Parameters vertical concepts

SBM

The Table below shows the parameters (fields) of struct SBM, including a description of these parameters, the unit, and default value if applicable. The parameters in bold represent model parameters that can be set through static and forcing input data (netCDF), and can be listed in the TOML configuration file under [input.vertical], to map the internal model parameter to the external netCDF variable. For some input parameters the parameter listed under [input.vertical] is not equal to the internal model parameter, these are listed in the Table below between parentheses after the internal model parameter. For example, internal model parameter sl is mapped as follows in the TOML file to the external netCDF variable Sl:

[input.vertical]
specific_leaf = "Sl"

Different vertical hydraulic conductivity depth profiles: exponential (default), exponential_constant, layered and layered_exponential can be provided through the TOML file. Below an example for the exponential_constant profile:

[input.vertical]
ksat_profile = "exponential_constant"

For the exponential profile the input parameters kv_0 and f are used. For the exponential_constant profile kv_0 and f are used, and z_exp is required as input. For the layered profile, input parameter kv is used, and for the layered_exponential profile kv is used and z_layered is required as input.

parameterdescriptionunitdefault
cfmaxdegree-day factormm ᵒC$^{-1}$ Δt$^{-1}$3.75653 mm ᵒC$^{-1}$ day$^{-1}$
ttthreshold temperature for snowfallᵒC0.0
ttithreshold temperature interval lengthᵒC1.0
ttmthreshold temperature for snowmeltᵒC0.0
whcwater holding capacity as fraction of current snow pack-0.1
w_soilsoil temperature smooth factor-0.1125
cf_soilcontrols soil infiltration reduction factor when soil is frozen-0.038
g_ttthreshold temperature for snowfall above glacierᵒC0.0
g_cfmaxDegree-day factor for glaciermm ᵒC$^{-1}$ Δt$^{-1}$3.0 mm ᵒC$^{-1}$ day$^{-1}$
g_sifracfraction of the snowpack on top of the glacier converted into iceΔt$^{-1}$0.001 day$^{-1}$
glacierfracfraction covered by a glacier-0.0
glacierstorewater within the glaciermm5500.0
theta_ssaturated water content (porosity)-0.6
theta_rresidual water content-0.01
kv_0Vertical hydraulic conductivity at soil surfacemm Δt$^{-1}$3000.0 mm day$^{-1}$
kvVertical hydraulic conductivity per soil layermm Δt$^{-1}$1000.0 mm day$^{-1}$
fscaling parameter (controls exponential decline of kv_0)mm$^{-1}$0.001
z_expDepth from soil surface for which exponential decline of kv_0 is validmm-
z_layeredDepth from soil surface for which layered profile (of layered_exponential) is validmm-
hbair entry pressure of soil (Brooks-Corey)cm-10.0
soilthicknesssoil thicknessmm2000.0
infiltcappathinfiltration capacity of the compacted areasmm Δt$^{-1}$10.0 mm day$^{-1}$
infiltcapsoilsoil infiltration capacitymm Δt$^{-1}$100.0 mm day$^{-1}$
maxleakagemaximum leakage from saturated zonemm Δt$^{-1}$0.0 mm day$^{-1}$
cBrooks-Corey power coefficient for each soil layer-10.0
kvfracmultiplication factor applied to kv_z (vertical flow)-1.0
waterfracfraction of open water (excluding rivers)-0.0
pathfracfraction of compacted area-0.01
rootingdepthrooting depthmm750.0
rootfractionfraction of the root length density in each soil layer--
h1soil water pressure head h1 of the root water uptake reduction function (Feddes)cm0.0 cm
h2soil water pressure head h2 of the root water uptake reduction function (Feddes)cm-100.0 cm
h3_highsoil water pressure head h3_high of the root water uptake reduction function (Feddes)cm-400.0 cm
h3_lowsoil water pressure head h3_low of the root water uptake reduction function (Feddes)cm-1000.0 cm
h4soil water pressure head h4 of the root water uptake reduction function (Feddes)cm-15849.0 cm
alpha_h1root water uptake reduction at soil water pressure head h1 (0.0 or 1.0)-1.0
rootdistparcontrols how roots are linked to water table--500.0
cap_hmaxwater depth beyond which capillary flux ceasesmm2000.0
cap_ncoefficient controlling capillary rise-2.0
kccrop coefficient Kc-1.0
sl (specific_leaf)specific leaf storagemm-
swood (storage_wood)storage woody part of vegetationmm-
kextextinction coefficient (to calculate canopy gap fraction)--
cmaxmaximum canopy storagemm1.0
e_r (eoverr)Gash interception model parameter-0.1
canopygapfractioncanopy gap fraction-0.1
dtmodel time steps-
maxlayersmaximum number of soil layers--
nnumber of grid cells--
nlayersnumber of soil layers--
n_unsatlayersnumber of unsaturated soil layers--
nlayers_kvnumber of soil layers with vertical hydraulic conductivity value kv--
riverfracfraction of river--
act_thicklthickness of soil layersmm-
sumlayerscumulative sum of soil layers thickness, starting at soil surfacemm-
stemflowstemflowmm Δt$^{-1}$-
throughfallthroughfallmm Δt$^{-1}$-
ustorelayerdepthamount of water in the unsaturated store, per layermm-
satwaterdepthsaturated storemm-
zipseudo-water table depth (top of the saturated zone)mm-
soilwatercapacitysoilwater capacitymm-
canopystoragecanopy storagemm-
precipitationprecipitationmm Δt$^{-1}$-
temperaturetemperatureᵒC-
potential_evaporationpotential reference evapotranspirationmm Δt$^{-1}$-
pottransinterception subtracted from potential evapotranspirationmm Δt$^{-1}$-
transpirationtranspirationmm Δt$^{-1}$-
ae_ustoreactual evaporation from unsaturated storemm Δt$^{-1}$-
interceptioninterception loss by evaporationmm Δt$^{-1}$-
soilevaptotal soil evaporation from unsaturated and saturated storemm Δt$^{-1}$-
soilevapsatsoil evaporation from saturated storemm Δt$^{-1}$-
actcapfluxactual capillary risemm Δt$^{-1}$-
actevapsatactual transpiration from saturated storemm Δt$^{-1}$-
actevaptotal actual evapotranspirationmm Δt$^{-1}$-
runoff_riverrunoff from river based on riverfracmm Δt$^{-1}$-
runoff_landrunoff from land based on waterfracmm Δt$^{-1}$-
ae_openw_lactual evaporation from open water (land)mm Δt$^{-1}$-
ae_openw_ractual evaporation from rivermm Δt$^{-1}$-
net_runoff_rivernet runoff from river (runoff_river - ae_openw_r)mm Δt$^{-1}$-
avail_forinfiltwater available for infiltrationmm Δt$^{-1}$-
actinfiltactual infiltration into the unsaturated zonemm Δt$^{-1}$-
actinfiltsoilactual infiltration into non-compacted fractionmm Δt$^{-1}$-
actinfiltpathactual infiltration into compacted fractionmm Δt$^{-1}$-
infiltsoilpathinfiltration into the unsaturated zonemm Δt$^{-1}$-
infiltexcessinfiltration excess watermm Δt$^{-1}$-
excesswaterwater that cannot infiltrate due to saturated soil (saturation excess)mm Δt$^{-1}$-
exfiltsatwaterwater exfiltrating during saturation excess conditionsmm Δt$^{-1}$-
exfiltustorewater exfiltrating from unsaturated store because of change in water tablemm Δt$^{-1}$-
excesswatersoilexcess water for non-compacted fractionmm Δt$^{-1}$-
excesswaterpathexcess water for compacted fractionmm Δt$^{-1}$-
runofftotal surface runoff from infiltration and saturation excessmm Δt$^{-1}$-
net_runoffnet surface runoff (runoff - ae_openw_l)mm Δt$^{-1}$-
vwcvolumetric water content per soil layer (including theta_r and saturated zone)--
vwc_percvolumetric water content per soil layer (including theta_r and saturated zone)%-
rootstoreroot water storage in unsaturated and saturated zone (excluding theta_r)mm-
vwc_rootvolumetric water content in root zone (including theta_r and saturated zone)--
vwc_percrootvolumetric water content in root zone (including theta_r and saturated zone)%-
ustoredepthtotal amount of available water in the unsaturated zonemm-
transferdownward flux from unsaturated to saturated zonemm Δt$^{-1}$-
rechargenet recharge to saturated zonemm Δt$^{-1}$-
actleakageactual leakage from saturated storemm Δt$^{-1}$-
snowsnow storagemm-
snowwaterliquid water content in the snow packmm-
rainfallplusmeltsnowmelt + precipitation as rainfallmm Δt$^{-1}$-
tsoiltop soil temperatureᵒC-
leaf_area_indexleaf area indexm$^2$ m${-2}$-
waterlevel_landwater level landmm-
waterlevel_riverwater level rivermm-
total_storagetotal water storage (excluding floodplains, lakes and reservoirs)mm-
paddyoptional paddy (rice) fields of type Paddy (water demand and irrigation)--
nonpaddyoptional non-paddy fields of type NonPaddy (water demand and irrigation)--
domesticoptional domestic water demand of type NonIrrigationDemand--
livestockoptional livestock water demand of type NonIrrigationDemand--
industryoptional industry water demand of type NonIrrigationDemand--
allocationoptional water allocation of type AllocationLand--

HBV

The Table below shows the parameters (fields) of struct HBV, including a description of these parameters, the unit, and default value if applicable. The parameters in bold represent model parameters that can be set through static and forcing input data (netCDF), and can be listed in the TOML configuration file under [input.vertical], to map the internal model parameter to the external netCDF variable.

parameterdescriptionunitdefault
cfmaxdegree-day factormm ᵒC$^{-1}$ Δt$^{-1}$3.75653 mm ᵒC$^{-1}$ day$^{-1}$
ttthreshold temperature for snowfallᵒC-1.41934
ttithreshold temperature interval lengthᵒC1.0
ttmthreshold temperature for snowmeltᵒC-1.41934
whcwater holding capacity as fraction of current snow pack-0.1
g_ttthreshold temperature for snowfall above glacierᵒC0.0
g_cfmaxDegree-day factor for glaciermm ᵒC$^{-1}$ Δt$^{-1}$3.0 mm ᵒC$^{-1}$ day$^{-1}$
g_sifracfraction of the snowpack on top of the glacier converted into iceΔt$^{-1}$0.001 day$^{-1}$
glacierfracfraction covered by a glacier-0.0
glacierstorewater within the glaciermm5500.0
fcfield capacitymm260.0
betaseepageexponent in soil runoff generation equation-1.8
lpfraction of field capacity below which actual evaporation=potential evaporation-0.53
k4recession constant baseflowΔt$^-1$0.02307 day$^{-1}$
kquickflowrecession constant upper reservoirΔt$^-1$0.09880 day$^{-1}$
suzLevel over which k0 is usedmm100.0
k0recession constant upper reservoirΔt$^-1$0.30 day$^{-1}$
khqrecession rate at flow hqΔt$^-1$0.09880 day$^{-1}$
hqhigh flow rate hq for which recession rate of upper reservoir is knownmm Δt$^-1$3.27 mm day$^{-1}$
alphanlmeasure of non-linearity of upper reservoir-1.1
percpercolation from upper to lower zonemm Δt$^-1$0.4 mm day$^{-1}$
cfrrefreezing efficiency constant in refreezing of freewater in snow-0.05
pcorrcorrection factor for precipitation-1.0
rfcfcorrection factor for rainfall-1.0
sfcfcorrection factor for snowfall-1.0
cfluxmaximum capillary rise from runoff response routine to soil moisture routinemm Δt$^-1$2.0 mm day$^{-1}$
icfmaximum interception storage (in forested and non-forested areas)mm2.0
cevpfcorrection factor for potential evaporation-1.0
epfexponent of correction factor for evaporation on days with precipitationmm$^{-1}$1.0
ecorrevaporation correction-1.0
precipitationprecipitationmm Δt$^-1$-
temperaturetemperatureᵒC-
potential_evaporationpotential evapotranspirationmm Δt$^-1$-
potsoilevappotential soil evaporationmm Δt$^-1$-
soilevapsoil evaporationmm Δt$^-1$-
intevapevaporation from interception storagemm Δt$^-1$-
actevapactual evapotranspiration (intevap + soilevap)mm Δt$^-1$-
interceptionstorageactual interception storagemm-
snowwateravailable free water in snowmm-
snowsnow packmm-
rainfallplusmeltsnow melt + precipitation as rainfallmm Δt$^-1$-
soilmoistureactual soil moisturemm-
directrunoffdirect runoff to upper zonemm Δt$^-1$-
hbv_seepagerecharge to upper zonemm Δt$^-1$-
in_upperzonewater inflow into upper zonemm Δt$^-1$-
upperzonestoragewater content of the upper zonemm-
quickflowspecific runoff (quickflow part)mm Δt$^-1$-
real_quickflowspecific runoff (quickflow), if K upper zone is precalculatedmm Δt$^-1$-
percolationactual percolation to the lower zonemm Δt$^-1$-
capfluxcapillary risemm Δt$^-1$-
lowerzonestoragewater content of the lower zonemm-
baseflowspecific runoff (baseflow part) per cellmm Δt$^-1$-
runofftotal specific runoff per cellmm Δt$^-1$-

FLEXtopo

The Table below shows the parameters (fields) of struct FLEXTOPO, including a description of these parameters, the unit, and default value if applicable. The parameters in bold represent model parameters that can be set through static and forcing input data (netCDF), and can be listed in the TOML configuration file under [input.vertical], to map the internal model parameter to the external netCDF variable.

parameterdescriptionunitdefault
cfmaxdegree-day factormm ᵒC$^{-1}$ Δt$^{-1}$3.75653 mm ᵒC$^{-1}$ day$^{-1}$
ttthreshold temperature for snowfallᵒC-1.41934
ttithreshold temperature interval lengthᵒC1.0
ttmthreshold temperature for snowmeltᵒC-1.41934
whcwater holding capacity as fraction of current snow pack-0.1
cfrrefreezing efficiency constant in refreezing of freewater in snow-0.05
g_ttthreshold temperature for snowfall above glacierᵒC0.0
g_cfmaxDegree-day factor for glaciermm ᵒC$^{-1}$ Δt$^{-1}$3.0 mm ᵒC$^{-1}$ day$^{-1}$
g_sifracfraction of the snowpack on top of the glacier converted into iceΔt$^{-1}$0.001 day$^{-1}$
glacierfracfraction covered by a glacier-0.0
glacierstorewater within the glaciermm5500.0
ecorrevaporation correction-1.0
pcorrcorrection factor for precipitation-1.0
rfcfcorrection factor for rainfall-1.0
sfcfcorrection factor for snowfall-1.0
imaxmaximum interception storage ($I_\mathrm{max}$)mm3.0
shmaxmaximum horton ponding storage capacity ($S_\mathrm{Hmax}$)mm30.0
srmaxmaximum root zone storage capacity ($S_\mathrm{Rmax}$)mm260.0
betaexponent in soil runoff generation equation-0.3
lpfraction of root zone capacity below which actual evaporation=potential evaporation ($L_\mathrm{P}$)-0.3
ksrecession constant slow groundwater storage ($K_\mathrm{S}$)Δt$^-1$0.006 day$^{-1}$
kfrecession constant fast storage ($K_\mathrm{F}$)Δt$^-1$0.1 day$^{-1}$
khfrecession constant horton runoff storage ($K_\mathrm{Hf}$)Δt$^-1$0.5 day$^{-1}$
alfameasure of non-linearity of upper reservoir ($\alpha$)-1.0
percmaximum percolation flux from root zone to slow storage ($Q_\mathrm{perc,max}$)mm Δt$^-1$0.30 mm day$^{-1}$
capmaximum capillary rise from slow storage to root zone ($Q_\mathrm{cap,max}$)mm Δt$^-1$0.20 mm day$^{-1}$
dssplitter parameter determining fraction of root zone outflow to slow storage ($d_\mathrm{s}$)-0.2
shminminimum storage capacity in horton ponding (relative to $S_\mathrm{Hmax}$) ($S_\mathrm{Hmin}$)[-]0.2
facc0maximum modelled accumulated frost resulting in shmin ($F_\mathrm{acc,fr0}$)[ᵒC Δt]-3.0
facc1minimum modelled accumulated frost resulting in shmin ($F_\mathrm{acc,fr1}$)[ᵒC Δt]0.0
fdecexponent for the decline of infiltration capacity ($F_\mathrm{dec}$)[-]0.2
fmaxmaximum infiltration capacity from horton ponding ($F_\mathrm{max}$)[mm Δt$^-1$]2.0
kmfmelt coefficient of frozen topsoil ($K_\mathrm{mf}$)[-]1.0
hrufracfraction of class within cell ($F_\mathrm{hrufrac}$)-1/length(classes)
precipitationprecipitationmm Δt$^-1$-
temperaturetemperatureᵒC-
potential_evaporationpotential evapotranspirationmm Δt$^-1$-
precipcorrcorrected precipitationmm Δt$^-1$-
epotcorrcorrected potential evaporationmm Δt$^-1$-
snowsnow water ($S_\mathrm{W}$)mm-
snowwateravailable free water in snowmm-
interceptionstorageinterception storage ($S_\mathrm{I}$)mm-
interceptionstorage_maverage interception storage over classes ($S_\mathrm{I}$)mm-
hortonpondingstoragehorton ponding storage ($S_\mathrm{Hp}$)mm-
hortonpondingstorage_maverage horton ponding storage over classes ($S_\mathrm{Hp}$)mm-
hortonrunoffstoragehorton runoff storage ($S_\mathrm{Hf}$)mm-
hortonrunoffstorage_maverage horton runoff storage over classes ($S_\mathrm{Hf}$)mm-
rootzonestorageroot zone storage ($S_\mathrm{R}$)mm-
rootzonestorage_maverage root zone storage over classes ($S_\mathrm{R}$)mm-
faststoragefast storage ($S_\mathrm{F}$)mm-
faststorage_maverage fast storage over classes ($S_\mathrm{F}$)mm-
slowstorageslow storage ($S_\mathrm{S}$)mm-
potsoilevappotential soil evaporation ($E_\mathrm{P}$)mm Δt$^-1$-
soilevapsoil evaporationmm Δt$^-1$-
intevapevaporation from interception storage ($E_\mathrm{I}$)mm Δt$^-1$-
intevap_maverage evaporation from interception storage over classes ($E_\mathrm{I}$)mm Δt$^-1$-
hortonevapevaporation from horton ponding storage ($E_\mathrm{H}$)mm Δt$^-1$-
hortonevap_maverage evaporation from horton ponding storage over classes ($E_\mathrm{H}$)mm Δt$^-1$-
rootevapevaporation from root zone storage ($E_\mathrm{R}$)mm Δt$^-1$-
rootevap_maverage evaporation from root zone storage over classes ($E_\mathrm{R}$)mm Δt$^-1$-
actevapactual evapotranspiration (intevap + hortonevap + rootevap) ($E_\mathrm{A}$)mm Δt$^-1$-
actevap_maverage actual evapotranspiration (intevap + hortonevap + rootevap) over classes ($E_\mathrm{A}$)mm Δt$^-1$-
precipeffectiveEffective precipitation ($P_\mathrm{E}$)mm Δt$^-1$-
rainfallplusmeltsnow melt + precipitation as rainfall ($P_\mathrm{M} + P_\mathrm{R}$)mm Δt$^-1$-
snowmeltsnowfallmm Δt$^-1$-
snowfallsnowfallmm Δt$^-1$-
faccmodeled accumulated frostᵒC Δt-
qhortonpondFlux from the hortonian ponding storage to the hortonian runoff storage ($Q_\mathrm{H}$)mm Δt$^-1$-
qhortonrootzoneFlux from the hortonian ponding storage to the root zone storage ($Q_\mathrm{HR}$)mm Δt$^-1$-
qhortonrunFlux from the hortonian runoff storage ($Q_\mathrm{Hf}$)mm Δt$^-1$-
qrootzoneFlux from the root zone storage ($Q_\mathrm{R}$)mm Δt$^-1$-
qrootzonefastPref. recharge to fast storage ($Q_\mathrm{RF}$)mm Δt$^-1$-
qrootzoneslow_mPref. recharge to slow storage sum classes ($Q_\mathrm{RS}$)mm Δt$^-1$-
qcapillaryCapillary flux from the slow to the root-zone storage ($Q_\mathrm{cap}$)mm Δt$^-1$-
qcapillary_mCapillary flux from the slow to the root-zone storage sum classes ($Q_\mathrm{cap}$)mm Δt$^-1$-
qpercolationPercolation flux from the root-zone to the slow storage ($Q_\mathrm{perc}$)mm Δt$^-1$-
qpercolation_mPercolation flux from the root-zone to the slow storage sum classes ($Q_\mathrm{perc}$)mm Δt$^-1$-
qfastrunoff from fast storage ($Q_\mathrm{F}$)mm Δt$^-1$-
qfast_totsum of fast runoff (from fast and horton runoff storages) over classesmm Δt$^-1$-
qslowrunoff from slow storage ($Q_\mathrm{S}$)mm Δt$^-1$-
runofftotal specific runoff per cell (qslow + qfast_tot) ($Q$)mm Δt$^-1$-
wb_tottotal water balancemm Δt$^-1$-

Sediment

The Table below shows external parameters that can be set through static input data (netCDF), and can be listed in the TOML configuration file under [input.vertical]. These external parameters are not part of struct LandSediment, but used to calculate parameters of struct LandSediment.

external parameterdescriptionunitdefault
pclaypercentage clay%0.1
psiltpercentage silt%0.1
resareasreservoir coverage--
lakeareaslake coverage--

The Table below shows the parameters (fields) of struct LandSediment, including a description of these parameters, the unit, and default value if applicable. The parameters in bold represent model parameters that can be set through static and forcing input data (netCDF), and can be listed in the TOML configuration file under [input.vertical], to map the internal model parameter to the external netCDF variable. For some input parameters the parameter listed under [input.vertical] is not equal to the internal model parameter, these are listed in the Table below between parentheses after the internal model parameter. For example, internal model parameter sl is mapped as follows in the TOML file to the external netCDF variable Sl:

[input.vertical]
specific_leaf = "Sl"
parameterdescriptionunitdefault
canopyheightcanopy heightm3.0
eroskcoefficient for EUROSEM rainfall erosion-0.6
erossplexponent for EUROSEM rainfall erosion-2.0
erosovcoefficient for ANSWERS overland flow erosion-0.9
pathfracfraction of impervious area per grid cell-0.01
slopeland slope-0.01
usleCUSLE crop management factor-0.01
usleKUSLE soil erodibility factor-0.1
sl (specific_leaf)specific leaf storagemm-
swood (storage_wood)storage woody part of vegetationmm-
kextextinction coefficient (to calculate canopy gap fraction)--
cmaxmaximum canopy storagemm1.0
canopygapfractioncanopy gap fraction-0.1
dmclaymedian diameter particle size class clayµm2.0
dmsiltmedian diameter particle size class siltµm10.0
dmsandmedian diameter particle size class sandµm200.0
dmsaggmedian diameter particle size class small aggregatesµm30.0
dmlaggmedian diameter particle size class large aggregatesµm500.0
rhos (rhosed)density of sedimentkg m$^{-3}1$2650.0
nnumber of cells--
yllength of cells in y directionm-
xllength of cells in x directionm-
riverfracfraction of river--
wbcoverwaterbody coverage--
h_landdepth of overland flowm-
interceptioncanopy interceptionmm Δt$^{-1}$-
precipitationprecipitationmm Δt$^{-1}$-
q_landoverland flowm$^3$ s$^{-1}$-
sedsplsediment eroded by rainfallton Δt$^{-1}$-
sedovsediment eroded by overland flowton Δt$^{-1}$-
soillosstotal eroded soilton Δt$^{-1}$-
erosclayeroded soil for particle class clayton Δt$^{-1}$-
erossilteroded soil for particle class siltton Δt$^{-1}$-
erossanderoded soil for particle class sandton Δt$^{-1}$-
erossaggeroded soil for particle class small aggregateston Δt$^{-1}$-
eroslaggeroded soil for particle class large aggregateston Δt$^{-1}$-
leaf_area_indexleaf area indexm$^2$ m$^{-2}$-
dldrain lengthm-
dwflow widthm-
cGoversGovers transport capacity coefficient--
nGoversGovers transport capacity coefficient--
D50median particle diameter of the topsoilmm-
fclayfraction of particle class clay--
fsiltfraction of particle class silt--
fsandfraction of particle class sand--
fsaggfraction of particle class small aggregates--
flaggfraction of particle class large aggregates--
rivcellriver cells--
TCsedtotal transport capacity of overland flowton Δt$^{-1}$-
TCclaytransport capacity of overland flow for particle class clayton Δt$^{-1}$-
TCsilttransport capacity of overland flow for particle class siltton Δt$^{-1}$-
TCsandtransport capacity of overland flow for particle class sandton Δt$^{-1}$-
TCsaggtransport capacity of overland flow for particle class small aggregateston Δt$^{-1}$-
TClaggtransport capacity of overland flow for particle class large aggregateston Δt$^{-1}$-

Water demand and allocation

Paddy

The Table below shows the parameters (fields) of struct Paddy, including a description of these parameters, the unit, and default value if applicable. The parameters in bold represent model parameters that can be set through static and forcing input data (netCDF), and can be listed in the TOML configuration file under [input.vertical.paddy], to map the internal model parameter to the external netCDF variable.

parameterdescriptionunitdefault
demand_grossirrigation gross demandmm Δt$^{-1}$-
irrigation_efficiencyirrigation efficiency--
maximum_irrigation_ratemaximum irrigation ratemm Δt$^{-1}$25.0 mm day$^{-1}$
irrigation_areasirrigation areas--
irrigation_triggerirrigation on or off (boolean)--
h_minminimum required water depth in the irrigated paddy fieldsmm20.0
h_optoptimal water depth in the irrigated paddy fieldsmm50.0
h_maxwater depth when paddy field starts spilling water (overflow)mm80.0
hactual water depth in paddy fieldmm-

Non-paddy

The Table below shows the parameters (fields) of struct NonPaddy, including a description of these parameters, the unit, and default value if applicable. The parameters in bold represent model parameters that can be set through static and forcing input data (netCDF), and can be listed in the TOML configuration file under [input.vertical.nonpaddy], to map the internal model parameter to the external netCDF variable.

parameterdescriptionunitdefault
demand_grossirrigation gross demandmm Δt$^{-1}$-
irrigation_efficiencyirrigation efficiency--
maximum_irrigation_ratemaximum irrigation ratemm Δt$^{-1}$25.0 mm day$^{-1}$
irrigation_areasirrigation areas--
irrigation_triggerirrigation on or off (boolean)--

Non-irrigation (industry, domestic and livestock)

The Table below shows the parameters (fields) of struct NonIrrigationDemand, including a description of these parameters, the unit, and default value if applicable. The parameters in bold represent model parameters that can be set through static and forcing input data (netCDF). These parameters can be listed for the sectors industry, domestic and livestock, in the TOML configuration file under [input.vertical.industry], [input.vertical.domestic] and [input.vertical.livestock], to map the internal model parameter to the external netCDF variable.

parameterdescriptionunitdefault
demand_grossgross industry water demandmm Δt$^{-1}$0.0
demand_netnet industry water demandmm Δt$^{-1}$0.0
returnflow_fractionreturn flow fraction--
returnflowreturn flowmm Δt$^{-1}$-

Water allocation land

The Table below shows the parameters (fields) of struct AllocationLand, including a description of these parameters, the unit, and default value if applicable. The parameters in bold represent model parameters that can be set through static and forcing input data (netCDF), and can be listed in the TOML configuration file under [input.vertical.allocation], to map the internal model parameter to the external netCDF variable.

parameterdescriptionunitdefault
irri_demand_grossirrigation gross demandmm Δt$^{-1}$-
nonirri_demand_grossnon-irrigation gross demandmm Δt$^{-1}$-
total_gross_demandtotal gross demandmm Δt$^{-1}$-
frac_sw_usedfraction surface water used-1.0
areasallocation areas-1
surfacewater_demanddemand from surface watermm Δt$^{-1}$-
surfacewater_allocallocation from surface watermm Δt$^{-1}$-
act_groundwater_abstactual groundwater abstractionmm Δt$^{-1}$-
act_groundwater_abst_volactual groundwater abstractionm$^3$ Δt$^{-1}$-
available_groundwateravailable groundwaterm$^3$-
groundwater_demandgroundwater_demandmm Δt$^{-1}$-
groundwater_allocallocation from groundwatermm Δt$^{-1}$-
irri_allocallocated water for irrigationmm Δt$^{-1}$-
nonirri_allocallocated water for non-irrigationmm Δt$^{-1}$-
total_alloctotal allocated watermm Δt$^{-1}$-
nonirri_returnflowreturn flow from non-irrigationmm Δt$^{-1}$-