Parameters vertical concepts
SBM
The Table below shows the parameters (fields) of struct SBM
, including a description of these parameters, the unit, and default value if applicable. The parameters in bold represent model parameters that can be set through static and forcing input data (netCDF), and can be listed in the TOML configuration file under [input.vertical]
, to map the internal model parameter to the external netCDF variable. For some input parameters the parameter listed under [input.vertical]
is not equal to the internal model parameter, these are listed in the Table below between parentheses after the internal model parameter. For example, internal model parameter sl
is mapped as follows in the TOML file to the external netCDF variable Sl
:
[input.vertical]
specific_leaf = "Sl"
Different vertical hydraulic conductivity depth profiles: exponential
(default), exponential_constant
, layered
and layered_exponential
can be provided through the TOML file. Below an example for the exponential_constant
profile:
[input.vertical]
ksat_profile = "exponential_constant"
For the exponential
profile the input parameters kv_0
and f
are used. For the exponential_constant
profile kv_0
and f
are used, and z_exp
is required as input. For the layered
profile, input parameter kv
is used, and for the layered_exponential
profile kv
is used and z_layered
is required as input.
parameter | description | unit | default |
---|---|---|---|
cfmax | degree-day factor | mm ᵒC$^{-1}$ Δt$^{-1}$ | 3.75653 mm ᵒC$^{-1}$ day$^{-1}$ |
tt | threshold temperature for snowfall | ᵒC | 0.0 |
tti | threshold temperature interval length | ᵒC | 1.0 |
ttm | threshold temperature for snowmelt | ᵒC | 0.0 |
whc | water holding capacity as fraction of current snow pack | - | 0.1 |
w_soil | soil temperature smooth factor | - | 0.1125 |
cf_soil | controls soil infiltration reduction factor when soil is frozen | - | 0.038 |
g_tt | threshold temperature for snowfall above glacier | ᵒC | 0.0 |
g_cfmax | Degree-day factor for glacier | mm ᵒC$^{-1}$ Δt$^{-1}$ | 3.0 mm ᵒC$^{-1}$ day$^{-1}$ |
g_sifrac | fraction of the snowpack on top of the glacier converted into ice | Δt$^{-1}$ | 0.001 day$^{-1}$ |
glacierfrac | fraction covered by a glacier | - | 0.0 |
glacierstore | water within the glacier | mm | 5500.0 |
theta_s | saturated water content (porosity) | - | 0.6 |
theta_r | residual water content | - | 0.01 |
kv_0 | Vertical hydraulic conductivity at soil surface | mm Δt$^{-1}$ | 3000.0 mm day$^{-1}$ |
kv | Vertical hydraulic conductivity per soil layer | mm Δt$^{-1}$ | 1000.0 mm day$^{-1}$ |
f | scaling parameter (controls exponential decline of kv_0 ) | mm$^{-1}$ | 0.001 |
z_exp | Depth from soil surface for which exponential decline of kv_0 is valid | mm | - |
z_layered | Depth from soil surface for which layered profile (of layered_exponential ) is valid | mm | - |
hb | air entry pressure of soil (Brooks-Corey) | cm | -10.0 |
soilthickness | soil thickness | mm | 2000.0 |
infiltcappath | infiltration capacity of the compacted areas | mm Δt$^{-1}$ | 10.0 mm day$^{-1}$ |
infiltcapsoil | soil infiltration capacity | mm Δt$^{-1}$ | 100.0 mm day$^{-1}$ |
maxleakage | maximum leakage from saturated zone | mm Δt$^{-1}$ | 0.0 mm day$^{-1}$ |
c | Brooks-Corey power coefficient for each soil layer | - | 10.0 |
kvfrac | multiplication factor applied to kv_z (vertical flow) | - | 1.0 |
waterfrac | fraction of open water (excluding rivers) | - | 0.0 |
pathfrac | fraction of compacted area | - | 0.01 |
rootingdepth | rooting depth | mm | 750.0 |
rootfraction | fraction of the root length density in each soil layer | - | - |
h1 | soil water pressure head h1 of the root water uptake reduction function (Feddes) | cm | 0.0 cm |
h2 | soil water pressure head h2 of the root water uptake reduction function (Feddes) | cm | -100.0 cm |
h3_high | soil water pressure head h3_high of the root water uptake reduction function (Feddes) | cm | -400.0 cm |
h3_low | soil water pressure head h3_low of the root water uptake reduction function (Feddes) | cm | -1000.0 cm |
h4 | soil water pressure head h4 of the root water uptake reduction function (Feddes) | cm | -15849.0 cm |
alpha_h1 | root water uptake reduction at soil water pressure head h1 (0.0 or 1.0) | - | 1.0 |
rootdistpar | controls how roots are linked to water table | - | -500.0 |
cap_hmax | water depth beyond which capillary flux ceases | mm | 2000.0 |
cap_n | coefficient controlling capillary rise | - | 2.0 |
kc | crop coefficient Kc | - | 1.0 |
sl (specific_leaf ) | specific leaf storage | mm | - |
swood (storage_wood ) | storage woody part of vegetation | mm | - |
kext | extinction coefficient (to calculate canopy gap fraction) | - | - |
cmax | maximum canopy storage | mm | 1.0 |
e_r (eoverr ) | Gash interception model parameter | - | 0.1 |
canopygapfraction | canopy gap fraction | - | 0.1 |
dt | model time step | s | - |
maxlayers | maximum number of soil layers | - | - |
n | number of grid cells | - | - |
nlayers | number of soil layers | - | - |
n_unsatlayers | number of unsaturated soil layers | - | - |
nlayers_kv | number of soil layers with vertical hydraulic conductivity value kv | - | - |
riverfrac | fraction of river | - | - |
act_thickl | thickness of soil layers | mm | - |
sumlayers | cumulative sum of soil layers thickness, starting at soil surface | mm | - |
stemflow | stemflow | mm Δt$^{-1}$ | - |
throughfall | throughfall | mm Δt$^{-1}$ | - |
ustorelayerdepth | amount of water in the unsaturated store, per layer | mm | - |
satwaterdepth | saturated store | mm | - |
zi | pseudo-water table depth (top of the saturated zone) | mm | - |
soilwatercapacity | soilwater capacity | mm | - |
canopystorage | canopy storage | mm | - |
precipitation | precipitation | mm Δt$^{-1}$ | - |
temperature | temperature | ᵒC | - |
potential_evaporation | potential reference evapotranspiration | mm Δt$^{-1}$ | - |
pottrans | interception subtracted from potential evapotranspiration | mm Δt$^{-1}$ | - |
transpiration | transpiration | mm Δt$^{-1}$ | - |
ae_ustore | actual evaporation from unsaturated store | mm Δt$^{-1}$ | - |
interception | interception loss by evaporation | mm Δt$^{-1}$ | - |
soilevap | total soil evaporation from unsaturated and saturated store | mm Δt$^{-1}$ | - |
soilevapsat | soil evaporation from saturated store | mm Δt$^{-1}$ | - |
actcapflux | actual capillary rise | mm Δt$^{-1}$ | - |
actevapsat | actual transpiration from saturated store | mm Δt$^{-1}$ | - |
actevap | total actual evapotranspiration | mm Δt$^{-1}$ | - |
runoff_river | runoff from river based on riverfrac | mm Δt$^{-1}$ | - |
runoff_land | runoff from land based on waterfrac | mm Δt$^{-1}$ | - |
ae_openw_l | actual evaporation from open water (land) | mm Δt$^{-1}$ | - |
ae_openw_r | actual evaporation from river | mm Δt$^{-1}$ | - |
net_runoff_river | net runoff from river (runoff_river - ae_openw_r ) | mm Δt$^{-1}$ | - |
avail_forinfilt | water available for infiltration | mm Δt$^{-1}$ | - |
actinfilt | actual infiltration into the unsaturated zone | mm Δt$^{-1}$ | - |
actinfiltsoil | actual infiltration into non-compacted fraction | mm Δt$^{-1}$ | - |
actinfiltpath | actual infiltration into compacted fraction | mm Δt$^{-1}$ | - |
infiltsoilpath | infiltration into the unsaturated zone | mm Δt$^{-1}$ | - |
infiltexcess | infiltration excess water | mm Δt$^{-1}$ | - |
excesswater | water that cannot infiltrate due to saturated soil (saturation excess) | mm Δt$^{-1}$ | - |
exfiltsatwater | water exfiltrating during saturation excess conditions | mm Δt$^{-1}$ | - |
exfiltustore | water exfiltrating from unsaturated store because of change in water table | mm Δt$^{-1}$ | - |
excesswatersoil | excess water for non-compacted fraction | mm Δt$^{-1}$ | - |
excesswaterpath | excess water for compacted fraction | mm Δt$^{-1}$ | - |
runoff | total surface runoff from infiltration and saturation excess | mm Δt$^{-1}$ | - |
net_runoff | net surface runoff (runoff - ae_openw_l ) | mm Δt$^{-1}$ | - |
vwc | volumetric water content per soil layer (including theta_r and saturated zone) | - | - |
vwc_perc | volumetric water content per soil layer (including theta_r and saturated zone) | % | - |
rootstore | root water storage in unsaturated and saturated zone (excluding theta_r ) | mm | - |
vwc_root | volumetric water content in root zone (including theta_r and saturated zone) | - | - |
vwc_percroot | volumetric water content in root zone (including theta_r and saturated zone) | % | - |
ustoredepth | total amount of available water in the unsaturated zone | mm | - |
transfer | downward flux from unsaturated to saturated zone | mm Δt$^{-1}$ | - |
recharge | net recharge to saturated zone | mm Δt$^{-1}$ | - |
actleakage | actual leakage from saturated store | mm Δt$^{-1}$ | - |
snow | snow storage | mm | - |
snowwater | liquid water content in the snow pack | mm | - |
rainfallplusmelt | snowmelt + precipitation as rainfall | mm Δt$^{-1}$ | - |
tsoil | top soil temperature | ᵒC | - |
leaf_area_index | leaf area index | m$^2$ m${-2}$ | - |
waterlevel_land | water level land | mm | - |
waterlevel_river | water level river | mm | - |
total_storage | total water storage (excluding floodplains, lakes and reservoirs) | mm | - |
paddy | optional paddy (rice) fields of type Paddy (water demand and irrigation) | - | - |
nonpaddy | optional non-paddy fields of type NonPaddy (water demand and irrigation) | - | - |
domestic | optional domestic water demand of type NonIrrigationDemand | - | - |
livestock | optional livestock water demand of type NonIrrigationDemand | - | - |
industry | optional industry water demand of type NonIrrigationDemand | - | - |
allocation | optional water allocation of type AllocationLand | - | - |
HBV
The Table below shows the parameters (fields) of struct HBV
, including a description of these parameters, the unit, and default value if applicable. The parameters in bold represent model parameters that can be set through static and forcing input data (netCDF), and can be listed in the TOML configuration file under [input.vertical]
, to map the internal model parameter to the external netCDF variable.
parameter | description | unit | default |
---|---|---|---|
cfmax | degree-day factor | mm ᵒC$^{-1}$ Δt$^{-1}$ | 3.75653 mm ᵒC$^{-1}$ day$^{-1}$ |
tt | threshold temperature for snowfall | ᵒC | -1.41934 |
tti | threshold temperature interval length | ᵒC | 1.0 |
ttm | threshold temperature for snowmelt | ᵒC | -1.41934 |
whc | water holding capacity as fraction of current snow pack | - | 0.1 |
g_tt | threshold temperature for snowfall above glacier | ᵒC | 0.0 |
g_cfmax | Degree-day factor for glacier | mm ᵒC$^{-1}$ Δt$^{-1}$ | 3.0 mm ᵒC$^{-1}$ day$^{-1}$ |
g_sifrac | fraction of the snowpack on top of the glacier converted into ice | Δt$^{-1}$ | 0.001 day$^{-1}$ |
glacierfrac | fraction covered by a glacier | - | 0.0 |
glacierstore | water within the glacier | mm | 5500.0 |
fc | field capacity | mm | 260.0 |
betaseepage | exponent in soil runoff generation equation | - | 1.8 |
lp | fraction of field capacity below which actual evaporation=potential evaporation | - | 0.53 |
k4 | recession constant baseflow | Δt$^-1$ | 0.02307 day$^{-1}$ |
kquickflow | recession constant upper reservoir | Δt$^-1$ | 0.09880 day$^{-1}$ |
suz | Level over which k0 is used | mm | 100.0 |
k0 | recession constant upper reservoir | Δt$^-1$ | 0.30 day$^{-1}$ |
khq | recession rate at flow hq | Δt$^-1$ | 0.09880 day$^{-1}$ |
hq | high flow rate hq for which recession rate of upper reservoir is known | mm Δt$^-1$ | 3.27 mm day$^{-1}$ |
alphanl | measure of non-linearity of upper reservoir | - | 1.1 |
perc | percolation from upper to lower zone | mm Δt$^-1$ | 0.4 mm day$^{-1}$ |
cfr | refreezing efficiency constant in refreezing of freewater in snow | - | 0.05 |
pcorr | correction factor for precipitation | - | 1.0 |
rfcf | correction factor for rainfall | - | 1.0 |
sfcf | correction factor for snowfall | - | 1.0 |
cflux | maximum capillary rise from runoff response routine to soil moisture routine | mm Δt$^-1$ | 2.0 mm day$^{-1}$ |
icf | maximum interception storage (in forested and non-forested areas) | mm | 2.0 |
cevpf | correction factor for potential evaporation | - | 1.0 |
epf | exponent of correction factor for evaporation on days with precipitation | mm$^{-1}$ | 1.0 |
ecorr | evaporation correction | - | 1.0 |
precipitation | precipitation | mm Δt$^-1$ | - |
temperature | temperature | ᵒC | - |
potential_evaporation | potential evapotranspiration | mm Δt$^-1$ | - |
potsoilevap | potential soil evaporation | mm Δt$^-1$ | - |
soilevap | soil evaporation | mm Δt$^-1$ | - |
intevap | evaporation from interception storage | mm Δt$^-1$ | - |
actevap | actual evapotranspiration (intevap + soilevap) | mm Δt$^-1$ | - |
interceptionstorage | actual interception storage | mm | - |
snowwater | available free water in snow | mm | - |
snow | snow pack | mm | - |
rainfallplusmelt | snow melt + precipitation as rainfall | mm Δt$^-1$ | - |
soilmoisture | actual soil moisture | mm | - |
directrunoff | direct runoff to upper zone | mm Δt$^-1$ | - |
hbv_seepage | recharge to upper zone | mm Δt$^-1$ | - |
in_upperzone | water inflow into upper zone | mm Δt$^-1$ | - |
upperzonestorage | water content of the upper zone | mm | - |
quickflow | specific runoff (quickflow part) | mm Δt$^-1$ | - |
real_quickflow | specific runoff (quickflow), if K upper zone is precalculated | mm Δt$^-1$ | - |
percolation | actual percolation to the lower zone | mm Δt$^-1$ | - |
capflux | capillary rise | mm Δt$^-1$ | - |
lowerzonestorage | water content of the lower zone | mm | - |
baseflow | specific runoff (baseflow part) per cell | mm Δt$^-1$ | - |
runoff | total specific runoff per cell | mm Δt$^-1$ | - |
FLEXtopo
The Table below shows the parameters (fields) of struct FLEXTOPO
, including a description of these parameters, the unit, and default value if applicable. The parameters in bold represent model parameters that can be set through static and forcing input data (netCDF), and can be listed in the TOML configuration file under [input.vertical]
, to map the internal model parameter to the external netCDF variable.
parameter | description | unit | default |
---|---|---|---|
cfmax | degree-day factor | mm ᵒC$^{-1}$ Δt$^{-1}$ | 3.75653 mm ᵒC$^{-1}$ day$^{-1}$ |
tt | threshold temperature for snowfall | ᵒC | -1.41934 |
tti | threshold temperature interval length | ᵒC | 1.0 |
ttm | threshold temperature for snowmelt | ᵒC | -1.41934 |
whc | water holding capacity as fraction of current snow pack | - | 0.1 |
cfr | refreezing efficiency constant in refreezing of freewater in snow | - | 0.05 |
g_tt | threshold temperature for snowfall above glacier | ᵒC | 0.0 |
g_cfmax | Degree-day factor for glacier | mm ᵒC$^{-1}$ Δt$^{-1}$ | 3.0 mm ᵒC$^{-1}$ day$^{-1}$ |
g_sifrac | fraction of the snowpack on top of the glacier converted into ice | Δt$^{-1}$ | 0.001 day$^{-1}$ |
glacierfrac | fraction covered by a glacier | - | 0.0 |
glacierstore | water within the glacier | mm | 5500.0 |
ecorr | evaporation correction | - | 1.0 |
pcorr | correction factor for precipitation | - | 1.0 |
rfcf | correction factor for rainfall | - | 1.0 |
sfcf | correction factor for snowfall | - | 1.0 |
imax | maximum interception storage ($I_\mathrm{max}$) | mm | 3.0 |
shmax | maximum horton ponding storage capacity ($S_\mathrm{Hmax}$) | mm | 30.0 |
srmax | maximum root zone storage capacity ($S_\mathrm{Rmax}$) | mm | 260.0 |
beta | exponent in soil runoff generation equation | - | 0.3 |
lp | fraction of root zone capacity below which actual evaporation=potential evaporation ($L_\mathrm{P}$) | - | 0.3 |
ks | recession constant slow groundwater storage ($K_\mathrm{S}$) | Δt$^-1$ | 0.006 day$^{-1}$ |
kf | recession constant fast storage ($K_\mathrm{F}$) | Δt$^-1$ | 0.1 day$^{-1}$ |
khf | recession constant horton runoff storage ($K_\mathrm{Hf}$) | Δt$^-1$ | 0.5 day$^{-1}$ |
alfa | measure of non-linearity of upper reservoir ($\alpha$) | - | 1.0 |
perc | maximum percolation flux from root zone to slow storage ($Q_\mathrm{perc,max}$) | mm Δt$^-1$ | 0.30 mm day$^{-1}$ |
cap | maximum capillary rise from slow storage to root zone ($Q_\mathrm{cap,max}$) | mm Δt$^-1$ | 0.20 mm day$^{-1}$ |
ds | splitter parameter determining fraction of root zone outflow to slow storage ($d_\mathrm{s}$) | - | 0.2 |
shmin | minimum storage capacity in horton ponding (relative to $S_\mathrm{Hmax}$) ($S_\mathrm{Hmin}$) | [-] | 0.2 |
facc0 | maximum modelled accumulated frost resulting in shmin ($F_\mathrm{acc,fr0}$) | [ᵒC Δt] | -3.0 |
facc1 | minimum modelled accumulated frost resulting in shmin ($F_\mathrm{acc,fr1}$) | [ᵒC Δt] | 0.0 |
fdec | exponent for the decline of infiltration capacity ($F_\mathrm{dec}$) | [-] | 0.2 |
fmax | maximum infiltration capacity from horton ponding ($F_\mathrm{max}$) | [mm Δt$^-1$] | 2.0 |
kmf | melt coefficient of frozen topsoil ($K_\mathrm{mf}$) | [-] | 1.0 |
hrufrac | fraction of class within cell ($F_\mathrm{hrufrac}$) | - | 1/length(classes) |
precipitation | precipitation | mm Δt$^-1$ | - |
temperature | temperature | ᵒC | - |
potential_evaporation | potential evapotranspiration | mm Δt$^-1$ | - |
precipcorr | corrected precipitation | mm Δt$^-1$ | - |
epotcorr | corrected potential evaporation | mm Δt$^-1$ | - |
snow | snow water ($S_\mathrm{W}$) | mm | - |
snowwater | available free water in snow | mm | - |
interceptionstorage | interception storage ($S_\mathrm{I}$) | mm | - |
interceptionstorage_m | average interception storage over classes ($S_\mathrm{I}$) | mm | - |
hortonpondingstorage | horton ponding storage ($S_\mathrm{Hp}$) | mm | - |
hortonpondingstorage_m | average horton ponding storage over classes ($S_\mathrm{Hp}$) | mm | - |
hortonrunoffstorage | horton runoff storage ($S_\mathrm{Hf}$) | mm | - |
hortonrunoffstorage_m | average horton runoff storage over classes ($S_\mathrm{Hf}$) | mm | - |
rootzonestorage | root zone storage ($S_\mathrm{R}$) | mm | - |
rootzonestorage_m | average root zone storage over classes ($S_\mathrm{R}$) | mm | - |
faststorage | fast storage ($S_\mathrm{F}$) | mm | - |
faststorage_m | average fast storage over classes ($S_\mathrm{F}$) | mm | - |
slowstorage | slow storage ($S_\mathrm{S}$) | mm | - |
potsoilevap | potential soil evaporation ($E_\mathrm{P}$) | mm Δt$^-1$ | - |
soilevap | soil evaporation | mm Δt$^-1$ | - |
intevap | evaporation from interception storage ($E_\mathrm{I}$) | mm Δt$^-1$ | - |
intevap_m | average evaporation from interception storage over classes ($E_\mathrm{I}$) | mm Δt$^-1$ | - |
hortonevap | evaporation from horton ponding storage ($E_\mathrm{H}$) | mm Δt$^-1$ | - |
hortonevap_m | average evaporation from horton ponding storage over classes ($E_\mathrm{H}$) | mm Δt$^-1$ | - |
rootevap | evaporation from root zone storage ($E_\mathrm{R}$) | mm Δt$^-1$ | - |
rootevap_m | average evaporation from root zone storage over classes ($E_\mathrm{R}$) | mm Δt$^-1$ | - |
actevap | actual evapotranspiration (intevap + hortonevap + rootevap) ($E_\mathrm{A}$) | mm Δt$^-1$ | - |
actevap_m | average actual evapotranspiration (intevap + hortonevap + rootevap) over classes ($E_\mathrm{A}$) | mm Δt$^-1$ | - |
precipeffective | Effective precipitation ($P_\mathrm{E}$) | mm Δt$^-1$ | - |
rainfallplusmelt | snow melt + precipitation as rainfall ($P_\mathrm{M} + P_\mathrm{R}$) | mm Δt$^-1$ | - |
snowmelt | snowfall | mm Δt$^-1$ | - |
snowfall | snowfall | mm Δt$^-1$ | - |
facc | modeled accumulated frost | ᵒC Δt | - |
qhortonpond | Flux from the hortonian ponding storage to the hortonian runoff storage ($Q_\mathrm{H}$) | mm Δt$^-1$ | - |
qhortonrootzone | Flux from the hortonian ponding storage to the root zone storage ($Q_\mathrm{HR}$) | mm Δt$^-1$ | - |
qhortonrun | Flux from the hortonian runoff storage ($Q_\mathrm{Hf}$) | mm Δt$^-1$ | - |
qrootzone | Flux from the root zone storage ($Q_\mathrm{R}$) | mm Δt$^-1$ | - |
qrootzonefast | Pref. recharge to fast storage ($Q_\mathrm{RF}$) | mm Δt$^-1$ | - |
qrootzoneslow_m | Pref. recharge to slow storage sum classes ($Q_\mathrm{RS}$) | mm Δt$^-1$ | - |
qcapillary | Capillary flux from the slow to the root-zone storage ($Q_\mathrm{cap}$) | mm Δt$^-1$ | - |
qcapillary_m | Capillary flux from the slow to the root-zone storage sum classes ($Q_\mathrm{cap}$) | mm Δt$^-1$ | - |
qpercolation | Percolation flux from the root-zone to the slow storage ($Q_\mathrm{perc}$) | mm Δt$^-1$ | - |
qpercolation_m | Percolation flux from the root-zone to the slow storage sum classes ($Q_\mathrm{perc}$) | mm Δt$^-1$ | - |
qfast | runoff from fast storage ($Q_\mathrm{F}$) | mm Δt$^-1$ | - |
qfast_tot | sum of fast runoff (from fast and horton runoff storages) over classes | mm Δt$^-1$ | - |
qslow | runoff from slow storage ($Q_\mathrm{S}$) | mm Δt$^-1$ | - |
runoff | total specific runoff per cell (qslow + qfast_tot) ($Q$) | mm Δt$^-1$ | - |
wb_tot | total water balance | mm Δt$^-1$ | - |
Sediment
The Table below shows external parameters that can be set through static input data (netCDF), and can be listed in the TOML configuration file under [input.vertical]
. These external parameters are not part of struct LandSediment
, but used to calculate parameters of struct LandSediment
.
external parameter | description | unit | default |
---|---|---|---|
pclay | percentage clay | % | 0.1 |
psilt | percentage silt | % | 0.1 |
resareas | reservoir coverage | - | - |
lakeareas | lake coverage | - | - |
The Table below shows the parameters (fields) of struct LandSediment
, including a description of these parameters, the unit, and default value if applicable. The parameters in bold represent model parameters that can be set through static and forcing input data (netCDF), and can be listed in the TOML configuration file under [input.vertical]
, to map the internal model parameter to the external netCDF variable. For some input parameters the parameter listed under [input.vertical]
is not equal to the internal model parameter, these are listed in the Table below between parentheses after the internal model parameter. For example, internal model parameter sl
is mapped as follows in the TOML file to the external netCDF variable Sl
:
[input.vertical]
specific_leaf = "Sl"
parameter | description | unit | default |
---|---|---|---|
canopyheight | canopy height | m | 3.0 |
erosk | coefficient for EUROSEM rainfall erosion | - | 0.6 |
erosspl | exponent for EUROSEM rainfall erosion | - | 2.0 |
erosov | coefficient for ANSWERS overland flow erosion | - | 0.9 |
pathfrac | fraction of impervious area per grid cell | - | 0.01 |
slope | land slope | - | 0.01 |
usleC | USLE crop management factor | - | 0.01 |
usleK | USLE soil erodibility factor | - | 0.1 |
sl (specific_leaf ) | specific leaf storage | mm | - |
swood (storage_wood ) | storage woody part of vegetation | mm | - |
kext | extinction coefficient (to calculate canopy gap fraction) | - | - |
cmax | maximum canopy storage | mm | 1.0 |
canopygapfraction | canopy gap fraction | - | 0.1 |
dmclay | median diameter particle size class clay | µm | 2.0 |
dmsilt | median diameter particle size class silt | µm | 10.0 |
dmsand | median diameter particle size class sand | µm | 200.0 |
dmsagg | median diameter particle size class small aggregates | µm | 30.0 |
dmlagg | median diameter particle size class large aggregates | µm | 500.0 |
rhos (rhosed ) | density of sediment | kg m$^{-3}1$ | 2650.0 |
n | number of cells | - | - |
yl | length of cells in y direction | m | - |
xl | length of cells in x direction | m | - |
riverfrac | fraction of river | - | - |
wbcover | waterbody coverage | - | - |
h_land | depth of overland flow | m | - |
interception | canopy interception | mm Δt$^{-1}$ | - |
precipitation | precipitation | mm Δt$^{-1}$ | - |
q_land | overland flow | m$^3$ s$^{-1}$ | - |
sedspl | sediment eroded by rainfall | ton Δt$^{-1}$ | - |
sedov | sediment eroded by overland flow | ton Δt$^{-1}$ | - |
soilloss | total eroded soil | ton Δt$^{-1}$ | - |
erosclay | eroded soil for particle class clay | ton Δt$^{-1}$ | - |
erossilt | eroded soil for particle class silt | ton Δt$^{-1}$ | - |
erossand | eroded soil for particle class sand | ton Δt$^{-1}$ | - |
erossagg | eroded soil for particle class small aggregates | ton Δt$^{-1}$ | - |
eroslagg | eroded soil for particle class large aggregates | ton Δt$^{-1}$ | - |
leaf_area_index | leaf area index | m$^2$ m$^{-2}$ | - |
dl | drain length | m | - |
dw | flow width | m | - |
cGovers | Govers transport capacity coefficient | - | - |
nGovers | Govers transport capacity coefficient | - | - |
D50 | median particle diameter of the topsoil | mm | - |
fclay | fraction of particle class clay | - | - |
fsilt | fraction of particle class silt | - | - |
fsand | fraction of particle class sand | - | - |
fsagg | fraction of particle class small aggregates | - | - |
flagg | fraction of particle class large aggregates | - | - |
rivcell | river cells | - | - |
TCsed | total transport capacity of overland flow | ton Δt$^{-1}$ | - |
TCclay | transport capacity of overland flow for particle class clay | ton Δt$^{-1}$ | - |
TCsilt | transport capacity of overland flow for particle class silt | ton Δt$^{-1}$ | - |
TCsand | transport capacity of overland flow for particle class sand | ton Δt$^{-1}$ | - |
TCsagg | transport capacity of overland flow for particle class small aggregates | ton Δt$^{-1}$ | - |
TClagg | transport capacity of overland flow for particle class large aggregates | ton Δt$^{-1}$ | - |
Water demand and allocation
Paddy
The Table below shows the parameters (fields) of struct Paddy
, including a description of these parameters, the unit, and default value if applicable. The parameters in bold represent model parameters that can be set through static and forcing input data (netCDF), and can be listed in the TOML configuration file under [input.vertical.paddy]
, to map the internal model parameter to the external netCDF variable.
parameter | description | unit | default |
---|---|---|---|
demand_gross | irrigation gross demand | mm Δt$^{-1}$ | - |
irrigation_efficiency | irrigation efficiency | - | - |
maximum_irrigation_rate | maximum irrigation rate | mm Δt$^{-1}$ | 25.0 mm day$^{-1}$ |
irrigation_areas | irrigation areas | - | - |
irrigation_trigger | irrigation on or off (boolean) | - | - |
h_min | minimum required water depth in the irrigated paddy fields | mm | 20.0 |
h_opt | optimal water depth in the irrigated paddy fields | mm | 50.0 |
h_max | water depth when paddy field starts spilling water (overflow) | mm | 80.0 |
h | actual water depth in paddy field | mm | - |
Non-paddy
The Table below shows the parameters (fields) of struct NonPaddy
, including a description of these parameters, the unit, and default value if applicable. The parameters in bold represent model parameters that can be set through static and forcing input data (netCDF), and can be listed in the TOML configuration file under [input.vertical.nonpaddy]
, to map the internal model parameter to the external netCDF variable.
parameter | description | unit | default |
---|---|---|---|
demand_gross | irrigation gross demand | mm Δt$^{-1}$ | - |
irrigation_efficiency | irrigation efficiency | - | - |
maximum_irrigation_rate | maximum irrigation rate | mm Δt$^{-1}$ | 25.0 mm day$^{-1}$ |
irrigation_areas | irrigation areas | - | - |
irrigation_trigger | irrigation on or off (boolean) | - | - |
Non-irrigation (industry, domestic and livestock)
The Table below shows the parameters (fields) of struct NonIrrigationDemand
, including a description of these parameters, the unit, and default value if applicable. The parameters in bold represent model parameters that can be set through static and forcing input data (netCDF). These parameters can be listed for the sectors industry, domestic and livestock, in the TOML configuration file under [input.vertical.industry]
, [input.vertical.domestic]
and [input.vertical.livestock]
, to map the internal model parameter to the external netCDF variable.
parameter | description | unit | default |
---|---|---|---|
demand_gross | gross industry water demand | mm Δt$^{-1}$ | 0.0 |
demand_net | net industry water demand | mm Δt$^{-1}$ | 0.0 |
returnflow_fraction | return flow fraction | - | - |
returnflow | return flow | mm Δt$^{-1}$ | - |
Water allocation land
The Table below shows the parameters (fields) of struct AllocationLand
, including a description of these parameters, the unit, and default value if applicable. The parameters in bold represent model parameters that can be set through static and forcing input data (netCDF), and can be listed in the TOML configuration file under [input.vertical.allocation]
, to map the internal model parameter to the external netCDF variable.
parameter | description | unit | default |
---|---|---|---|
irri_demand_gross | irrigation gross demand | mm Δt$^{-1}$ | - |
nonirri_demand_gross | non-irrigation gross demand | mm Δt$^{-1}$ | - |
total_gross_demand | total gross demand | mm Δt$^{-1}$ | - |
frac_sw_used | fraction surface water used | - | 1.0 |
areas | allocation areas | - | 1 |
surfacewater_demand | demand from surface water | mm Δt$^{-1}$ | - |
surfacewater_alloc | allocation from surface water | mm Δt$^{-1}$ | - |
act_groundwater_abst | actual groundwater abstraction | mm Δt$^{-1}$ | - |
act_groundwater_abst_vol | actual groundwater abstraction | m$^3$ Δt$^{-1}$ | - |
available_groundwater | available groundwater | m$^3$ | - |
groundwater_demand | groundwater_demand | mm Δt$^{-1}$ | - |
groundwater_alloc | allocation from groundwater | mm Δt$^{-1}$ | - |
irri_alloc | allocated water for irrigation | mm Δt$^{-1}$ | - |
nonirri_alloc | allocated water for non-irrigation | mm Δt$^{-1}$ | - |
total_alloc | total allocated water | mm Δt$^{-1}$ | - |
nonirri_returnflow | return flow from non-irrigation | mm Δt$^{-1}$ | - |