+V894WPL/Yu+xLkG3btqG+vh5bt25t95VLoXDk/ZQe8k5KG3k/pY+8o9JD3knpI++o9JB3UtrI+yl93nzzTbXlYdCgQUVLt1usxFdUVOD6669HRUVFZ2dFcCDvp/SQd1LayPspfeQdlR7yTkofeUelh7yT0kbeT+lTV1eHo446quhGlm6xEi8IgiAIgiAIgiAIBwLdYiVeEARBEARBEARBEA4ERIkXBEEQBEEQBEEQhC6CKPGCIAiCIAiCIAiC0EUQJV4QhLzxPA+//vWvOzsbgiAIgiAIgtAlKYY8LUq80K6cd955OPHEEzs7G0IM8n5Kj8ceewzpdBpLly7t7KwIDt555x1cdNFFGDJkCCoqKtDU1ITFixfjH//4R2dnrdvzxhtv4Pzzz8eAAQNQXl6OoUOH4hOf+ATee++9vH7/8MMPw/M8bNmypX0z2o0477zz4Hkebr/9duP7X//61/A8r5NyJdB78TwPZWVl6NevHxYtWoS77roL2Wy2s7MnMEROK114P+L/Xn311Q55vijxgiAIJcR3v/tdXHLJJfjrX/+KdevWdXZ2BItTTjkFTz/9NL73ve/h5Zdfxm9/+1vMnTs3b0VRaB9ee+01HHzwwXjllVdwzz334NVXX8U3v/lNPPDAA5g1axY2bdrU2VnstlRWVuLzn/88Nm/e3NlZERhLlizB22+/jTVr1uAPf/gD5s2bh0984hM47rjj0Nzc3NnZE4QuAfUj/m/48OEd8mxR4oUOY9iwYfjKV75ifDd16lTccMMN6v+e5+E73/kOTjrpJFRXV2P06NH47W9/27EZ7abk836E9mXHjh34yU9+gosuughLly7FihUr1LUVK1agoaHBuN+1mvW5z30Offv2RY8ePXDBBRfg6quvxtSpU9s/892ALVu24G9/+xs+//nPY968eRg6dCgOPfRQXHPNNXjf+96n7rngggvQ2NiIuro6zJ8/H6tWrVJp3HDDDZg6dSq+9a1vYfDgwaiursbpp5+OrVu3dlaxDgiWLVuG8vJy/PnPf8ZRRx2FIUOG4JhjjsFf/vIXvPXWW/jMZz4DANi7dy8+9alPYfDgwaioqMCoUaPw3e9+F2vWrMG8efMAAD179oTneTjvvPM6sUQHDgsXLkRTUxNuu+222Ht+8YtfYOLEiaioqMCwYcNwxx13qGuf/vSnMXPmzMhvpkyZgptuuqld8twdIE+igQMHYvr06fj0pz+N3/zmN/jDH/6g5p5c4xkA/O53v8MhhxyCyspK9OnTByeddFInlKZ78Mc//hGHH344Ghoa0Lt3bxx33HH4z3/+o66vWbMGnufhl7/8JebNm4fq6mpMmTIFjz32WCfm+sCG+hH/l06n8Zvf/AbTp09HZWUlRowYgRtvvDFiHHv77bdxzDHHoKqqCiNGjMDPf/7zgp4tSrxQctx44404/fTT8cwzz+DYY4/F2WefLasoQrfgpz/9KcaNG4exY8fiAx/4AO666y74vp/373/4wx/illtuwec//3k89dRTGDJkCP7nf/6nHXPcvaitrUVtbS1+/etfY+/evc57TjvtNGzcuBF/+MMf8NRTT2H69OlYsGCBMYa9+uqr+OlPf4rf/e53+OMf/4inn34aF198cUcV44Bj06ZN+NOf/oSLL74YVVVVxrWmpiacffbZ+MlPfgLf93HOOefgnnvuwVe/+lW88MIL+Na3voXa2loMHjwYv/jFLwAAL730Et5++23ceeednVGcA450Oo1bb70V//3f/40333wzcv2pp57C6aefjjPPPBP//ve/ccMNN+Czn/2sUiTPPvtsPPHEE4ay8txzz+GZZ57B+9///o4qRrdg/vz5mDJlCn75y18CyD2e3XfffTjppJNw7LHH4umnn8YDDzyAQw89tDOLcECzc+dOXH755fjXv/6FBx54AKlUCieddFJkC8RnPvMZfPKTn8TKlSsxZswYnHXWWeJd0YH87W9/wznnnINPfOITeP755/Gtb30LK1aswC233GLc99nPfhannHIKVq1ahbPPPhtnnnkmXnjhhfwf5AtCO3Luuef6J5xwgu/7vj906FD/y1/+snF9ypQp/vXXX6/+D8C/9tpr1f937NjhA/D/8Ic/dEBuux+teT+/+tWvOix/3Y3Zs2f7X/nKV3zf9/39+/f7ffr08R966CHf933/7rvv9uvr6437f/WrX/l8GJ85c6a/bNky4545c+b4U6ZMac9sdyt+/vOf+z179vQrKyv92bNn+9dcc42/atUq3/d9/29/+5tfV1fn79mzx/jNyJEj/W9961u+7/v+9ddf76fTaf/NN99U1//whz/4qVTKf/vttzuuIAcQjz/+eOLY9KUvfckH4P/zn//0Afj333+/876HHnrIB+Bv3ry5/TLbzeBzzGGHHeaff/75vu+bY9f73/9+f9GiRcbvrrzySn/ChAnq/1OmTPFvuukm9f9rrrnGnzlzZjvn/sCFvxebM844wx8/fnxe49msWbP8s88+u72z261JelfvvPOOD8D/97//7fu+769evdoH4H/nO99R9zz33HM+AP+FF17oiOx2K84991w/nU77NTU16t+pp57qL1iwwL/11luNe7///e/7/fv3V/8H4F944YXGPTNnzvQvuuiivJ8vK/FCyTF58mT1d01NDerq6rBx48ZOzJEgtD8vvfQSnnjiCZx11lkAgEwmgzPOOAPf/e53C0rDXgWRVZHicsopp2DdunX47W9/iyVLluDhhx/G9OnTsWLFCqxatQo7duxA79691ap9bW0tVq9ebawiDhkyBAMHDlT/nzVrFrLZLF566aXOKNIBg5/Da2XNmjVIp9M46qijOihHAufzn/88vve970VWml544QXMmTPH+G7OnDl45ZVX0NLSAiBYjf/Rj34EIHjP99xzD84+++yOyXg3w/d9eJ6X13i2cuVKLFiwoJNz3H145ZVXcNZZZ2HEiBGoq6vDsGHDAABr16417uNydP/+/QFA5Oh2Yt68eVi5cqX699WvfhWrVq3CTTfdZPSbj3zkI3j77bexa9cu9dtZs2YZac2aNauglfhM0UohCDlIpVIRIWv//v2R+8rKyoz/e54n0VI7gHzfj9A+fPe730VzczMGDBigvvN9HxUVFfja174m76eEqKysxKJFi7Bo0SJ89rOfxQUXXIDrr78eF198Mfr374+HH3448hs7noFQPEaNGgXP8/DCCy849+O+8MIL6NmzZ8TVXuhYjjzySCxevBjXXHNNwfEGzjrrLHzqU5/C//3f/2H37t144403cMYZZ7RPRrs5L7zwAoYPH44dO3bkHM+kT3Usxx9/PIYOHYr//d//xYABA5DNZjFp0iTs27fPuI/L0RQ3R+To9qGmpgajRo0yvtuxYwduvPFGnHzyyZH7Kysri/ZsUeKFDqOxsRFvv/22+v+2bduwevXqTsyRwJH303k0Nzfj//2//4c77rgDRx99tHHtxBNPxD333IOhQ4di+/bt2LlzJ2pqagAEqyCcsWPH4sknn8Q555yjvnvyySfbPf/dnQkTJuDXv/41pk+fjvXr1yOTyagVEhdr167FunXrlMHm8ccfRyqVwtixYzsoxwcWvXv3xqJFi/CNb3wDy5cvNxSL9evX44c//CHOOeccHHTQQchms3jkkUewcOHCSDrl5eUAoFZ/heJz++23Y+rUqUZbHz9+fOSIxn/84x8YM2YM0uk0AGDQoEE46qij8MMf/hC7d+/GokWL0Ldv3w7Ne3fgwQcfxL///W8sX74cgwYNyjmeTZ48GQ888AA+9KEPdWxGuyHvvfceXnrpJfzv//4vjjjiCADA3//+907OleBi+vTpeOmllyLKvc3jjz9uyGuPP/44pk2blvdzRIkXOoz58+djxYoVOP7449HQ0IDrrrtOTdBC5yPvp/O49957sXnzZnz4wx9GfX29ce2UU07Bd7/7XfzpT39CdXU1Pv3pT+PSSy/FP//5TyN6PQBccskl+MhHPoKDDz4Ys2fPxk9+8hM888wzGDFiRAeW5sDlvffew2mnnYbzzz8fkydPRo8ePfCvf/0LX/jCF3DCCSdg4cKFmDVrFk488UR84QtfwJgxY7Bu3ToV/Onggw8GEFjizz33XPzXf/0Xtm3bhksvvRSnn346mpqaOrmEXZevfe1rmD17NhYvXozPfe5zGD58OJ577jlceeWVGDhwIG655Rb06tUL5557Ls4//3x89atfxZQpU/D6669j48aNOP300zF06FB4nod7770Xxx57LKqqqlBbW9vZRTugOOigg3D22Wfjq1/9qvruiiuuwCGHHIKbb74ZZ5xxBh577DF87Wtfwze+8Q3jt2effTauv/567Nu3D1/+8pc7OusHHHv37sX69evR0tKCDRs24I9//CNuu+02HHfccTjnnHOQSqVyjmfXX389FixYgJEjR+LMM89Ec3Mzfv/73+NTn/pUZxfvgKNnz57o3bs3vv3tb6N///5Yu3Ytrr766s7OluDguuuuw3HHHYchQ4bg1FNPRSqVwqpVq/Dss8/ic5/7nLrvZz/7GQ4++GAcfvjh+OEPf4gnnniioC2UEthOaFc++MEP+qeccorv+76/detW/4wzzvDr6ur8wYMH+ytWrMgrcFp9fb1/9913d1ymuxHFeD9C2znuuOP8Y4891nmNgnGtWrXK/9WvfuWPGjXKr6qq8o877jj/29/+tm8P4zfddJPfp08fv7a21j///PP9Sy+91D/ssMM6ohgHPHv27PGvvvpqf/r06X59fb1fXV3tjx071r/22mv9Xbt2+b7v+9u2bfMvueQSf8CAAX5ZWZk/ePBg/+yzz/bXrl3r+34Q2G7KlCn+N77xDX/AgAF+ZWWlf+qpp/qbNm3qzKIdEKxZs8Y/99xz/X79+qm6v+SSS/x3331X3bN7925/+fLlfv/+/f3y8nJ/1KhR/l133aWu33TTTX5TU5PveZ5/7rnndkIpDixcQblWr17tl5eXG2PXz3/+c3/ChAl+WVmZP2TIEP+LX/xiJK3Nmzf7FRUVfnV1tb99+/b2zvoBzbnnnusD8AH4mUzGb2xs9BcuXOjfddddfktLi7ov13jm+77/i1/8wp86dapfXl7u9+nTxz/55JM7o0gHLFxOu//++/3x48f7FRUV/uTJk/2HH37YkMsosN3TTz+tfr9582YfgAqSKxSPpKCDf/zjH/3Zs2f7VVVVfl1dnX/ooYf63/72t9V1AP7Xv/51f9GiRX5FRYU/bNgw/yc/+UlBz/fChAShXViyZAlGjRqFr33ta52dFcGBvJ8Dn0WLFqGpqQnf//73OzsrAoJz4n/9619HtkIIgiAIgo3IaUIc4k4vtAubN2/GP/7xDzz88MO48MILOzs7goW8nwOTXbt24Zvf/CYWL16MdDqNe+65B3/5y19w//33d3bWBEEQBEHIE5HThFyIEi+0C+effz6efPJJXHHFFTjhhBM6OzuChbyfAxPP8/D73/8et9xyC/bs2YOxY8fiF7/4hTOIlyAIgiAIpYnIaUIuxJ1eEARBEARBEARBELoIqc7OgCAIgiAIgiAIgiAI+SFKvCAIgiAIgiAIgiB0EUSJFwRBEARBEARB6ARuu+02HHLIIejRowf69u2LE088ES+99JJxz549e7Bs2TL07t0btbW1OOWUU7BhwwZ1fdWqVTjrrLMwePBgVFVVYfz48bjzzjsjz3r44Ycxffp0VFRUYNSoUVixYkV7F09oJ0SJFwRBEARBEARB6AQeeeQRLFu2DI8//jjuv/9+7N+/H0cffTR27typ7lm+fDl+97vf4Wc/+xkeeeQRrFu3DieffLK6/tRTT6Fv3774wQ9+gOeeew6f+cxncM011xhH061evRpLly7FvHnzsHLlSlx22WW44IIL8Kc//alDyysUBwlsJwiCIAiCIAiCUAK888476Nu3Lx555BEceeSR2Lp1KxobG/GjH/0Ip556KgDgxRdfxPjx4/HYY4/hsMMOc6azbNkyvPDCC3jwwQcBAJ/61Kdw33334dlnn1X3nHnmmdiyZQv++Mc/tn/BhKIiK/GCIAiCIAiCIAglwNatWwEAvXr1AhCssu/fv984LnbcuHEYMmQIHnvsscR0KA0AeOyxxyJHzi5evDgxDaF0kXPiBUEQBEEQBEEQOplsNovLLrsMc+bMwaRJkwAA69evR3l5ORoaGox7+/Xrh/Xr1zvTefTRR/GTn/wE9913n/pu/fr16NevXySNbdu2Yffu3aiqqipuYYR2RZR4QRAEQRAEQRCETmbZsmV49tln8fe//73VaTz77LM44YQTcP311+Poo48uYu6EUkLc6QVBEARBEARBEDqRj3/847j33nvx0EMPYdCgQer7pqYm7Nu3D1u2bDHu37BhA5qamozvnn/+eSxYsAAf/ehHce211xrXmpqajIj2lEZdXZ2swndBRIkXBEEQBEEQBEHoBHzfx8c//nH86le/woMPPojhw4cb12fMmIGysjI88MAD6ruXXnoJa9euxaxZs9R3zz33HObNm4dzzz0Xt9xyS+Q5s2bNMtIAgPvvv99IQ+g6SHR6QRAEQRAEQRCETuDiiy/Gj370I/zmN7/B2LFj1ff19fVqhfyiiy7C73//e6xYsQJ1dXW45JJLAAR734HAhX7+/PlYvHgxvvjFL6o00uk0GhsbAQRHzE2aNAnLli3D+eefjwcffBCXXnop7rvvPixevLijiisUCVHiBUEQBEEQBEEQOgHP85zf33333TjvvPMAAHv27MEVV1yBe+65B3v37sXixYvxjW98Q7nT33DDDbjxxhsjaQwdOhRr1qxR/3/44YexfPlyPP/88xg0aBA++9nPqmcIXQtR4gVBEARBEARBEAShiyB74gVBEARBEARBEAShiyBKvCAIgiAIgiAIgiB0EUSJFwRBEARBEARBEIQugijxgiAIgiAIgiAIgtBFECVeEARBEARBEARBELoIosQLgiAIgiAIgiAIQhdBlHhBEARBEARBEARB6CKIEi8IgiAIgiAIgiAIXQRR4gVBEAShG/Lwww/D8zxs2bKls7MiCIIgCEIBeL7v+52dCUEQBEEQ2pe5c+di6tSp+MpXvgIA2LdvHzZt2oR+/frB87zOzZwgCIIgCHmT6ewMCIIgCILQ8ZSXl6OpqamzsyEIgiAIQoGIO70gCIIgHOCcd955eOSRR3DnnXfC8zx4nocVK1YY7vQrVqxAQ0MD7r33XowdOxbV1dU49dRTsWvXLnzve9/DsGHD0LNnT1x66aVoaWlRae/duxef/OQnMXDgQNTU1GDmzJl4+OGHO6eggiAIgtANkJV4QRAEQTjAufPOO/Hyyy9j0qRJuOmmmwAAzz33XOS+Xbt24atf/Sp+/OMfY/v27Tj55JNx0kknoaGhAb///e/x2muv4ZRTTsGcOXNwxhlnAAA+/vGP4/nnn8ePf/xjDBgwAL/61a+wZMkS/Pvf/8bo0aM7tJyCIAiC0B0QJV4QBEEQDnDq6+tRXl6O6upq5UL/4osvRu7bv38//ud//gcjR44EAJx66qn4/ve/jw0bNqC2thYTJkzAvHnz8NBDD+GMM87A2rVrcffdd2Pt2rUYMGAAAOCTn/wk/vjHP+Luu+/Grbfe2nGFFARBEIRugijxgiAIgiAAAKqrq5UCDwD9+vXDsGHDUFtba3y3ceNGAMC///1vtLS0YMyYMUY6e/fuRe/evTsm04IgCILQzRAlXhAEQRAEAEBZWZnxf8/znN9ls1kAwI4dO5BOp/HUU08hnU4b93HFXxAEQRCE4iFKvCAIgiB0A8rLy42AdMVg2rRpaGlpwcaNG3HEEUcUNW1BEARBENxIdHpBEARB6AYMGzYM//znP7FmzRq8++67ajW9LYwZMwZnn302zjnnHPzyl7/E6tWr8cQTT+C2227DfffdV4RcC4IgCIJgI0q8IAiCIHQDPvnJTyKdTmPChAlobGzE2rVri5Lu3XffjXPOOQdXXHEFxo4dixNPPBFPPvkkhgwZUpT0BUEQBEEw8Xzf9zs7E4IgCIIgCIIgCIIg5EZW4gVBEARBEARBEAShiyBKvCAIgiAIgiAIgiB0EUSJFwRBEARBEARBEIQugijxgiAIgiAIgiAIgtBFECVeEARBEARBEARBELoIosQLgiAIgiAIgiAIQhdBlHhBEARBEARBEARB6CKIEi8IgiAIgiAIgiAIXQRR4gVBEARBEARBEAShiyBKvCAIgiAIgiAIgiB0EUSJFwRBEARBEARBEIQuwv8HYndp5vDJ7GMAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"measurements.plot(y='Meetwaarde.Waarde_Numeriek', linewidth=0.5, figsize=(12, 6))"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" WaarnemingMetadata.StatuswaardeLijst | \n",
" WaarnemingMetadata.BemonsteringshoogteLijst | \n",
" WaarnemingMetadata.ReferentievlakLijst | \n",
" WaarnemingMetadata.OpdrachtgevendeInstantieLijst | \n",
" WaarnemingMetadata.KwaliteitswaardecodeLijst | \n",
" AquoMetadata_MessageID | \n",
" Parameter_Wat_Omschrijving | \n",
" BemonsteringsApparaat.Code | \n",
" BemonsteringsApparaat.Omschrijving | \n",
" BemonsteringsMethode.Code | \n",
" ... | \n",
" WaardeBepalingsmethode.Omschrijving | \n",
" WaardeBewerkingsmethode.Code | \n",
" WaardeBewerkingsmethode.Omschrijving | \n",
" Meetwaarde.Waarde_Numeriek | \n",
" Meetwaarde.Waarde_Alfanumeriek | \n",
" Code | \n",
" Coordinatenstelsel | \n",
" Naam | \n",
" X | \n",
" Y | \n",
"
\n",
" \n",
" time | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 2019-05-01 02:00:00+01:00 | \n",
" Gecontroleerd | \n",
" -999999999 | \n",
" NVT | \n",
" RIKZMON_WAT | \n",
" 00 | \n",
" 2573 | \n",
" Waterhoogte Oppervlaktewater t.o.v. Normaal Am... | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" ... | \n",
" Rekenkundig gemiddelde waarde over vorige 5 en... | \n",
" NVT | \n",
" Niet van toepassing | \n",
" 44.0 | \n",
" 44 | \n",
" SCHEVNGN | \n",
" 25831 | \n",
" Scheveningen | \n",
" 586550.994421 | \n",
" 5.772806e+06 | \n",
"
\n",
" \n",
" 2019-05-01 02:10:00+01:00 | \n",
" Gecontroleerd | \n",
" -999999999 | \n",
" NVT | \n",
" RIKZMON_WAT | \n",
" 00 | \n",
" 2573 | \n",
" Waterhoogte Oppervlaktewater t.o.v. Normaal Am... | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" ... | \n",
" Rekenkundig gemiddelde waarde over vorige 5 en... | \n",
" NVT | \n",
" Niet van toepassing | \n",
" 41.0 | \n",
" 41 | \n",
" SCHEVNGN | \n",
" 25831 | \n",
" Scheveningen | \n",
" 586550.994421 | \n",
" 5.772806e+06 | \n",
"
\n",
" \n",
" 2019-05-01 02:20:00+01:00 | \n",
" Gecontroleerd | \n",
" -999999999 | \n",
" NVT | \n",
" RIKZMON_WAT | \n",
" 00 | \n",
" 2573 | \n",
" Waterhoogte Oppervlaktewater t.o.v. Normaal Am... | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" ... | \n",
" Rekenkundig gemiddelde waarde over vorige 5 en... | \n",
" NVT | \n",
" Niet van toepassing | \n",
" 36.0 | \n",
" 36 | \n",
" SCHEVNGN | \n",
" 25831 | \n",
" Scheveningen | \n",
" 586550.994421 | \n",
" 5.772806e+06 | \n",
"
\n",
" \n",
" 2019-05-01 02:30:00+01:00 | \n",
" Gecontroleerd | \n",
" -999999999 | \n",
" NVT | \n",
" RIKZMON_WAT | \n",
" 00 | \n",
" 2573 | \n",
" Waterhoogte Oppervlaktewater t.o.v. Normaal Am... | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" ... | \n",
" Rekenkundig gemiddelde waarde over vorige 5 en... | \n",
" NVT | \n",
" Niet van toepassing | \n",
" 31.0 | \n",
" 31 | \n",
" SCHEVNGN | \n",
" 25831 | \n",
" Scheveningen | \n",
" 586550.994421 | \n",
" 5.772806e+06 | \n",
"
\n",
" \n",
" 2019-05-01 02:40:00+01:00 | \n",
" Gecontroleerd | \n",
" -999999999 | \n",
" NVT | \n",
" RIKZMON_WAT | \n",
" 00 | \n",
" 2573 | \n",
" Waterhoogte Oppervlaktewater t.o.v. Normaal Am... | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" ... | \n",
" Rekenkundig gemiddelde waarde over vorige 5 en... | \n",
" NVT | \n",
" Niet van toepassing | \n",
" 25.0 | \n",
" 25 | \n",
" SCHEVNGN | \n",
" 25831 | \n",
" Scheveningen | \n",
" 586550.994421 | \n",
" 5.772806e+06 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 2020-02-01 00:20:00+01:00 | \n",
" Gecontroleerd | \n",
" -999999999 | \n",
" NVT | \n",
" RIKZMON_WAT | \n",
" 00 | \n",
" 2573 | \n",
" Waterhoogte Oppervlaktewater t.o.v. Normaal Am... | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" ... | \n",
" Rekenkundig gemiddelde waarde over vorige 5 en... | \n",
" NVT | \n",
" Niet van toepassing | \n",
" -21.0 | \n",
" -21 | \n",
" SCHEVNGN | \n",
" 25831 | \n",
" Scheveningen | \n",
" 586550.994421 | \n",
" 5.772806e+06 | \n",
"
\n",
" \n",
" 2020-02-01 00:30:00+01:00 | \n",
" Gecontroleerd | \n",
" -999999999 | \n",
" NVT | \n",
" RIKZMON_WAT | \n",
" 00 | \n",
" 2573 | \n",
" Waterhoogte Oppervlaktewater t.o.v. Normaal Am... | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" ... | \n",
" Rekenkundig gemiddelde waarde over vorige 5 en... | \n",
" NVT | \n",
" Niet van toepassing | \n",
" -21.0 | \n",
" -21 | \n",
" SCHEVNGN | \n",
" 25831 | \n",
" Scheveningen | \n",
" 586550.994421 | \n",
" 5.772806e+06 | \n",
"
\n",
" \n",
" 2020-02-01 00:40:00+01:00 | \n",
" Gecontroleerd | \n",
" -999999999 | \n",
" NVT | \n",
" RIKZMON_WAT | \n",
" 00 | \n",
" 2573 | \n",
" Waterhoogte Oppervlaktewater t.o.v. Normaal Am... | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" ... | \n",
" Rekenkundig gemiddelde waarde over vorige 5 en... | \n",
" NVT | \n",
" Niet van toepassing | \n",
" -23.0 | \n",
" -23 | \n",
" SCHEVNGN | \n",
" 25831 | \n",
" Scheveningen | \n",
" 586550.994421 | \n",
" 5.772806e+06 | \n",
"
\n",
" \n",
" 2020-02-01 00:50:00+01:00 | \n",
" Gecontroleerd | \n",
" -999999999 | \n",
" NVT | \n",
" RIKZMON_WAT | \n",
" 00 | \n",
" 2573 | \n",
" Waterhoogte Oppervlaktewater t.o.v. Normaal Am... | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" ... | \n",
" Rekenkundig gemiddelde waarde over vorige 5 en... | \n",
" NVT | \n",
" Niet van toepassing | \n",
" -22.0 | \n",
" -22 | \n",
" SCHEVNGN | \n",
" 25831 | \n",
" Scheveningen | \n",
" 586550.994421 | \n",
" 5.772806e+06 | \n",
"
\n",
" \n",
" 2020-02-01 01:00:00+01:00 | \n",
" Gecontroleerd | \n",
" -999999999 | \n",
" NVT | \n",
" RIKZMON_WAT | \n",
" 00 | \n",
" 2573 | \n",
" Waterhoogte Oppervlaktewater t.o.v. Normaal Am... | \n",
" NVT | \n",
" Waarde is niet van toepassing | \n",
" NVT | \n",
" ... | \n",
" Rekenkundig gemiddelde waarde over vorige 5 en... | \n",
" NVT | \n",
" Niet van toepassing | \n",
" -26.0 | \n",
" -26 | \n",
" SCHEVNGN | \n",
" 25831 | \n",
" Scheveningen | \n",
" 586550.994421 | \n",
" 5.772806e+06 | \n",
"
\n",
" \n",
"
\n",
"
39739 rows × 53 columns
\n",
"
"
],
"text/plain": [
" WaarnemingMetadata.StatuswaardeLijst \\\n",
"time \n",
"2019-05-01 02:00:00+01:00 Gecontroleerd \n",
"2019-05-01 02:10:00+01:00 Gecontroleerd \n",
"2019-05-01 02:20:00+01:00 Gecontroleerd \n",
"2019-05-01 02:30:00+01:00 Gecontroleerd \n",
"2019-05-01 02:40:00+01:00 Gecontroleerd \n",
"... ... \n",
"2020-02-01 00:20:00+01:00 Gecontroleerd \n",
"2020-02-01 00:30:00+01:00 Gecontroleerd \n",
"2020-02-01 00:40:00+01:00 Gecontroleerd \n",
"2020-02-01 00:50:00+01:00 Gecontroleerd \n",
"2020-02-01 01:00:00+01:00 Gecontroleerd \n",
"\n",
" WaarnemingMetadata.BemonsteringshoogteLijst \\\n",
"time \n",
"2019-05-01 02:00:00+01:00 -999999999 \n",
"2019-05-01 02:10:00+01:00 -999999999 \n",
"2019-05-01 02:20:00+01:00 -999999999 \n",
"2019-05-01 02:30:00+01:00 -999999999 \n",
"2019-05-01 02:40:00+01:00 -999999999 \n",
"... ... \n",
"2020-02-01 00:20:00+01:00 -999999999 \n",
"2020-02-01 00:30:00+01:00 -999999999 \n",
"2020-02-01 00:40:00+01:00 -999999999 \n",
"2020-02-01 00:50:00+01:00 -999999999 \n",
"2020-02-01 01:00:00+01:00 -999999999 \n",
"\n",
" WaarnemingMetadata.ReferentievlakLijst \\\n",
"time \n",
"2019-05-01 02:00:00+01:00 NVT \n",
"2019-05-01 02:10:00+01:00 NVT \n",
"2019-05-01 02:20:00+01:00 NVT \n",
"2019-05-01 02:30:00+01:00 NVT \n",
"2019-05-01 02:40:00+01:00 NVT \n",
"... ... \n",
"2020-02-01 00:20:00+01:00 NVT \n",
"2020-02-01 00:30:00+01:00 NVT \n",
"2020-02-01 00:40:00+01:00 NVT \n",
"2020-02-01 00:50:00+01:00 NVT \n",
"2020-02-01 01:00:00+01:00 NVT \n",
"\n",
" WaarnemingMetadata.OpdrachtgevendeInstantieLijst \\\n",
"time \n",
"2019-05-01 02:00:00+01:00 RIKZMON_WAT \n",
"2019-05-01 02:10:00+01:00 RIKZMON_WAT \n",
"2019-05-01 02:20:00+01:00 RIKZMON_WAT \n",
"2019-05-01 02:30:00+01:00 RIKZMON_WAT \n",
"2019-05-01 02:40:00+01:00 RIKZMON_WAT \n",
"... ... \n",
"2020-02-01 00:20:00+01:00 RIKZMON_WAT \n",
"2020-02-01 00:30:00+01:00 RIKZMON_WAT \n",
"2020-02-01 00:40:00+01:00 RIKZMON_WAT \n",
"2020-02-01 00:50:00+01:00 RIKZMON_WAT \n",
"2020-02-01 01:00:00+01:00 RIKZMON_WAT \n",
"\n",
" WaarnemingMetadata.KwaliteitswaardecodeLijst \\\n",
"time \n",
"2019-05-01 02:00:00+01:00 00 \n",
"2019-05-01 02:10:00+01:00 00 \n",
"2019-05-01 02:20:00+01:00 00 \n",
"2019-05-01 02:30:00+01:00 00 \n",
"2019-05-01 02:40:00+01:00 00 \n",
"... ... \n",
"2020-02-01 00:20:00+01:00 00 \n",
"2020-02-01 00:30:00+01:00 00 \n",
"2020-02-01 00:40:00+01:00 00 \n",
"2020-02-01 00:50:00+01:00 00 \n",
"2020-02-01 01:00:00+01:00 00 \n",
"\n",
" AquoMetadata_MessageID \\\n",
"time \n",
"2019-05-01 02:00:00+01:00 2573 \n",
"2019-05-01 02:10:00+01:00 2573 \n",
"2019-05-01 02:20:00+01:00 2573 \n",
"2019-05-01 02:30:00+01:00 2573 \n",
"2019-05-01 02:40:00+01:00 2573 \n",
"... ... \n",
"2020-02-01 00:20:00+01:00 2573 \n",
"2020-02-01 00:30:00+01:00 2573 \n",
"2020-02-01 00:40:00+01:00 2573 \n",
"2020-02-01 00:50:00+01:00 2573 \n",
"2020-02-01 01:00:00+01:00 2573 \n",
"\n",
" Parameter_Wat_Omschrijving \\\n",
"time \n",
"2019-05-01 02:00:00+01:00 Waterhoogte Oppervlaktewater t.o.v. Normaal Am... \n",
"2019-05-01 02:10:00+01:00 Waterhoogte Oppervlaktewater t.o.v. Normaal Am... \n",
"2019-05-01 02:20:00+01:00 Waterhoogte Oppervlaktewater t.o.v. Normaal Am... \n",
"2019-05-01 02:30:00+01:00 Waterhoogte Oppervlaktewater t.o.v. Normaal Am... \n",
"2019-05-01 02:40:00+01:00 Waterhoogte Oppervlaktewater t.o.v. Normaal Am... \n",
"... ... \n",
"2020-02-01 00:20:00+01:00 Waterhoogte Oppervlaktewater t.o.v. Normaal Am... \n",
"2020-02-01 00:30:00+01:00 Waterhoogte Oppervlaktewater t.o.v. Normaal Am... \n",
"2020-02-01 00:40:00+01:00 Waterhoogte Oppervlaktewater t.o.v. Normaal Am... \n",
"2020-02-01 00:50:00+01:00 Waterhoogte Oppervlaktewater t.o.v. Normaal Am... \n",
"2020-02-01 01:00:00+01:00 Waterhoogte Oppervlaktewater t.o.v. Normaal Am... \n",
"\n",
" BemonsteringsApparaat.Code \\\n",
"time \n",
"2019-05-01 02:00:00+01:00 NVT \n",
"2019-05-01 02:10:00+01:00 NVT \n",
"2019-05-01 02:20:00+01:00 NVT \n",
"2019-05-01 02:30:00+01:00 NVT \n",
"2019-05-01 02:40:00+01:00 NVT \n",
"... ... \n",
"2020-02-01 00:20:00+01:00 NVT \n",
"2020-02-01 00:30:00+01:00 NVT \n",
"2020-02-01 00:40:00+01:00 NVT \n",
"2020-02-01 00:50:00+01:00 NVT \n",
"2020-02-01 01:00:00+01:00 NVT \n",
"\n",
" BemonsteringsApparaat.Omschrijving \\\n",
"time \n",
"2019-05-01 02:00:00+01:00 Waarde is niet van toepassing \n",
"2019-05-01 02:10:00+01:00 Waarde is niet van toepassing \n",
"2019-05-01 02:20:00+01:00 Waarde is niet van toepassing \n",
"2019-05-01 02:30:00+01:00 Waarde is niet van toepassing \n",
"2019-05-01 02:40:00+01:00 Waarde is niet van toepassing \n",
"... ... \n",
"2020-02-01 00:20:00+01:00 Waarde is niet van toepassing \n",
"2020-02-01 00:30:00+01:00 Waarde is niet van toepassing \n",
"2020-02-01 00:40:00+01:00 Waarde is niet van toepassing \n",
"2020-02-01 00:50:00+01:00 Waarde is niet van toepassing \n",
"2020-02-01 01:00:00+01:00 Waarde is niet van toepassing \n",
"\n",
" BemonsteringsMethode.Code ... \\\n",
"time ... \n",
"2019-05-01 02:00:00+01:00 NVT ... \n",
"2019-05-01 02:10:00+01:00 NVT ... \n",
"2019-05-01 02:20:00+01:00 NVT ... \n",
"2019-05-01 02:30:00+01:00 NVT ... \n",
"2019-05-01 02:40:00+01:00 NVT ... \n",
"... ... ... \n",
"2020-02-01 00:20:00+01:00 NVT ... \n",
"2020-02-01 00:30:00+01:00 NVT ... \n",
"2020-02-01 00:40:00+01:00 NVT ... \n",
"2020-02-01 00:50:00+01:00 NVT ... \n",
"2020-02-01 01:00:00+01:00 NVT ... \n",
"\n",
" WaardeBepalingsmethode.Omschrijving \\\n",
"time \n",
"2019-05-01 02:00:00+01:00 Rekenkundig gemiddelde waarde over vorige 5 en... \n",
"2019-05-01 02:10:00+01:00 Rekenkundig gemiddelde waarde over vorige 5 en... \n",
"2019-05-01 02:20:00+01:00 Rekenkundig gemiddelde waarde over vorige 5 en... \n",
"2019-05-01 02:30:00+01:00 Rekenkundig gemiddelde waarde over vorige 5 en... \n",
"2019-05-01 02:40:00+01:00 Rekenkundig gemiddelde waarde over vorige 5 en... \n",
"... ... \n",
"2020-02-01 00:20:00+01:00 Rekenkundig gemiddelde waarde over vorige 5 en... \n",
"2020-02-01 00:30:00+01:00 Rekenkundig gemiddelde waarde over vorige 5 en... \n",
"2020-02-01 00:40:00+01:00 Rekenkundig gemiddelde waarde over vorige 5 en... \n",
"2020-02-01 00:50:00+01:00 Rekenkundig gemiddelde waarde over vorige 5 en... \n",
"2020-02-01 01:00:00+01:00 Rekenkundig gemiddelde waarde over vorige 5 en... \n",
"\n",
" WaardeBewerkingsmethode.Code \\\n",
"time \n",
"2019-05-01 02:00:00+01:00 NVT \n",
"2019-05-01 02:10:00+01:00 NVT \n",
"2019-05-01 02:20:00+01:00 NVT \n",
"2019-05-01 02:30:00+01:00 NVT \n",
"2019-05-01 02:40:00+01:00 NVT \n",
"... ... \n",
"2020-02-01 00:20:00+01:00 NVT \n",
"2020-02-01 00:30:00+01:00 NVT \n",
"2020-02-01 00:40:00+01:00 NVT \n",
"2020-02-01 00:50:00+01:00 NVT \n",
"2020-02-01 01:00:00+01:00 NVT \n",
"\n",
" WaardeBewerkingsmethode.Omschrijving \\\n",
"time \n",
"2019-05-01 02:00:00+01:00 Niet van toepassing \n",
"2019-05-01 02:10:00+01:00 Niet van toepassing \n",
"2019-05-01 02:20:00+01:00 Niet van toepassing \n",
"2019-05-01 02:30:00+01:00 Niet van toepassing \n",
"2019-05-01 02:40:00+01:00 Niet van toepassing \n",
"... ... \n",
"2020-02-01 00:20:00+01:00 Niet van toepassing \n",
"2020-02-01 00:30:00+01:00 Niet van toepassing \n",
"2020-02-01 00:40:00+01:00 Niet van toepassing \n",
"2020-02-01 00:50:00+01:00 Niet van toepassing \n",
"2020-02-01 01:00:00+01:00 Niet van toepassing \n",
"\n",
" Meetwaarde.Waarde_Numeriek \\\n",
"time \n",
"2019-05-01 02:00:00+01:00 44.0 \n",
"2019-05-01 02:10:00+01:00 41.0 \n",
"2019-05-01 02:20:00+01:00 36.0 \n",
"2019-05-01 02:30:00+01:00 31.0 \n",
"2019-05-01 02:40:00+01:00 25.0 \n",
"... ... \n",
"2020-02-01 00:20:00+01:00 -21.0 \n",
"2020-02-01 00:30:00+01:00 -21.0 \n",
"2020-02-01 00:40:00+01:00 -23.0 \n",
"2020-02-01 00:50:00+01:00 -22.0 \n",
"2020-02-01 01:00:00+01:00 -26.0 \n",
"\n",
" Meetwaarde.Waarde_Alfanumeriek Code \\\n",
"time \n",
"2019-05-01 02:00:00+01:00 44 SCHEVNGN \n",
"2019-05-01 02:10:00+01:00 41 SCHEVNGN \n",
"2019-05-01 02:20:00+01:00 36 SCHEVNGN \n",
"2019-05-01 02:30:00+01:00 31 SCHEVNGN \n",
"2019-05-01 02:40:00+01:00 25 SCHEVNGN \n",
"... ... ... \n",
"2020-02-01 00:20:00+01:00 -21 SCHEVNGN \n",
"2020-02-01 00:30:00+01:00 -21 SCHEVNGN \n",
"2020-02-01 00:40:00+01:00 -23 SCHEVNGN \n",
"2020-02-01 00:50:00+01:00 -22 SCHEVNGN \n",
"2020-02-01 01:00:00+01:00 -26 SCHEVNGN \n",
"\n",
" Coordinatenstelsel Naam X \\\n",
"time \n",
"2019-05-01 02:00:00+01:00 25831 Scheveningen 586550.994421 \n",
"2019-05-01 02:10:00+01:00 25831 Scheveningen 586550.994421 \n",
"2019-05-01 02:20:00+01:00 25831 Scheveningen 586550.994421 \n",
"2019-05-01 02:30:00+01:00 25831 Scheveningen 586550.994421 \n",
"2019-05-01 02:40:00+01:00 25831 Scheveningen 586550.994421 \n",
"... ... ... ... \n",
"2020-02-01 00:20:00+01:00 25831 Scheveningen 586550.994421 \n",
"2020-02-01 00:30:00+01:00 25831 Scheveningen 586550.994421 \n",
"2020-02-01 00:40:00+01:00 25831 Scheveningen 586550.994421 \n",
"2020-02-01 00:50:00+01:00 25831 Scheveningen 586550.994421 \n",
"2020-02-01 01:00:00+01:00 25831 Scheveningen 586550.994421 \n",
"\n",
" Y \n",
"time \n",
"2019-05-01 02:00:00+01:00 5.772806e+06 \n",
"2019-05-01 02:10:00+01:00 5.772806e+06 \n",
"2019-05-01 02:20:00+01:00 5.772806e+06 \n",
"2019-05-01 02:30:00+01:00 5.772806e+06 \n",
"2019-05-01 02:40:00+01:00 5.772806e+06 \n",
"... ... \n",
"2020-02-01 00:20:00+01:00 5.772806e+06 \n",
"2020-02-01 00:30:00+01:00 5.772806e+06 \n",
"2020-02-01 00:40:00+01:00 5.772806e+06 \n",
"2020-02-01 00:50:00+01:00 5.772806e+06 \n",
"2020-02-01 01:00:00+01:00 5.772806e+06 \n",
"\n",
"[39739 rows x 53 columns]"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"measurements"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Convert to xarray"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
<xarray.Dataset> Size: 2MB\n",
"Dimensions: (time: 39739)\n",
"Coordinates:\n",
" * time (time) datetime64[ns] 318kB ...\n",
"Data variables:\n",
" WaarnemingMetadata.StatuswaardeLijst (time) object 318kB 'Gecont...\n",
" WaarnemingMetadata.KwaliteitswaardecodeLijst (time) object 318kB '00' .....\n",
" MeetApparaat.Code (time) object 318kB '127' ....\n",
" WaardeBepalingsmethode.Code (time) object 318kB 'other:...\n",
" Meetwaarde.Waarde_Numeriek (time) float64 318kB 44.0 ....\n",
"Attributes: (12/27)\n",
" BemonsteringsApparaat.Code: NVT\n",
" BemonsteringsMethode.Code: NVT\n",
" BioTaxon.Code: NVT\n",
" BioTaxon_Compartiment.Code: NVT\n",
" MonsterBewerkingsMethode.Code: NVT\n",
" Orgaan.Code: NVT\n",
" ... ...\n",
" Hoedanigheid.Code: NAP\n",
" Code: SCHEVNGN\n",
" Naam: Scheveningen\n",
" Coordinatenstelsel: 25831\n",
" X: 586550.994420996\n",
" Y: 5772806.43069697
WaarnemingMetadata.StatuswaardeLijst
(time)
object
'Gecontroleerd' ... 'Gecontroleerd'
array(['Gecontroleerd', 'Gecontroleerd', 'Gecontroleerd', ...,\n",
" 'Gecontroleerd', 'Gecontroleerd', 'Gecontroleerd'], dtype=object)
WaarnemingMetadata.KwaliteitswaardecodeLijst
(time)
object
'00' '00' '00' ... '00' '00' '00'
array(['00', '00', '00', ..., '00', '00', '00'], dtype=object)
MeetApparaat.Code
(time)
object
'127' '127' '127' ... '127' '127'
array(['127', '127', '127', ..., '127', '127', '127'], dtype=object)
WaardeBepalingsmethode.Code
(time)
object
'other:F007' ... 'other:F007'
- other:F007 :
- Rekenkundig gemiddelde waarde over vorige 5 en volgende 5 minuten
array(['other:F007', 'other:F007', 'other:F007', ..., 'other:F007',\n",
" 'other:F007', 'other:F007'], dtype=object)
Meetwaarde.Waarde_Numeriek
(time)
float64
44.0 41.0 36.0 ... -22.0 -26.0
array([ 44., 41., 36., ..., -23., -22., -26.])
PandasIndex
PandasIndex(DatetimeIndex(['2019-05-01 01:00:00', '2019-05-01 01:10:00',\n",
" '2019-05-01 01:20:00', '2019-05-01 01:30:00',\n",
" '2019-05-01 01:40:00', '2019-05-01 01:50:00',\n",
" '2019-05-01 02:00:00', '2019-05-01 02:10:00',\n",
" '2019-05-01 02:20:00', '2019-05-01 02:30:00',\n",
" ...\n",
" '2020-01-31 22:30:00', '2020-01-31 22:40:00',\n",
" '2020-01-31 22:50:00', '2020-01-31 23:00:00',\n",
" '2020-01-31 23:10:00', '2020-01-31 23:20:00',\n",
" '2020-01-31 23:30:00', '2020-01-31 23:40:00',\n",
" '2020-01-31 23:50:00', '2020-02-01 00:00:00'],\n",
" dtype='datetime64[ns]', name='time', length=39739, freq=None))
- BemonsteringsApparaat.Code :
- NVT
- BemonsteringsMethode.Code :
- NVT
- BioTaxon.Code :
- NVT
- BioTaxon_Compartiment.Code :
- NVT
- MonsterBewerkingsMethode.Code :
- NVT
- Orgaan.Code :
- NVT
- Parameter.Code :
- NVT
- PlaatsBepalingsApparaat.Code :
- NVT
- Typering.Code :
- NVT
- Groepering.Code :
- NVT
- WaardeBepalingstechniek.Code :
- NVT
- WaardeBewerkingsmethode.Code :
- NVT
- WaarnemingMetadata.OpdrachtgevendeInstantieLijst :
- RIKZMON_WAT
- WaarnemingMetadata.BemonsteringshoogteLijst :
- -999999999
- WaarnemingMetadata.ReferentievlakLijst :
- NVT
- AquoMetadata_MessageID :
- 2573
- BioTaxonType :
- NVT
- BemonsteringsSoort.Code :
- SB
- Compartiment.Code :
- OW
- Eenheid.Code :
- cm
- Grootheid.Code :
- WATHTE
- Hoedanigheid.Code :
- NAP
- Code :
- SCHEVNGN
- Naam :
- Scheveningen
- Coordinatenstelsel :
- 25831
- X :
- 586550.994420996
- Y :
- 5772806.43069697
"
],
"text/plain": [
" Size: 2MB\n",
"Dimensions: (time: 39739)\n",
"Coordinates:\n",
" * time (time) datetime64[ns] 318kB ...\n",
"Data variables:\n",
" WaarnemingMetadata.StatuswaardeLijst (time) object 318kB 'Gecont...\n",
" WaarnemingMetadata.KwaliteitswaardecodeLijst (time) object 318kB '00' .....\n",
" MeetApparaat.Code (time) object 318kB '127' ....\n",
" WaardeBepalingsmethode.Code (time) object 318kB 'other:...\n",
" Meetwaarde.Waarde_Numeriek (time) float64 318kB 44.0 ....\n",
"Attributes: (12/27)\n",
" BemonsteringsApparaat.Code: NVT\n",
" BemonsteringsMethode.Code: NVT\n",
" BioTaxon.Code: NVT\n",
" BioTaxon_Compartiment.Code: NVT\n",
" MonsterBewerkingsMethode.Code: NVT\n",
" Orgaan.Code: NVT\n",
" ... ...\n",
" Hoedanigheid.Code: NAP\n",
" Code: SCHEVNGN\n",
" Naam: Scheveningen\n",
" Coordinatenstelsel: 25831\n",
" X: 586550.994420996\n",
" Y: 5772806.43069697"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"drop_if_constant = [\"WaarnemingMetadata.OpdrachtgevendeInstantieLijst\",\n",
" \"WaarnemingMetadata.BemonsteringshoogteLijst\",\n",
" \"WaarnemingMetadata.ReferentievlakLijst\",\n",
" \"AquoMetadata_MessageID\", \n",
" \"BioTaxonType\",\n",
" \"BemonsteringsSoort.Code\", \n",
" \"Compartiment.Code\", \"Eenheid.Code\", \"Grootheid.Code\", \"Hoedanigheid.Code\",\n",
" ]\n",
"ds = ddlpy.dataframe_to_xarray(measurements, drop_if_constant=drop_if_constant)\n",
"ds"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.6"
}
},
"nbformat": 4,
"nbformat_minor": 4
}