{ "cells": [ { "cell_type": "markdown", "id": "b0e3a543", "metadata": {}, "source": [ "# Operations on distribution functions\n", "In this example, we demonstrate various operations on [distribution](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#DistributionType) functions using the probabilistic library.\n", "\n", "### Define a stochastic variable\n", "First, we import the necessary classes:" ] }, { "cell_type": "code", "execution_count": 1, "id": "c0d851fb", "metadata": {}, "outputs": [], "source": [ "from probabilistic_library import DistributionType, Stochast, StandardNormal" ] }, { "cell_type": "markdown", "id": "bc022113", "metadata": {}, "source": [ "Next, we create a random variable using the [Stochast](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast) class:" ] }, { "cell_type": "code", "execution_count": 2, "id": "459561f9", "metadata": {}, "outputs": [], "source": [ "stochast = Stochast()" ] }, { "cell_type": "markdown", "id": "87e8b3e9", "metadata": {}, "source": [ "Let's consider a random variable, which is uniformly distributed over the interval $[-1, 1]$. This is defined as follows:" ] }, { "cell_type": "code", "execution_count": 3, "id": "9b2e1ef1", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAGwCAYAAAAZn0mrAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAARl9JREFUeJzt3Qd4FNX+xvE3hRTSSSiBhCIoEHoRL4IiNtRrA0WxgoqChb8KehEQBUGKYteroiKgqKigVxQLV68oUiyAhSqdBIQUQippu/9nZiEQ2GDKJrPl+3mefTIzObv5ZQm7754z54yf3W63CwAAAG7H3+oCAAAA4BxBDQAAwE0R1AAAANwUQQ0AAMBNEdQAAADcFEENAADATRHUAAAA3FSgfExxcbHWrFmjhg0byt+fnAoAgCew2Wzat2+funTposBA34kvvvObHmaEtB49elhdBgAAqIIff/xRp59+unyFzwU1oyftyD90fHy81eUAAIAK2Lt3r9nRcuR93Ff4XFA7MtxphLSEhASrywEAAJXg72OnLfnWbwsAAOBBCGoAAABuiqAGAADgpghqAAAAboqgBgAA4KYIagAAAG6KoAYAAOCmCGoAAABuiqAGAADgpghqAAAAbsotLiE1d8UOvbp0m1JzCtQ2PlITL2+nzonRTtt+8PNuPfjhb2WOBQX6a/Pki2upWgAA4AnyfvpJ6W/M0qF161ScmqqEF19QxPnnn/Q+uat+1L7p01T45xYFxscrbvhwRQ/oL58Naot+3aPJn27Q5P7t1SUxWrN+2K6b31ilbx44R3HhwU7vExEcqK8f6FO67ye/WqwYAAB4Alt+voLbtFbUVQOUMuL//rZ9YXKydg8frphrr1WTJ59U7oqV2jt+vALr11f4Wb3lk0Ht9WXbNahHoq7pnmjuP35lB32zcb/e/3m37jqnlfM7+UkNIkJqt1CgBtntduUXlVhdBlBGaJ0A+eXlSWlp5TeKjZXCwx3b+fnS/v3lt42JkSIjHduHDkn79pXfNjpaiopybBcUSH/9VX5bo53R3lBUJO3ZU35b4+cbdRiKi6WUlPLbGr+X8fsZSkqk5OTy24aFSXFxjm2bTdq9u/y2detK9esf3d+5s/y2ISFSw4ZH93ftMl4wnLcNDpYaNTq6b9Rg1OJMUJAUH3903/jdjN/RmcBAqUmTo/vG82s8z84EBEgJCXIX4Wefbd4MJ/mXLpX53nsKSmiihg+NNveDW7ZU/upflDFnjm8GtcJim/5IOai7zmlZeszf30+9WsVp9c7Mcu+XV1iiXtO+kc1uV7vGUfrXRa11WsMIp20LCgrM2xHZ2dku/i2A6oe0q19ZoV92HrC6FKCM7s1i9EFcivyuuab8RrNmSbfc4tj+9lvpkkvKb/vCC9I99zi2V62Szjmn/LbTpkmjHW+W+v136fTTy2/7yCPSxImO7S1bpKSk8tuOGiXNmOHYNkJa8+bltx0+XHr5Zcf2gQMnb3vzzdKcOY5t4z3nZG2vukr68MOj+ydre9FF0uefH903frfcXOdtjUCydOnR/e7dyw/O3bpJP/98dP+ss6QdO5y3bdNG2rDh6P6FF0rr1jlv27TpyYOnC2RnZysrK6t0Pzg42Ly5Qt7atarbs2eZY2G9emvf1KmyiqVB7UBeoUps9hOGOOuHB2trqvM/xFPqh+uJqzqqTXyEsg8V67Xvtumqfy/XVyPPVnxU6Antp06dqolH/gMDbsjoSSOkwR39vPOACmOlYKNXpzxGD8oR/v6OHiBXtDV6cY7w87OmbZ06Zfdd1dbozapO2/J6vpy1Le+xjw82xn5NtK0BSccF8UcffVQTJkxwyWOXpKYpMPZwz+hhgXGxsuXkyHbokPxP9m/lrUOfldWtWYx5O3b//KeX6p1VuzTqwtYntB8zZoxGjhxZup+SknLCPzLgLn5++HzVDTrmzQyobXa7Aq6/Xg/nN9ZH7c5VyZX9HUOaFdGvX8XbGj04FW1r9P5UtK3R+1PRtkbvT0XbGsOaFW0bGlrxtobKtD3ZMPTxKtOztXFjxdv+8oustH79ejU5ZijWVb1p7srSoBZTN0gB/n5Kyzk6NGkwZn8avWoVUSfAX+0aR2pHep7T7x/fJXpsdyngboyQVjfI4z4/wZsYw2wLP9TEOsH6pmUPq6sBThAREaHII+c6ulhA/TgVp5cNw8Vp6fIPD7ekN83yddSMZTXaN4nS8i1HnxSbza7lW9LVtZnz5TmOZwydbvwrWw0ivDtRA0CNM05Sf+wxc/PtzpcoPaxir8OAt6jbubPyVqwscyx3+XKFdu7suwveDu3dQu/+tFsf/pKsLfuzNe7jP5RXWKyB3RyzQEfOX6vpXxztkn3uv3/qu82p2pWeZ05EuG/+WqUcyNeg0x3tAQBV9PXX0sqVsoeE6LUeA6yuBqg2W26uDm3YYN6OLL9hbBcdnhm8/6mntefIpBVjsvGgQWabfU8+qYJt25TxzjvK+uIL1Rs8WFaxfIzlsk6NlZFbqGeWbFZqdoHaNo7UnFt7qP7hHrKUzHz5GSd8HnYwv0hjFv5uto0MraMOTSK14M4zdWo5sz4BABXsTTs88ap46O1KDTt6LjDgqfL/WKddx4Ss/dOmm1+jrrxSjadNNRfBLdqzt/T7QQkJSnzlFe2bNk0H5r6lwEaNFD9pkmVLcxj87MbaAD4kOTlZiYmJ2r17txLcaK0X+C6jBznpkS/N7fWP9eMcNVjDWFqjb19z1l7+xs1q+8rv5mH+JuEukn30/dvyoU8AgBs4fG6abrtN9saNra4GwGF8TAIAGItROdbhOuZ8HQDWI6gBAKQ+fRw3Q2Gx1dUAOIyhTwDwZb51mjLgcQhqAODLrr3WMdxZmRXvAdQahj4BwFf99JP0wQeOa3DecYfjMkkA3Ao9agDgqyZNcny94QapZUurqwHgBEENAHzRmjXSokWSv780dqzV1QAoB0ENAHy5N23QIKl1a6urAVAOghoA+JrffpM++kgyLs83bpzV1QA4CYIaAPiaKVMcXwcOlJKSrK4GwEkw6xMAfM0TTzhmeA4bZnUlAP4GQQ0AfE3TptKLL1pdBYAKYOgTAHxFMZeGAjwNQQ0AfMXQodIVV0gbNlhdCYAKIqgBgC/YskV6+23pk0+k3FyrqwFQQQQ1APAFU6dKJSXSJZdI3btbXQ2ACiKoAYC3275dmjvXsT1+vNXVAKgEghoAeLtp0xwTCS68UPrHP6yuBkAlENQAwJvt2iW9+aZj+5FHrK4GQCUR1ADAmxnrpRUVSeeeK/XqZXU1ACqJBW8BwJtNnCglJkrdulldCYAqIKgBgDcLDZVGjLC6CgBVxNAnAHijvDzHchwAPBpBDQC8kbEMR4cO0pIlVlcCoBoY+gQAb7N/v/Tyy1J+vmSzWV0NgGqgRw0AvM3TTztCWo8ejrXTAHgsghoAeJO0NMeSHEfWTfPzs7oiANVAUAMAb/Lss46Lrnft6riuJwCPRlADAG9x4ID0/PNHJxPQmwZ4PIIaAHiL+fOl7GypY0fp8sutrgaACzDrEwC8xbBhUsuWUmCg5M/ncMAbENQAwFsYQ50XXGB1FQBciI9cAODpjMkDmZlWVwGgBhDUAMDTvfCC1KyZY5FbAF6FoAYAniwnR3rqKSkrSwoPt7oaAC5GUAMAT/bKK45Fbo1JBNddZ3U1AFyMoAYAniovT3ryScf2uHGO2Z4AvApBDQA81cyZjguwN28u3Xij1dUAqAEENQDwRMZF16dPd2yPHSvVqWN1RQBqAEENADzRsmVSaqqUmCgNHmx1NQBqCCc0AIAnMha23bRJ2rVLCgqyuhoANYSgBgCeypjpadwAeC2GPgHAkxQWShs2WF0FgFpCUAMATzJ3rtSunTRihNWVAKgFBDUA8BRFRdKUKZLdLp1yitXVAKgFBDUA8BTz5knbt0sNGkjDhlldDYBaQFADAE9QXOzoTTM88IBUt67VFQGoBQQ1APAE8+dLf/4pxcZKd95pdTUAaglBDQDcXUmJNHmyY3vUKCk83OqKANQSghoAuDujJ824CkFMjHT33VZXA6AWseAtALi7Nm2kHTuk336TIiOtrgZALaJHDQA8gTHceeaZVlcBoJYR1ADAXRnrpX31leMrAJ9EUAMAd/XJJ1K/flKfPoQ1wEcR1ADAHRnBbNIkx3bv3pKfn9UVAbAAQQ0A3NHnn0u//CKFhUkjR1pdDQBfDmpzV+xQr2nf6LSHP9cVL/2gtbszK3S/T37do+YPfabb5/5c4zUCQK32pj32mGP7rrukuDirKwI8Vsa8edpy7nna2LGTtl9zrfKN2dMnaz9njrZedLE2duqsP8/pq31Tp8pWUCCfDWqLft2jyZ9u0L3nn6rPRvRWUnyEbn5jldJyTv6k7M7I05TPNqhH83q1VisA1IolS6RVq6TQUMcCtwCqJGvxYu2fNl1xd9+tFgsXKKR1a+0aeruK09Odtj+46FPtf+pps/0pn32m+MmTlbX4c6U+/Yx8Nqi9vmy7BvVI1DXdE3Vqwwg9fmUHhQYF6P2fd5d7nxKbXffNX6v7LzhVifVOfr27goICZWVlld6ys7Nr4LcAABf2pk2c6NgePlxq2NDqigC3kp2dXeZ93XifL0/67DmKHjhQ0VcNUHCrVmo0cYL8Q0KUuWCh0/b5a9YotGtXRV12qYISmii8dy9F/vOfyv/9d/lkUCsstumPlIPq1epot76/v5+5v3pn+cOfz339p2LDgnTt6U3/9mdMnTpVUVFRpbekpCSX1Q8ALnfggJSXJwUHSw8+aHU1gNtJSkoq875uvM87Yy8s1KF16xR2Zs/SY37+/grr2VP5a9c6vU9oly7mfY4Mjxbu3q2c775T+NlnyyevTHAgr9DsHYsLDy5zvH54sLam5jq9z087MvT+T7u1+N6zKvQzxowZo5HHnIibkpJCWAPgvurVk1avltavl+Ljra4GcDvr169XkyZNSveDjQ81ThQfyDSvkxsQG1vmeEBcrAq2b3d6H6MnreTAAe244UZH73ZxsaIHXau44cNkFY+6hFROQbHun79WU6/qoHphQRW6j/EPeOw/otFNCgBuzViKo107q6sA3FJERIQia+hSarmrflTazJlq9Mh4hXbspMJdO7VvylSl/vvfqm9M7PG1oBZTN0gB/n4nTBxIzSkwe9WOtzM9V8kH8jV0ztFZnrbDi0C2HLtY34zqo2axYbVQOQDUgHfekS6/3HG5KADVEhgTLQUEqOS4iQMlaekKLGcmderzzyvq8ssVM3CguR/S+jTZ8/O195FHFTd8uDl06lNBLSjQX+2bRGn5ljT1a9fIPGaz2bV8S7puPrPZCe1b1g/Xl/eVHSee8dUm5RYU69HL2ik+KrTWagcAl/rhB+mGG6RGjaStW6W6J58oBeDk/IKCFNKunXJXrFTE+eebx+w2m3JXrlSM8X/NCSOU+fkft7i0f8Dhb9p9c+hzaO8WGvXBr+qQEK3OiVF6Y9kO5RUWa2C3RPP7I+evVcOoEI2+qI1C6gSodaOIMvePDKljfj3+OAB4lCNXIbj0UkIa4CKxQwZrz0NjFNK+vUI7dlDGnLmy5ecrekB/8/t7Ro9WYIOGajDKcS57eN++ypg9W8Ft2yq0UycV7txp9rKF9z1HfgGHA5uvBbXLOjVWRm6hnlmyWanZBWrbOFJzbu2h+hGOoc+UzHz5cekUAN7MWDPtyy/NYRqNGWN1NYDXiLzkEhVnHFDqC8+rJDXNDGBNX5tZOvRZtGevMRW0tH3cncPNc0RTn3texfv2KaBePUX0PUf177vPst/Bz273rSv9JicnKzExUbt371ZCQoLV5QBmD3LSI1+a2+sf66e6QZZ/fkJtM3rRPvtMGjJEevNNq6vhbxJuKdlH378tX/AWAHyacT1PI6QZJymPHWt1NQDcDEENANzh3LTrr5dOPdXqagC4GYIaAFiluNgxcSAwUBo3zupqALghghoAWMUIaMbaabt2SW3aWF0NADdEUAMAq3GpKADlIKgBgBVefVXassXqKgC4OeZcA0Bt27BBuvNOx7ppxsWhfWipAQCVQ48aANS2xx93XI7GWD+NkAbgJAhqAFCb/vxTevddx/b48VZXA8DNEdQAoDZNmSLZbI7etK5dra4GgJsjqAFAbdm2TXrrLcc2vWkAKoCgBgC1ZepUqaRE6tdP6tHD6moAeACCGgDUlubNpago6ZFHrK4EgIcgqAFAbTEuE5WSIp15ptWVAPAQBDUAqE1hYVZXAMCDENQAoKa98IL0xReOtdMAoBK4MgEA1KS9e6UHH5QKCqTly6WePa2uCIAHoUcNAGrSk086QlqvXtI//mF1NQA8DEENAGrKvn3SK684to2Znn5+VlcEwMMQ1ACgpjz1lJSfL51xhnTBBVZXA8ADEdQAoCakpkovveTYpjcNQBUR1ACgJjzzjJSXJ3XrJl18sdXVAPBQBDUAqAndu0tJSfSmAagWlucAgJowYIB05ZWENADVQlADgJriz6AFgOohqAGAK734olRSIt1xhxQaanU1ADwcQQ0AXCUrSxo/XsrMlJo0ka6+2uqKAHg4+uUBwJW9aUZIa9tW6t/f6moAeAGCGgC4Qna2Y4Fbw8MPSwEBVlcEwAsQ1ADAFV5+WcrIkE47Tbr2WqurAeAlCGoAUF25udKMGY7tcePoTQPgMgQ1AKiuV191XDLqlFOk66+3uhoAXoRZnwBQXeee61jc9rLLpEBeVgG4Dq8oAFBdnTtLH31kdRUAvBBDnwAAAG6KoAYAVfX669Jdd0m7dlldCQAvxdAnAFRFYaH02GPS7t1SUpJ0zz1WVwTAC9GjBgBVMWeOI6TFx0tDh1pdDQAvRVADgMoqKpKmTHFs/+tfUkiI1RUB8FIENQCorLfflnbskBo0kO64w+pqAHgxghoAVEZxsfT4447tBx+U6ta1uiIAXoygBgCV8e670tatUlycNHy41dUA8HLM+gSAyrjoIumhhxyTCMLDra4GgJcjqAFAZdSvL02danUVAHwEQ58AUBF2u9UVAPBBBDUAqIgPP3RcfP37762uBIAPIagBwN+x2aRJk6T//U/6+murqwHgQwhqAPB3/vMf6fffpYgI6d57ra4GgA8hqAHA352bZlzT0/B//yfFxFhdEQAfQlADgJP59FNp7VopLEy6/36rqwHgYwhqAFCR3rR77pFiY62uCICPIagBQHmWLJF+/tlxmaiRI62uBoAPYsFbAChP377Sm29K6emOC7ADQC0jqAFAeerUkYYMsboKAD6MoU8AcHZuWlGR1VUAAEENAE6wdKl06qnSrFlWVwLAx7nF0OfcFTv06tJtSs0pUNv4SE28vJ06J0Y7bfvFH3v10v+2akd6ropL7GoeF6bbz2qhAV0Tar1uAF7KmOm5c6e0erV0661WVwOgGjLmzVPGG7NUnJam4DZt1OjhcQrt2LHc9iVZWUp99lllLVkiW+ZB1WncWA3HjlF4nz7yyaC26Nc9mvzpBk3u315dEqM164ftuvmNVfrmgXMUFx58Qvuo0CDd3beVWjUIU50Af329Yb8e/PA3xYYHq89p9S35HQB4kWXLHJeKMs5PGz3a6moAVEPW4sXaP226Gk2YoNBOHZUxZ652Db1dLT9frEAny+3YCwu169bbFBBbTwnPPafABg1VtCdFAZGRsorlQe31Zds1qEeirumeaO4/fmUHfbNxv97/ebfuOqfVCe17tiz7xN7au4UWrE7WzzsynAa1goIC83ZEdnZ2jfweALyEcU1Pg9GTluh4XQLgPrKzs5WVlVW6HxwcbN6cSZ89R9EDByr6qgHmfqOJE5SzdKkyFyxU3B23n9A+c+FClRw8qObvviM/48OapKCEJvLZc9QKi236I+WgerWKO1qQv5+5v3pn5t/e326364ctadqWmqseLeo5bTN16lRFRUWV3pKSklz6OwDwIitXSl99JQUGSg89ZHU1AJww3sePfV833uedMXrHDq1bp7Aze5Ye8/P3V1jPnso3rjbiRPY33yi0c2f99dgkbe7VW9suu0xpr7wqe0mJfLJH7UBeoUps9hOGOOuHB2tram6598s6VKR/TPnaDHpGsJt8RXuddarzYc8xY8Zo5DELVaakpBDWAJy8N23wYKl5c6urAeDE+vXr1aTJ0V6u8nrTig9kSiUlCjhuiDMgLlYF27c7vU/R7mTlrVylyMsuVeKrr6po1079NfEx2YuLVf+eu+WTQ59VER4UqMX/d5ZyC4u1fEu6Jn22Xon16p4wLOqsS/TY7lIAKLVxo7R4sRQQYHzCs7oaAOWIiIhQZE2dM2azmcEu/rHH5BcQoND27VS0b7/SZ73hm0Etpm6QAvz9lJZz9BwygzH70+hVK4/Ri2bM9jS0axylLftz9O9vtzgNagBQIW3aSMuXS6tWSS1bWl0NgGoKjIk2P3iVGFcWOUZJWroC4+Kc36d+falOoBnSjghueYpKUtPMoVS/oCD51DlqQYH+at8kSsu3pJUes9nsZi9Z12bOl+dwxma3m8OgAFAtPXtK991ndRUAXMAvKEgh7dopd8XK0mN2m025K1ea56E5E9q1q4p27jLbHVG4Y4cZ4KwIaW6x4O3Q3i307k+79eEvydqyP1vjPv5DeYXFGtjNMdtq5Py1mv7FxtL2L/1vi77/M1W70vPM9q99t00frUlR/y7WzsoA4ME4JQLwSrFDBivzgw+U+dHHKti6VX9NmChbfr6iB/Q3v79n9Gjtf+rp0vYx1w0yZ33ue3yKeR5b9rffKu3VmYq54XrLfgfLz1G7rFNjZeQW6pklm5WaXaC2jSM159Yeqh/hGPpMycyXn59fafv8whKN//gP7T14SCF1AtSyfpieubaz+TgAUGm//eboSRs+XJoxQzrm9QaAZ4u85BIVZxxQ6gvPm8OXwW3bqulrM0uHPov27DWmgpa2rxMfr8TXX9O+adOUecWVCmzYUPVuukmxtw/13aBmGHxmc/PmzPxhR6fVGh7o19q8AYBLPP64lJcn7d5NSAO8UL0bbzBvzjR7a+4Jx+p26aIW8+fLXVg+9AkAllm/XvrgA8f2+PFWVwMAJyCoAfDt3jS7XRowQOrQwepqAOAEBDUAvmnTJum99xzb9KYBcFMENQC+acoUc3FLXX65VM5UfQCwGkENgO85cEBasMCxTW8aADfmFrM+AaBWxcRImzdLixZJ3btbXQ0AlIseNQC+qXFjadgwq6sAgOr3qP3z+e9VGcZSRK/ffLoaRYVU6n4AUOOM9dISHVc+AQCvCGrr92bp9rNOUd2goxcpLY8x0/3lpVu59iYA97Nrl9SqlXTeeY5z1OrWtboiAB5u39Rplb5P3J3DFRAd7dpz1O44+xTFhTsu6/R3Xv9+W0UfFgBqz/TpUlGRVFBASAPgEhlz55oXeferU6dC7fNWr1bMjTe4Nqh9/6++ig2r+FXjl4zso4aRDHsCcCMpKdLrrzu2H3nE6moAeJGEF19QYGxshdpu6tqtUo9doaCWEFO5T56No0Mr1R4AatwTT0iFhdJZZ0l9+lhdDQAvET9livwjIircvtHEiRUOddWe9dnvme+0JzO/Og8BADVv715p5syjvWlcfB2Ai0T3v1L+QRUfdYy67FL5V+LUi2oFteQDeSousVfnIQCg5s2YIR06JPXs6ZhIAAA1bO/EiSo2FteuJtZRA+DdioulTz91bNObBqCWZH2ySLacHGuvTHB6i3oKqUPWA+DGAgOl336TPv5Y6tfP6moA+Aq7a0YcqxXUZt/SwyVFAECNCg6Wrr3W6ioAoNIq1B22ZP0+FZVUfAHb/23cr0NFJZWvBgBc6ddfHUOfAFDLWq/+RUEuuApKhYLasLd+VlZ+UYUfdMS7a7Q/q6A6dQFA9Rgn8RpLcbRtKyUnW10NAC9VUsnz0Epycl0/9GmMsj7wwa8KCqzY+WgFxfSmAbDYc89J2dlSixaOC7ADQA3Y3OMMnfr9dxVeG21Lnz5q8fFHFe5tq1BQu6prgirjis5NFB5SrdPfAKDqDh6Unn3WsT1+vOTPpCcANcRuV+YHH1Z4bTR7JU/HqFCamjGwU6UeFAAs9cILjrCWlCQNGGB1NQC8WJ34eGV+8EGF2wfGxcnPmI1e0fZVrAsA3JMx3Pn0045tetMA1LBW33xdo4/PKxgA7/LSS46JBK1bSwMHWl0NAFQLQQ2Ad/nxR8fXceOkgACrqwGAamHoE4B3WbBAWrbMcV1PAPCFHrVOE79SRm6huf3gB78qp4AFJAG4KeNansb6aZU4WRcAPDqoGVclyDnkCGcLViergKsOAHA3y5dL6elWVwHAxySPGFG66G3mxx/LVujo2HKVCn3k7No0Rne89bPaN4kyF7+dsGi9QspZ/PZJlvIAUNsOHZKuvtox4/Obb6TTT7e6IgA+IvvbpWqYl6eA8HDtHTtO4WedJf8KLn7rsqD2zLWd9cay7dqVkSs/o6hDRSoIYB4CADfxxhvS3r2SsdJ3Jz4sAqg9wS1aKPXpZ1T3jDPMxW+zPv9C/uFhTttGX3llzQS1+hHBeujiNuZ27+nf6JlrOismLKjSPwwAXK6gQJo2zbE9ZowUxGsTgNrTaMIE7Zs+TTlLl5rnyKYal68zzpU9np9fzQW1Yy0bfW6lfwgA1JjZsx0XXW/SRLr1VqurAeBj6nbtohbz55vbG9omqeUXn1f4up8uC2pv/rC9wg94S68W1akHACrOOGl3yhTH9ujRUnCw1RUB8GGt/rtEAfXqufQxKxTUjPPTjmUs1ZFfVKLIkDrmftahIoXWCVBseBBBDUDteestadcuqVEjaehQq6sB4IMObdpUZr9k8+Zy24YYV0ypiaB27HDnf9am6K0VOzX96o5qWT/cPLY1NUdjFvyu689oWukCAKDKjCFPY720f/1LCg21uhoAPmj7lf0d56TZ7c7PTTtG2/Xrav4ctae+2qx/39C1NKQZjO3xlybpznm/6MouTSpdBABUyaOPSkOGSPXrW10JAB8e7jzi0IYN2vfEk4q99VaFdulsHstfs1YZb76pBg8+oKqodFDbn31IJTZjNbWySux2peUUVKkIAKiyZs2srgCAD6tjTGQ6LPm++9Vo3FiF9+lTZrizTnwjpT73vCLOP7/Sj1/pxdB6tYzT2I9+1x8pB0uP/Z58UA9//Lt6t4qrdAEAUGnffSf99pvVVQBAGQWbN6tOQsKJYS4hQQVbt6oqKh3Unri6o7mu2mUvLtNp4z43b1e8tExx4cGadlXHKhUBABVWUiING+ZY2Pb9962uBgBKBbU8RekzZ8p+zGWkjG3jmPG9Whn6jA0P1uxbemhbao627M+Rn5+fWtYP0ynHnLMGADXmww+ljRul6GjpoousrgYASsVPmKDdd96lP8/pq+DWp5nHCjZtNicZJL78b9VKUDvCCGYt4hyXSDDCGgDUOJtNmjTJsX3//VJkpNUVAUCp0I4d1WrJVzq46FMVbttmHou8+GJFXXqp/OvWVa0Ftfk/7TLXVtuRlmfuN4+rq1t7tdCgHizPAaAGffSRtG6dI6D93/9ZXQ0AnMAIZDHXXiNXqXRQe/qrTXp92XYNPrO5ujaNMY+t3nVAkz5drz2Z+Rp5YeUXcwOAv2WsUXSkN+3eex1DnwDgRtJenanAuFhFX3VVmeOZCxaoOCNDcbffXvOTCd5etUtTB3TQ6Iva6IKkhubN2J4yoIPeWrmz0gUAQIUsWiT9+qsUHi7dd5/V1QDACTLnz1dQixMnDQS3aqXM9xzXA63xHrWiEps6Jpz4SbZDkygVO1lfDQBcIjdXatjQceF1F19LDwBcoTgtTYENTlyA27j+Z3FqapUes9I9agO6NNHbTnrO3v1xl67szFUJANSQ666Ttm+XxoyxuhIAcCowvpHyV68+4bhxLLBBA9XaZIL3f9qt7/9MVZdExzlqa3dnmuenDejaxDxX7QjjslIA4DJczxOAG4sZOFD7pkyVvahYYf84wzyWu3Kl9j85Q/VuuaV2gtqmfdlq18QxJX5nRq6jsLA65s343hF+YskOAC7www/S3r3SgAGSf6UHAQCg1tS77TaVZGbqr8cek72oyDzmFxys2KG3KW7YHbUT1N67o2eVfhAAVGmm54MPSitWSJMnS+PGWV0RAJTLWFe2wQMPKO7OO1WwbZsZ0oKaN5d/UJCqqsoL3gJAjfvmG0dICw6WqjhsAAC1zT8sTKEdOrjmsVzyKABQE46sm2asPdS4sdXVAECtI6gBcE9LlzpuxpDB6NFWVwMAliCoAXDv3jRj3bSEBKurAQBLENQAuOdMz6+/lgIDpYcesroaALAMkwkAuB9jGY4ePaSOHaVmzayuBgAsQ1AD4H569pRWrpQOHbK6EgCwlFsEtbkrdujVpduUmlOgtvGRmnh5O3VOPPF6okcuVbVwdbI2/eVYXLdDQpQe7Nem3PYAPJSfH1ciAFBtGfPmKeONWeZ1OIPbtFGjh8cp1Oit/xsHP/tMe0Y9oPDzzlPiSy/KZ89RW/TrHk3+dIPuPf9UfTait5LiI3TzG6uUllPgtP3Kbem6vFNjvXvHP7Twrl6KjwrVTW+s0l8H+eQNeLw1axwL2x48aHUlALxA1uLF2j9tuuLuvlstFi5QSOvW2jX0dhWnp5/0foXJKdr/xJMK7d5NVrM8qL2+bLsG9UjUNd0TdWrDCD1+ZQeFBgXo/Z93O23/3KAuuqlnc7VrHKVWDcI1/aqO5uLlP2xJq/XaAbjYY49J48dLDzxgdSUAvED67DmKHjhQ0VcNUHCrVmo0cYL8Q0KUuWBhufexl5Roz4MPqv6IexSUkCifDmqFxTb9kXJQvVrFHS3I38/cX70zs0KPkV9UoqISm6Lr1nH6/YKCAmVlZZXesrOPXo8UgBv59Vfp448dQ56jRlldDQA3lZ2dXeZ93Xifd8ZeWKhD69Yp7Myjl7708/dXWM+eyl+7ttzHT3vp3wqIrafoq6+WO7A0qB3IK1SJza648OAyx+uHB5vnq1XEtM83qGFkSJmwd6ypU6cqKiqq9JaUlOSS2gG4mDHkabj2WqlNG6urAeCmkpKSyryvG+/zzhQfyJRKShQQG1vmeEBcrHm+mjN5v/yizAULFH9kHUc34BaTCarq399u0aJf9+q9O/6hkDoBTtuMGTNGI0eOLN1PSUkhrAHu5o8/pA8/dGw//LDV1QBwY+vXr1eTJk1K94ONawG7QElOrvb8a7TiJz2mwJgYuQtLg1pM3SAF+PudMHHA6E0zetVOZuZ3W/Xyt1s1b+gZ5kzR8hj/gMf+IxrdpADczOOPO74aQw3t2lldDQA3FhERocjI8t/3jwiMiZYCAlRy3MSBkrR0BcadOApXtHuXilJStPvOu44etNnMLxvatVfLzxcrqGlT+VRQCwr0V/smUVq+JU392jUyj9lsdi3fkq6bzyx/kctXlm7VS99s0ZzbeqhjAstyAB5t40Zp/nzHNr1pAFzELyhIIe3aKXfFSkWcf755zG6zKXflSsXccMMJ7YNOOUUtPvlPmWOpzz0vW26uGo4dozqNHDnF54Y+h/ZuoVEf/KoOCdHqnBilN5btUF5hsQZ2c8y0GDl/rRpGhWj0RY5zVoxetGeWbNZzgzorISZU+7Mdy3KEBQUqLNjyXwdAZRlrpd14o5SXJ3XqZHU1ALxI7JDB2vPQGIW0b6/Qjh2UMWeubPn5ih7Q3/z+ntGjFdigoRqMGin/4GCFnHZamfsHRESYX48/XpssTzaXdWqsjNxCM3ylZheobeNIzbm1h+pHOIYrUzLz5WfMAjvs7ZU7VVhi053zVpd5nHvPO1X3X2DdEwmgioxLRM2dWzrEAACuEnnJJSrOOKDUF55XSWqagtu2VdPXZpYOfRbt2WtMBZU787PbjVXIfEdycrISExO1e/duJSQkWF0OYPYgJz3ypbm9/rF+qhtk+ecn+Dj+JuGOkn30/du9YyQA77Vtm3TTTdKGDVZXAgBui49JAKxhrH309tuSsZ7R559bXQ0AuCV61ADUvp07pdmzHdvGJaMAAE4R1ADUvmnTpOJi6bzzpDPPtLoaAHBbBDUAtSs5WZo1y7H9yCNWVwMAbo2gBqB2PfGEVFgo9ekjnX221dUAgFsjqAGoPXv3SjNnOrbpTQOAv8WsTwC1JzzcEdBWrZL69rW6GgBwewQ1ALXHuBzL2LFWVwEAHoOhTwAAADdFUANQ81JTpXPOkRYtknzrqnUAUC0MfQKoeU8/LS1dKmVnS5deanU1AOAx6FEDULMyMqQXX3RsGxMJ/PysrggAPAZBDUDNevZZKSdH6tRJuvxyq6sBAI9CUANQczIzpeeeO3pNT3rTAKBSCGoAas7zz0tZWVK7dlL//lZXAwAeh6AGoGYYAe2ZZ472pvnzcgMAlcUrJ4CauwrB669LAwdKV19tdTUA4JFYngNAzTB60K66ynEDAFQJPWoAXI9FbQHAJQhqAFwrL8+xFMeTT0oFBVZXAwAejaAGwLVefVX6/XfplVeYQAAA1cSrKADXyc+XnnjCsT12rFSnjtUVAYBHI6gBcB1jludff0nNmkk33WR1NQDg8QhqAFzj0CFp2jTH9pgxUlCQ1RUBgMcjqAFwjVmzpD17pIQEacgQq6sBAK9AUANQfSUl0vTpju2HHpKCg62uCAC8AkENQPUFBEiffirdfrt0221WVwMAXoMrEwBwjQ4dpJkzra4CALwKPWoAqqew0OoKAMBrEdQAVF1xsdS5szR0qJSWZnU1AOB1CGoAqu7dd6UNG6T//EcKDbW6GgDwOgQ1AFWf6Tl5smP7gQeksDCrKwIAr0NQA1A1H3wgbd4s1asn3XWX1dUAgFciqAGoPJtNmjTJsX3//VJEhNUVAYBXIqgBqLyFC6X166WoKGnECKurAQCvRVADUHnPPuv4et99jrAGAKgRLHgLoPI++UR6/nnp3nutrgQAvBpBDUDlGRMIJkywugoA8HoMfQKouMxMyW63ugoA8BkENQAVYwS0Cy+Uzj7bscgtAKDGMfQJoGK+/FL66SfHFQhiY62uBgB8Aj1qACrWmzZxomP7zjulBg2srggAfAJBDcDf+/praeVKKSTEcbkoAECtIKgBqHhv2h13SPHxVlcEAD6DoAbg5JYulZYtk4KCpH/9y+pqAMCnENQAnNzs2Y6vQ4dKTZpYXQ0A+BRmfQI4uTfecCzL0bu31ZUAgM8hqAE4uYAA6frrra4CAHwSQ58AnNuzRyoosLoKAPBpBDUAzhnnpLVs6ViaAwBgCYY+AZzIuALB5587hj2bN7e6GgDwWfSoATjRpEmOrzfc4OhVAwBYgqAGoKw1a6RFiyR/f2nsWKurAQCfRlADUNbkyY6vgwZJrVtbXQ0A+DSCGoCjfv9dWrhQ8vOTxo2zuhoA8HmWTyaYu2KHXl26Tak5BWobH6mJl7dT58Rop20378vW019t1u8pB5WSma/xlybptt4tar1mwGstXuz4OnCglJRkdTUAUG0Z8+Yp441ZKk5LU3CbNmr08DiFduzotO2B99/Xwf98ooI//zT3Q9olqcH995fb3ut71Bb9ukeTP92ge88/VZ+N6K2k+Ajd/MYqpeU4X7spv7BETWPravTFbVQ/IrjW6wW83ujRjhmfR4Y/AcCDZS1erP3Tpivu7rvVYuEChbRurV1Db1dxerrT9nk//qTIf16iZnNmq/l776pOo3jtum2oivbtk08GtdeXbdegHom6pnuiTm0Yocev7KDQoAC9//Nup+07JUZr7CVtdXmnxgoKYNQWqBHdu0unnmp1FQBQbemz5yh64EBFXzVAwa1aqdHECfIPCVHmgoVO2zeZ8aTqXX+9Qtq2VfAppyh+8iTJZlPuihWyimVpp7DYpj9SDqpXq7ijxfj7mfurd2a67OcUFBQoKyur9Jadne2yxwa8RnKylJJidRUA8Leys7PLvK8b7/PO2AsLdWjdOoWd2bP0mJ+/v8J69lT+2rUV+lm2/EOyFxcrICpKPhfUDuQVqsRmV1x42SHM+uHB5vlqrjJ16lRFRUWV3pI47wY4kTFxwFgv7bXXrK4EAE4qKSmpzPu68T7vTPGBTKmkRAGxsWWOB8TFmuerVcT+p2YosEEDhZ15pnx2MkFNGzNmjEaOHFm6n5KSQlgDjrV1qzRvnvmCpi5drK4GAE5q/fr1atKkSel+cHDNnLOeNvM1ZS3+XM3mzpF/Df0Mtw5qMXWDFODvd8LEAaM3zehVcxXjH/DYf0SjmxTAMYxPo0ZIu/hix/lpAODGIiIiFBkZ+bftAmOizcvglRw3caAkLV2BcUdPu3Im/Y1ZSn/tNTWdNcucgGAly4Y+gwL91b5JlJZvOdr9aLPZtXxLuro2c748BwAX27FDmjPHsT1+vNXVAIDL+AUFKaRdO+WuWFl6zG5MDFi5UqGdO5d7v/TXX1fayy+r6WszFdqhvaxm6dDn0N4tNOqDX9UhIVqdE6P0xrIdyiss1sBuieb3R85fq4ZRIRp9UZvSCQh/7ndMBigqsWlf1iGt23NQYUGBah4XZuWvAnimadOk4mLpgguknkdPuAUAbxA7ZLD2PDRGIe3bK7RjB2XMmStbfr6iB/Q3v79n9GgFNmioBqMcp0ilvfaa0p5/QY1nzFCdJk1UnJpqHvevW1f+YWG+F9Qu69RYGbmFembJZqVmF6ht40jNubVH6RppxqK2fsYK6YcZweyfzy8r3Z/53TbzdkaLepo/jDcZoFJ275ZmzXJsP/KI1dUAgMtFXnKJijMOKPWF51WSmqbgtm3NnrIjQ59Fe/YaU0FL22e++57sRUVKuffeMo9jrMNWf8Q98snJBIPPbG7enDk+fCXWq6sd0/5ZS5UBXs5Y2DYwUOrd23EDAC9U78YbzJszzd6aW2a/1Tdfy91YHtQAWGTAAMc5apmuW7cQAOBaBDXAlzVo4LgBANwS12ECfI1xzbrly62uAgBQAQQ1wNc8+aTUq5c0apTVlQAA/gZBDfAl+/dLL7/s2DaW5AAAuDWCGuBLnn5aysuTTj9d6tfP6moAAH+DoAb4CuMixC++eHTdtGPWKAQAuCeCGuArnn1Wys11XHj9n6xHCACegKAG+IIDB6Tnn3ds05sGAB6DddQAX7B1qxQbK7VoIV1+udXVAAAqiKAG+ILu3aXNm6XkZMmfjnQA8BS8YgO+ok4dR48aAMBjENQAb5adLc2eLRUVWV0JAKAKCGqAN3vpJemWW6RLL7W6EgBAFRDUAG+VkyM99ZRj+8Ybra4GAFAFBDXAW73yimOR25Ytpeuus7oaAEAVENQAb2RcJmrGDMf2uHFSIBO8AcATEdQAb/Taa9K+fVLz5gx7AoAHI6gB3ubQIWn6dMf22LGOZTkAAB6J8RDA2xjnpSUlOYY7Bw+2uhoAQDUQ1ABvk5Ag/fe/jsAWFGR1NQCAamDoE/BWcXFWVwAAqCaCGuAtCgulSZOk/futrgQA4CIENcBbzJ0rPfKI1LOnZLNZXQ0AwAUIaoA3MK7lOWWKY/vuuyV//msDgDfg1RzwBu+8I23fLtWvLw0bZnU1AAAXIagBnq64WHr8ccf2Aw9IYWFWVwQAcBGCGuDp5s+X/vxTio2V7rrL6moAAC5EUAM8WUmJNHmyY3vkSCk83OqKAAAuxIK3gCfLz5fOPVfKzJTuucfqagAALkaPGuDJjB60l15yTCSIjLS6GgCAixHUAG8QEmJ1BQCAGkBQAzyR3S7df7/0yy9WVwIAqEEENcATLVokPfus1LevlJNjdTUAgBpCUAM8sTftsccc28YEAmZ6AoDXIqgBnubzzx1DnsbCtsaSHAAAr0VQAzy1N81Y3DYuzuqKAAA1iKAGeJL//ldatUoKDZVGjbK6GgBADSOoAZ7UmzZxomN7+HCpYUOrKwIA1DCuTAB4UlC79lrpr7+kBx+0uhoAQC2gRw3wFP7+0ogR0ubNUny81dUAAGoBQQ3wxMAGAPAJvOIDnuDOO6V33pFKSqyuBABQiwhqgLv74QfplVekwYOl5GSrqwEA1CKCGuDuJk1yfB0yRGrWzOpqAAC1iKAGuLMff5S+/FIKCJDGjLG6GgBALSOoAZ7Qm3bTTdIpp1hdDQCglhHUAHe1erX06aeOWZ5jx1pdDQDAAgQ1wN170667Tjr1VKurAQBYgCsTAO7KuOh6RoY0bpzVlQAALEJQA9zVBRc4bgAAn8XQJwAAgJsiqAHueBWCRx+VDhywuhIAgMUY+gTciN/GjdKrr0p2u9S/vxQTY3VJAAAL0aMGuJE606c6QtoVV0idO1tdDgDAYgQ1wE00z0hRwHvvOXbGj7e6HACAG3CLoc+5K3bo1aXblJpToLbxkZp4eTt1Towut/1nv+3VU0s2KflAvlrEhumhi9uob5sGtVoz4Gp3r/hAfjab9M9/St26WV0OAHiFjHnzlPHGLBWnpSm4TRs1enicQjt2LLd91hdfKPW551WUkqKgZs3U4IFRCu/TRz7bo7bo1z2a/OkG3Xv+qfpsRG8lxUfo5jdWKS2nwGn7X3Zm6P/eW6Nruydq8f/11oXtGuqOt37Wpr+ya712wFUSM/9S/3XfOHboTQMAl8havFj7p01X3N13q8XCBQpp3Vq7ht6u4vR0p+3zVq9RyqgHFH31VWrx0UKFn3+edt8zQoc2b5bP9qi9vmy7BvVI1DXdE839x6/soG827tf7P+/WXee0OqH9rB92qM9p9TWsT0tzf9SFrfX9n2mas2KHpvTvIKvY7Xbl5+bLb8+e8ttERR09ObyoSH7Jycc+QNm2kZFSXJxjp7hYfjt3lv+4ERFSg8M9ijab/LZuLb9teLgUH1/6M/1O9scXFiZ7QkLZE92Pq7NU3bqyN2t2tO2mTZKtxOnvppBQ2Y+5bqXZtrjI+eMGBct+zKr8ZttC5yFedYJkb9OmbNtD+c7bBgbK3q790bbG85Cb47ytv7/snY6eL+b3559SdtbR/eN+P1u37ke/t2WL/DLLn71p69pNecV23bXifQXabSq54EIFnHFGue2B2pZXePj/MVBJoXUC5OfnZ2kN6bPnKHrgQEVfNcDcbzRxgnKWLlXmgoWKu+P2E9pnvDVX4b17K/a228z9Bvfeq9zly3Vg3juKnzhBPhfUCott+iPloO46xxG6DP7+furVKk6rd2Y6vc+anQd021llL0599mn19dW6v5y2LygoMG9HZGfXTM9bflGJ+t/7pr6cdU+5bV4+42pNP2eIud30wF59N/PEP5IjZne9VBMuGG5u1885oJ9euqnctvM7XKDRl9xrbocV5Gnds9eU23ZRm7M04orR5ra/rUTbnryi3Lb/bXm6hl79aOn+phn9FVziPFD90Kyjbhg0pXR/zXPXKeaQ8+d6TXxr9b/5qdL95f8eosbZaU7bboxrpotue6l0/+vXhqtlxjEB9xg7oxupz7DXj/6us+9Vh33OQ2tqWLROv+ft0v335/1LPZLXO22bExSq9vd/ULo/5/1H1Gf7aqdtS/z81fJfn5Tuv/zRFF28ebnK03rUQhUEBqnpPwbKeDm7ctw4BZTbGqh93Sf/1+oS4KHWP9ZPdYNcHzOys7OVlXX0w3JwcLB5O569sFCH1q0rE8j8/P0V1rOn8teudfrY+Wt/VeyQwWWOhffqreyvv5ZVLA1qB/IKVWKzKy687BNcPzxYW1Nznd7HOI8tLjzouPZB5Q6VTp06VRMnTlRtMPpV8gPL/i72Yz5MFPkffQu2+fkpt05IuY9VFBBY5jGyg0LLbWu80R8rKzis3Lb5dcrWd/C4tvZjPv3kHfczD4aEq05JsdO2OUF1y7TNDA03f0dnskLK/swDoZFlHrfMzwyNKLOfERqpiDDnS1ZkhEad8Lj7wuuVOXak7yujbtm2xv7e8NiybQ/Xn3/cv1N63SilRNR3WsOxz4njcSOVHFn++ZN2M55Ju2Li9eHwR3Xt2T3LbQvUZk9I92Yx+nkna/nB/SQlJZXZf/TRRzVhwom9XcUHMqWSEgXEln1tD4iLVcH27U4f2ziPLSA27oT2xnGfHfqsaWPGjNHIkSNL91NSUk74R3bVC9vHLw+T/eVh5bYZevhW6vmyqf1YNxy+lXpqULltrz58KzW9f7ltLz18KzXZec+l4XzjE9GxBx7bX27bs05ou6vctqef0HZTuW07nNC2X7ltW1eibWQl2kZXoq0q2Xatmw0TAAbj7/CD4T3NkQKgqozXtJqwfv16NWnSpHTfWW+aN7E0qMXUDVKAv98JvWFGr5nRq+aMcTwtp/C49oUn9MqV1yV6bHepq1/YaqKLFwCswGsa3FVERIQijfO4/0ZgTLQUEKCS4yYOlKSlK/DIOeDH3ycuTiXpaRVu7/WzPoMC/dW+SZSWbzn6pNhsdi3fkq6uzZwvz9GlWUyZ9oZlf6aqazNWcAcAAA5+QUEKaddOuStWHj4i2W025a5cqdByFhQP7dypTHuDMZmgvPY+sTzH0N4t9O5Pu/XhL8nasj9b4z7+Q3mFxRrYzTELdOT8tZr+xcbS9rf2aq6lm1P12nfbtGV/jp5Zslm/pxzU4J7NLfwtAACAu4kdMliZH3ygzI8+VsHWrfprwkTZ8vMVPcBxitCe0aO1/6mnS9vXu+lm5SxbpvRZb6pg2zalvvCi8tetU8wN11v2O1jer31Zp8bKyC00A1dqdoHaNo7UnFt7qH6EY7gyJTO/zHk73ZrV03ODuuiprzbpyS83qXlcXc28qbtaNyp70jkAAPBtkZdcouKMA0p94XmVpKYpuG1bNX1tZulQZtGevcZU0NL2dbt2UZMZTyr12eeU+swzCmreTIkvvqCQ006z7HfwsxsLgPmQ5ORkJSYmavfu3Uo4Zo0wAADgvpJ99P3b8qFPAAAAOEdQAwAAcFMENQAAADdFUAMAAHBTBDUAAAA3RVADAABwUwQ1AAAAN0VQAwAAcFMENQAAADdl+SWkapvNZjO/7t271+pSAABABe09/L595H3cV/hcUNu3b5/5tUePHlaXAgAAqvA+3rRpU/kKn7vWZ3Fxsb7//nude+65Wr9+vSIiuJh7VWVnZyspKYnn0QV4Ll2H59I1eB5dh+fSNWw2mxnSunTposBA3+ln8rmgZsjKylJUVJQOHjyoyMhIq8vxWDyPrsNz6To8l67B8+g6PJeoDiYTAAAAuCmCGgAAgJvyyaAWHBysRx991PyKquN5dB2eS9fhuXQNnkfX4blEdfjkOWoAAACewCd71AAAADwBQQ0AAMBNEdQAAADcFEENAADATfl8ULv88svNS1GEhIQoPj5eN910k/bs2WN1WR5lx44duu2229SiRQuFhoaqZcuW5gynwsJCq0vzSI8//rjOPPNM1a1bV9HR0VaX41FeeuklNW/e3Pz/fMYZZ+jHH3+0uiSP89133+myyy5T48aN5efnp48//tjqkjzS1KlTdfrpp5tXImjQoIGuvPJKbdq0yeqy4IF8Pqj17dtX77//vvkfaMGCBdq6dauuvvpqq8vyKBs3bjQv7fHqq69q3bp1euaZZ/TKK69o7NixVpfmkYyAO3DgQN15551Wl+JR5s+fr5EjR5ofElavXq1OnTqpX79+2r9/v9WleZTc3FzzuTNCL6pu6dKluvvuu7Vy5UotWbJERUVFuvDCC83nF6gMluc4zieffGJ+8ikoKFCdOnWsLsdjPfnkk3r55Ze1bds2q0vxWLNnz9Z9992nzMxMq0vxCEYPmtGD8eKLL5r7xoeHxMREjRgxQg899JDV5Xkko0fto48+Ml8TUT2pqalmz5oR4M4++2yry4EH8fketWNlZGRo3rx55rATIa16jGva1atXz+oy4EO9kL/88ovOP//80mP+/v7m/ooVKyytDTjymmjgdRGVRVCTNHr0aIWFhSk2Nla7du3Sf/7zH6tL8mhbtmzRCy+8oGHDhlldCnxEWlqaSkpK1LBhwzLHjf2//vrLsrqAI727Ru94r1691L59e6vLgYfxyqBmDHMYXfYnuxnnVR3x4IMPas2aNfrqq68UEBCgm2++WYwIV/55NKSkpOiiiy4yz7G6/fbbLavdG55LAN7BOFftjz/+0HvvvWd1KfBAgfJCo0aN0pAhQ07a5pRTTindjouLM2+nnXaa2rZta57XYpwA2rNnT/myyj6PxmxZY3KGMXQ8c+bMWqjQe59LVI7x/9f4kLVv374yx439Ro0aWVYXcM899+jTTz81Z9MmJCRYXQ48kFcGtfr165u3qnZRG4zJBL6uMs+j0ZNmhLRu3brpzTffNM8Pgmv+JvH3goKCzL+9r7/+uvTEd+P/srFvvFECtc0YlTEmshiTMb799ltz+SKgKrwyqFXUqlWr9NNPP6l3796KiYkxl+YYP368uQ6Yr/emVYYR0s455xw1a9ZMM2bMMGc3HUFvRuUZ50kaE1uMr8Z5V2vXrjWPt2rVSuHh4VaX57aMpTkGDx6s7t27q0ePHnr22WfNpRBuueUWq0vzKDk5OeZ5pkds377d/Bs0ToI31pxExYc733nnHfOcZ2MttSPnSkZFRZnrTQIVZvdhv/32m71v3772evXq2YODg+3Nmze3Dx8+3J6cnGx1aR7lzTffNE7oc3pD5Q0ePNjpc/m///3P6tLc3gsvvGBv2rSpPSgoyN6jRw/7ypUrrS7J4xh/Z87+/oy/S1Rcea+JxuslUBmsowYAAOCmOJEIAADATRHUAAAA3BRBDQAAwE0R1AAAANwUQQ0AAMBNEdQAAADcFEENAADATRHUAAAA3BRBDYDbat68uXkpqJo0e/Zs+fn5mbf77ruvwvebMGFC6f1qukYAvougBsDnRUZGau/evZo0aVKF7/PAAw+Y90lISKjR2gD4Np++KDsAGIxesUaNGlXqPuHh4eYtICCgxuoCAHrUALjczJkz1bhxY9lstjLHr7jiCt16663m9tatW839hg0bmoHn9NNP13//+99yH3PHjh1moFq7dm3psczMTPPYt99+W3rsjz/+0MUXX2w+pvHYN910k9LS0ipV/8aNG1W3bl298847pcfef/99hYaGav369ZV6LACoDoIaAJcbOHCg0tPT9b///a/0WEZGhr744gvdcMMN5n5OTo4uueQSff3111qzZo0uuugiXXbZZdq1a1eVf64R3M4991x16dJFP//8s/nz9u3bp2uuuaZSj9OmTRvNmDFDd911l1lPcnKyhg8frunTpyspKanK9QFAZTH0CcDlYmJizF4to0fqvPPOM499+OGHiouLU9++fc39Tp06mbcjjPPDPvroI33yySe65557qvRzX3zxRTOkTZkypfTYrFmzlJiYqM2bN+u0006r8GMZIW3x4sW68cYbFRQUZPb4jRgxokp1AUBV0aMGoEYYPWcLFixQQUGBuT9v3jwNGjRI/v7+pT1qxgn5bdu2VXR0tDlUuWHDhmr1qP36669mL96R88eMm9E7dmSotbKMkPfbb79p9erVpbNDAaA20aMGoEYYw5h2u12fffaZ2Rv1/fff65lnnin9vhHSlixZYg4xtmrVyjz/6+qrr1ZhYaHTxzsS8IzHPKKoqKhMGyP8GT/XGKI8Xnx8fJWCX25urvmzjRmeVXkMAKgOghqAGhESEqIBAwaYPWlbtmxR69at1bVr19Lv//DDDxoyZIj69+9fGrKMCQPlqV+/vvnVCEzG8Kbh2IkFBuPxjV48Y/21wMDqvbwZ59QZ9Y0bN878mUYPodGzZgRKAKgtDH0CqDFGuDF61IwhxCOTCI449dRTtXDhQjNsGT1X119//QmzRI9lBKR//OMfmjZtmjlEunTpUj388MNl2tx9991mwLruuuv0008/mcOdX375pW655RaVlJRUqnZj8oBxbpvxM55++mnz/kYvIADUJoIagBpjzMCsV6+eNm3aZAaxYxnhx5h0cOaZZ5rDlf369SvT4+aMEfiKi4vVrVs38yoCkydPLvN9Y0kQo6fOCFUXXnihOnToYLYzzoE7MnRaEXPnzjUnErz11ltmz1xYWJjefvttvfbaa/r8888r+SwAQNX52Y894QMAfIwxScAIc8bSHlVhDLMa96/M5acAoKLoUQPg8w4ePGjOEB09enSF72MsAWLcpzqzVAHg79CjBsCnZWdnm4viGowhUmOtt4owzoUzbkcmOkRFRdVonQB8E0ENAADATTH0CQAA4KYIagAAAG6KoAYAAOCmCGoAAABuiqAGAADgpghqAAAAboqgBgAA4KYIagAAAHJP/w9ER2+MO8+bpQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "stochast.distribution = DistributionType.uniform\n", "stochast.minimum = -1\n", "stochast.maximum = 1\n", "\n", "stochast.plot()" ] }, { "cell_type": "markdown", "id": "d86de99b", "metadata": {}, "source": [ "The properties of this distribution are the [minimum](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.minimum) and [maximum](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.maximum) values, but also the derived properties as [mean](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.mean), [deviation](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.deviation) and coefficient of variation ([variation](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.variation)):" ] }, { "cell_type": "code", "execution_count": 4, "id": "d372f50c", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Variable:\n", " distribution = uniform\n", "Definition:\n", " minimum = -1.0\n", " maximum = 1.0\n", "Derived values:\n", " mean = 0.0\n", " deviation = 0.5773502691896257\n", " variation = 0.0\n" ] } ], "source": [ "stochast.print()" ] }, { "cell_type": "markdown", "id": "1faa5c06", "metadata": {}, "source": [ "We can also specify the derived properties leading to an update of the other parameters:" ] }, { "cell_type": "code", "execution_count": 5, "id": "b36a7aa3", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Variable:\n", " distribution = uniform\n", "Definition:\n", " minimum = 0.2679491924311228\n", " maximum = 3.732050807568877\n", "Derived values:\n", " mean = 2.0\n", " deviation = 0.9999999999999999\n", " variation = 0.49999999999999994\n" ] } ], "source": [ "stochast.mean = 2.0\n", "stochast.deviation = 1.0\n", "\n", "stochast.print()" ] }, { "cell_type": "code", "execution_count": 6, "id": "92513aa9", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Variable:\n", " distribution = uniform\n", "Definition:\n", " minimum = -1.4641016151377544\n", " maximum = 5.464101615137754\n", "Derived values:\n", " mean = 2.0\n", " deviation = 1.9999999999999998\n", " variation = 0.9999999999999999\n" ] } ], "source": [ "stochast.mean = 2.0\n", "stochast.variation = 1.0\n", "\n", "stochast.print()" ] }, { "cell_type": "markdown", "id": "df83aa74", "metadata": {}, "source": [ "### CDF and PDF\n", "\n", "The cdf and pdf values of a distribution function can be obtained with [stochast.get_cdf()](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.get_cdf) and [stochast.get_pdf()](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.get_pdf), respectively:" ] }, { "cell_type": "code", "execution_count": 7, "id": "d116bee9", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CDF: 0.5\n", "PDF: 0.14433756729740646\n" ] } ], "source": [ "print(f\"CDF: {stochast.get_cdf(2.0)}\")\n", "print(f\"PDF: {stochast.get_pdf(2.0)}\")" ] }, { "cell_type": "markdown", "id": "fdd78328", "metadata": {}, "source": [ "### Quantiles" ] }, { "cell_type": "markdown", "id": "05b8cc42", "metadata": {}, "source": [ "A quantile can be calculated with [stochast.get_quantile()](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.get_quantile), for example:" ] }, { "cell_type": "code", "execution_count": 8, "id": "c27f07a5", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "x(0.75) 3.7320508075688776\n" ] } ], "source": [ "p = 0.75\n", "print(f\"x({p}) {stochast.get_quantile(p)}\")" ] }, { "cell_type": "markdown", "id": "79430ab2", "metadata": {}, "source": [ "Another option is to use the function [StandardNormal.get_u_from_p()](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#StandardNormal.get_u_from_p) in the class [StandardNormal](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#StandardNormal), which converts the non-exceeding probability of 0.75 into the corresponding value in the standard normal space ($u$-space). Subsequently, [stochast.get_x_from_u()](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.get_x_from_u) translates it back to the original space ($x$-space)." ] }, { "cell_type": "code", "execution_count": 9, "id": "b0d07219", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "x(0.75) = 3.7320508075688776\n" ] } ], "source": [ "u = StandardNormal.get_u_from_p(p)\n", "print(f\"x({p}) = {stochast.get_x_from_u(u)}\")" ] }, { "cell_type": "markdown", "id": "2b95d68f", "metadata": {}, "source": [ "### Design value\n", "\n", "A [design_value](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.design_value) of a variable is defined as the value obtained by dividing the value corresponding to a specific [design_quantile](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.design_quantile) by the [design_factor](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.design_factor). For example:" ] }, { "cell_type": "code", "execution_count": 10, "id": "6b22e2d8", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Variable:\n", " distribution = uniform\n", "Definition:\n", " minimum = -1.4641016151377544\n", " maximum = 5.464101615137754\n", " design_quantile = 0.75\n", " design_factor = 0.99\n", "Derived values:\n", " mean = 2.0\n", " deviation = 1.9999999999999998\n", " variation = 0.9999999999999999\n", " design_value = 3.769748290473614\n" ] } ], "source": [ "stochast.design_quantile = 0.75\n", "stochast.design_factor = 0.99\n", "\n", "stochast.print()" ] }, { "cell_type": "markdown", "id": "d154cb81", "metadata": {}, "source": [ "The [design_value](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.design_value) can be set explicitely, leading to an update of the properties of the random variable (while [design_quantile](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.design_quantile), [design_factor](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.design_factor) and [variation](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.variation) remain unchanged):" ] }, { "cell_type": "code", "execution_count": 11, "id": "69265f85", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Variable:\n", " distribution = uniform\n", "Definition:\n", " minimum = -1.3593370081945169\n", " maximum = 5.07311477919061\n", " design_quantile = 0.75\n", " design_factor = 0.99\n", "Derived values:\n", " mean = 1.8568888854980465\n", " deviation = 1.856888885498046\n", " variation = 0.9999999999999998\n", " design_value = 3.500001850852857\n" ] } ], "source": [ "stochast.design_value = 3.5\n", "\n", "stochast.print()" ] }, { "cell_type": "markdown", "id": "a815783a", "metadata": {}, "source": [ "### Truncated distribution function\n", "Let's consider a normal distribution function with a [location](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.location) of 0.0 and a [scale](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.scale) of 1.0:" ] }, { "cell_type": "code", "execution_count": 12, "id": "90296807", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAGwCAYAAADCJOOJAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAfERJREFUeJzt3Qd0FFXbB/B/eu+9QQKhhRJqkN4EAQWxoPgKFmwoYsGCWD6xoq8FewEbKCooxRcpgvTeQg8tBEhCIL33bPY79052k0ACSUgyW/6/c+bs7GZ29i4ks8/e8jwWWq1WCyIiIiIySpZqN4CIiIiIGo7BHBEREZERYzBHREREZMQYzBEREREZMQZzREREREaMwRwRERGREWMwR0RERGTErNVugCEqKyvDgQMH4OfnB0tLxrtERETGoLy8HMnJyejWrRusrc0nxDGfd1oPIpCLiopSuxlERETUAHv27EGvXr1gLhjM1UD0yOl+GQICAtRuDhEREdXBxYsXZWeM7nPcXDCYq4FuaFUEcsHBwWo3h4iIiOrB0symSJnXuyUiIiIyMQzmiIiIiIwYgzkiIiIiI8ZgjoiIiMiIMZgjIiIiMmIM5oiIiIiMGIM5IiIiIiPGYI6IiIjIiDGYIyIiIjJiBlEBYsHOc/h2cxxS84rRIcAVb4ztiK4h7td83v8OJeGp3w5geIQf5t3XU/+4VqvFnHWn8NveBOQUlqJnqAfeHtcZYd5OTfxOiIiIiMysZ27FoSS8/fdxPH1jG6yc1h8RAS647/vdSMsrvurzEjIK8O7K44gK9bziZ99sjsOPO87hnXGdsHxqPzjYWOO+H3ajqFTThO+EiIiIjEnB3r1ImPI4Tg8YiOPtOyD333+v+Zz83XsQd/vtONG5C2JH3ISspcsAcw/mvtt2FhOiQnBXzxC08XPBO+M6w8HWCov3JdT6HE25Fs8sOohnh7dBiKdjtZ+JXrkftp/FtKHhGNHRX/b0fXx3JJJzirE2JrkZ3hEREREZg/LCQti1bwe//3utTseXJCYiYcoUOEX1RtjyZfC87z5cfO015G3dBrMdZi0pK8fRC9l4YnBr/WOWlhboF+6N6PNZtT7v0/Wn4eVki7t7tcCes5nVfpaQUYjU3GJ5Dh1Xexs5bBt9PhNjIwOvOF9xcbHcdHJzcxvh3RGRoSkv1yKnqBTFZeVwc7CBvY2V2k0ial5arbJpNMpWXq5s4jFRnN6pynQk8VlYVlb9ebp9caxnlZGxjAygpKT6MbpNHBtY5bM3ORmwtwfc3KA254ED5SZcqMPxWb//DtvgIPi9NEPet2vdGoXR+5Exfz6cB/SHWQZzmQUlspfN29mu2uM+znY4k5pf43P2nsvA4r0JWPX0gBp/nppXpD/H5ecUc/JqMnv2bLzxxhsNfBdEZMgy80vw18ELWHPsEg4nZqOgpHK6RUsvR/Rt7YVxXYMQFeYJCwsLVdtKJkQESqKTwLFi9EgETOvXA/n5QEGBclt1CwsDHnmk8vn33Qfk5SkB0uVb167Ad99VHivup6ZWD9B0t5GRwNatlce2agWcO1dzm9u1A06cqLzfty9w9GjNx4aEAPHxlfdHjQL27Kn5WBH0padX3r/nHmDYMOCVV9BUcnNzkZOTo79vZ2cnt+tVcPAgHPv0qfaYU7/+SJ49GzD3BRB1lVdchmcXHcTsOzrD08m20c47c+ZMTJ8+XX//woULiIiIaLTzE1HzKygpwxcbYvHTjnPVAjjB0gIo1wLn0wvk9tueBNl7//LoDjKoI6pG9C6JXqpLlwBrayUgEkQQ9tRTQGZm5ZaVpdyKQGL8eGDxYuVY8UXhppsqe64uN2JE9WBu+XLlNWsierWqEu0SvV01EW2sSvSSNQVxXvEedV+Iqu7b2FQ/1tYWsGraXvGIyz7DX3/9dcyaNeu6z6tJTYO1V+XIn2Dt7YXyvDyUFxXB8vL/G3MI5jwcbWFlaXHFYgfRg3Z5z5pwPj0fiZmFeHj+Pv1j5RV/GK1fXoUNzw2Cj7O9/hy+rpX/qOJ+RIBrje24PGKvGs0TkfHZczYDL/x5SAZqgpg7O75HMPq38UaolxNsrCyQWVCKQ4lZWHPkEv46dAEHE7Jw17c78UDfUMwY2V7O3SUzVFgIfPopcPas0oMltoQE5XHh7ruB339X9sUH908/KT1gNRFBnY4IbKKilFvRWyeGM3WbuN+5c/XnfvCBEviJwEe3ic8pcevlVf3YtWuVNoiASgRJYtPtXx5c6HrPqh6rC7wuD/Sioyvbrrutul/Vzp2oszVr0NRiYmIQFBSkv98YvXKGTNVgztbaEp2C3LAjNg03dfTXz2nZEZuO+/q2vOL41j7O+OcZZWxb58O1J5FfXIbXx3REgJuDvEj7uNjJc3QMVMbjc4tK5YV64g1XnpOITMsvu87j9f8dk1M4AtzsMWtsR4yI8LtiCFX07g9p5yu3529qhw//OYlF+xJkT150fCa+u69ntS+EZCJEL9aRI8Dx4+ITX9l69ADmzKnsRXr1VWWY8nIuLtV7lMS+CLpEwOThceXmflmKrV276t7Oxx6r+7FdutT92MsDwau5vEfNiLi4uMDVteYOnOth5eONsvS0ao+VpaXD0tlZtV45gxhmfbh/GJ774xA6B7uja4gbvt8mhkTKML5HiPz59EUH4edmL78pi8nK7fxdqj1fLG4Qqj4+uV8YPt9wGqHeTgjxdMBHa0/Bz9VOXtCJyDSJlezvrzmJbzafkfdv7RqIt8Z10l8jrkZ8AXz/zi4Y3SUAz/x+QM6tu/XL7fjl4d7ySyQZOTGJXwx57t0r5tFc+fMqC+DkMOq0aYAIBEJDlblsYn6Yv3/1xQE6VabokOlz7NoVeZu3VHssf8cOOIh5iypSPZgbExmIjPwSmeRXrELtEOiK+ZOj5MVVuJBVWO9JyVMGtUJhSRlmLj0iV671CvXA/AejuHKNyIQDuQ/+qQzknh/RFlOHhNf72jGorY/MTTn5p71yEda983Zj8WN90MKregokMlApKcDmzcCmTcr9L7+sDNBEb5wI5MTvRJs2QMeOYmIV0KHDlUOcul46Mnnl+fkoqbKQQ6QeKTp+HFZubrAJDETKRx+jLCUZge+/L3/uPmECMhb+iuQPPoD7HXcgf9cu5KxZg5BvvlHxXQAWWnEVpGoSExMREhKChIQEBAcHq90cIrqGbzefwezVyiq8t27tiEl9Qq/rfOl5xZgwdxdOp+QhyN1BBni6L5hkQEpLgR07gL//BlatUoZMdZydlTlrIpATVq5Uetu6dVN+RiYpsZ6f3yIBcPz991/xuNu4cQh8bzaSXpqJ0gsX0PLnBdWek/zeeyiJjYW1vz+8H38c7rffBjUxmKsBgzki47EuJhmP/rxPzhV/ZXQHPDKwYqXhdUrJLcLd3+7C2bR8dG/hjt8evQF21uzdNygjRwL//HPl/LHBg4FBg4BbblEWDJDZSDTTz2/VK0AQETXU6eRcOcdNBHITb2jRaIGc4Otij+/v7wlXe2tEx2fh1WW15Nuipidyq61YAUyaBGRnVz4ugjZvbyUn26JFQFoacOiQshr19tsZyJHZYDBHREZJ1Fp+8tcDyC/R4IZWnnJFe2Nr5eOML+/tLvPS/bE/EcsOJDb6a9BViBWnzzwDBAQAY8cCv/yi5F/TefppZXXq/PnAXXfVb6UmkQlhMEdERum91SdwMjkX3s62+Pye7rCxaprL2YA2PnhqWBu5/9ryY4ivyF1HTdgL9+uvgCixJBYoiF42USpKBHQisOvZs/JYB4cmTz5LZAwYzBGR0dl2Ok3mgxM+HB/Z5IsTnhwSLlfFiyo0z/1xUObDpCYikvROnKiUoBKB2rhxwOrVSuJescpUrEIlomoYzBGRUSks0eDlZUfk/n19WmJwO98mf01rK0t8fFdXONpaYe+5TPy+N6HJX9NsiDJUoidOp21bYMoUQNTLPn8eWLZMWejAHjiiWjGYIyKj8tmG04jPKJDVHV4c2b7ZXjfE0xHPjWgn92evPo6UnKJme22TJNKGiELros6pWMAgymfpfPUV8H//B1Qpx0REtWMwR0RG4/jFHMzdEif33xjbEc52zZv3XNRt7RLshtyiMrzxd5WcZlR3ovD77NlKEPfuu0BBgVJOizWxiRqMwRwRGQWREvPNFTGy5upNHf0woqKec3OysrTAu7d1lrcrD1/Errj0Zm+D0RL5Y/74Q6m48PLLQFYW0KmTsjpV1CyNjFS7hURGi8EcERmFDSdSsDMuHbbWlnj15gjV2tEpyA0Teim1o99ZeZyLIeoqPR146CFlIUPLlkqakYMHgVtvVUpsEVGDMZgjIoNXqinHu6uOy/0H+4XK+WtqenZ4WznEe+RCNv46VEPhdqoscK8jkvuKYdVZs5T8cffey0UNRI2EwRwRGbzf98TLwveeTraYOiRc7ebA29kOjw9uLff/u+akTGBMl9m+XRlG3bCh8rEnnwRef13JD0dEjYbBHBEZNBEofbYhVu4/PawNXO1tYAge6h+GQDd7XMwuwi+7zqvdHMNRWAg8+ywwYABw8qSyKpWImhSDOSIyaCJQSs0tRpC7A+6JagFDYW9jpa8M8c3mOJn/zuwdOwZERQGffKIseHjwQeDvv9VuFZHJYzBHRAZLBEgiUBKeHBouFz8Ykjt6BCPYwwFpecVYuNuMe+dE4DZvHtCrF3D0KODrC6xcCfzwA+DurnbriEyeYV0ZiYiqEAGSCJREwHRnj2AYGlEPdtpQZQ7fN5vPoKCkyoR/c7J+PfDoo8oQ64gRwOHDwOjRareKyGwwmCMig50rp+uVEwGTCJwM0e3dgxHiKXrnSvDr7niYpWHDgEmTgPffV+qo+vmp3SIis2KYV0ciMntLoy/IXjkxV04ETIZKBJlTByu9cz9sOyvTqJiFzZuB7GxlX+SJmz8fePFFwJIfK0TNjX91RGRwRCLe77YqvXKT+4cZbK+czrhuQTJdSVJ2kawMYfK++AIYOhSYOFH8ZymPMfEvkWoM+wpJRGbp3+PJiEvLh4u9Ne6uqLZgyMTK1gf6tpT7326Jk6XHTJII3ETv27Rpyr5IBFw1MTARqYLBHBEZnHkVvXITb2gpKy0Yg3t7t4SDjRWOX8zB9lgTrNlaXKxUbfjgA+W+qOYgVqva2qrdMiKzx2COiAxKdHwm9p7LhI2VBR7oGwpj4eFkq+9F/HbLGZiUnBzgppuA338HrK2BBQuAmTM5tEpkIBjMEZFB+X7rWXk7rmsQ/FztYUxEVQhLC2Dr6TScuJQDkzFhgrLgwcVFWa0qVq4SkcFgMEdEBiM5pwhrjl2S+w8NCIOxCfF0xE0d/eW+SZX4eustoHVrYONG4MYb1W4NEV2GwRwRGYzf9sRDU65FVKgn2vu7whhNukFZCLEs+gJyi0phtKou4ujRAzhxQrklIoPDYI6IDILIzyaCOWFiHyUgMkZ9WnuhlY8T8ks0WH7gAoxSSgrQuzewa1flY2KuHBEZJAZzRGQQ/o1JRnJOMbydbTGyYqjSGFlYWOh7537edd740pRkZADDhwN79yolunR55IjIYDGYIyKDIAIfYUKvFrC1Nu5Lk6hYIdKUnErOw56zGTAaubnAqFFKbVVRkmvJElZ0IDIC/CslItXFpuRhx5l0uRL0nt4tYOzcHGwwrlug3F9gLAshCguBW24B9uwBvLyAf/8F2rRRu1VEVAcM5ohIdb9XzJUb2t5P1mI1BSLhsbD22CWk5xXDoGk0wH/+A2zZAri6Av/8A3TqpHariKiOGMwRkeoLH5ZVLBSYYASlu+qqY6AbOge5oVSjxfKDSTBon30GLF8O2NkBf//NVatERobBHBGpasOJFKTnl8DHxQ6D2/nAlNzVM1je/rEvwbAXQkyZAtx5J/DLL8CAAWq3hojqySDWmi/YeQ7fbo5Dal4xOgS44o2xHdE1xL3GY9ccvYgvN57BufR8lGm0CPV2wiMDwuSEY53nFh/CkujEas8b2NYHCyZHNfl7IaL6+WOf8rd6e7cgWFuZ1vfLsZFBeGvlcZy4lIsjF7LRJbjm65rqHByAxYtZnovISKkezK04lIS3/z6Ot2/rhG4h7vhh+1nc9/1ubHh+MLyd7a443s3BFlOHhCPc1wk2VpZYfzwFL/x5GF7OdhjUtvJbvdj/YHwX/X07K6tme09EVDcpuUXYeDJF7o+v6MUyJW6ONjLNyv8OJWHxvgTDCuZEDjmxyOHll5UVqwzkiIyW6l+Dv9t2FhOiQnBXzxC08XPBO+M6w8HWSl74akvIObKTP8J9XdDSywmT+4ehvb8L9p2rvvxfpDbwdbHXb+KiWpvi4mLk5OTot1yxPJ+ImpxIqisqPnRr4S7/pk2RuLYJfx1MQlGpBgbhwgXgttuA114DPvlE7dYQkTEHcyVl5Th6IRv9wr0rG2RpIe9Hn8+65vPFHJTtsWmIS81HVJhntZ/tiktHj7fWYeiHm/DKsiPIzC+p9TyzZ8+Gm5ubfouIiLjOd0ZEdfn7XVwxxKoLeExR39ZecoVublEZ/qmoO6t6ChIRyF26pKxYFYmBicioqRrMZRaUyG/llw+n+jjbyflztckpKkXE/61Bm1dW48Gf9so5dgPaVBlibeeDj+/qioWP9MaMUe2x+2wGHvhxj3ytmsycORPZ2dn6LSYmphHfJRHV5GBClswvZ29jiVu6BMBUiS+od/ZQhpD/3F99Lm+zE4swRPAmqjt4egJ//QU4O6vbJiIy/jlzDeFsa41VTw1AfkkZdsSm462VMQjxdJRDsMLYSCVZpyCKdXfwd8XADzbK3rqqvYA6dnZ2ctMRQ61E1LR0gc2oTgFwsa99GoQpuK1bED5df1qOJIh5gmLqhyrmzFFWrIo5xH/8AbRqpU47iMh0euY8HG1hZWmBtMt64USvnOidu9o3XbGKVeRxemRgK4zuFICvNsXWenwLL0d4OtnKFbBEpD4xxWLlkYty//buQTB14nolVuiLwYEVh5T33ex27ABefLEyqBs6VJ12EJFpBXNikUKnIDfsiE3TP1ZerpW9bd1b1n3VV7lWKz8canMxu1AO6ar2bZiIqtl6OhVZBaVyikXf1lf2lpuicV2VEYO/DioJkpvdmTNKj9yECcCTT6rTBiIyzdWsD/cPw297E+SQS2xKLl5ZfhQFJWUY30OZED190UG8v+aE/vgvN8bKD4L49AJ5/LwtcTJ7vBjGEPKLy/DuquOIjs9EQkaBHNZ4ZME+hHo5YWBb8/jQIDJ0YmWnMCYyQPbOm4NbIgPlez2cmI241Lzmb8CkSUo6krlzmYaEyMSoPmduTGQgMvJLMGfdKaTmFqNDoCvmT46S2eCFC1mFsKhy4Sks0eC15UdxMbsI9jZWaO3jhDl3d5XnEcTF8vjFHCzZnygXSojeOBHETR/eDnbWzDVHpDbxhWtdTLLcv7Wr6Q+x6oheyAFtvLHpZKos7zV9eNvmeeGyMsC64lLfrVvzvCYRNSsLrUHXmFFHYmIiQkJCkJCQgOBg00tkSqQmMcz49O8H0dLLEZueH1zty5o55NV7ZtFBtPB0xOYXmuG9b9qkrF79/Xege/emfS0iA5Bopp/fqg+zEpF5EQGNrlfOnAI5YXiEHxxsrBCfUYADCdfOpXldMjOBiROB06eBr79u2tciIlUxmCOiZpOeV4wtp9OuSCFkLpzsrDGio5/c/6siqG0SYsBlyhSl0kObNqzyQGTiGMwRUbNZdfSSTN7dKcgV4b7mmax2XMU8wZVHlH+LJrFwIbB4sbJ6Vew7OTXN6xCRQWAwR0TNZkXFKtZbI81n4cPlROJyV3trmV9zz9nqNaUbxfnzwNSpyv6sWUCvXo3/GkRkUBjMEVGzSMkpwt7zSvByswmX76pLfs0RHf3l/qqKxMmNRqMB7rtPlLEB+vYFXnqpcc9PRAaJwRwRNYs1xy7JqVzdWrgj0N0B5uzmzkowu7pi2LnR5OUBjo5KvdWff65MSUJEJo3BHBE1C10vlCi/Z+6qDrXuPdeIQ61ubsCqVcCePay7SmRGGMwRUZMTCcF188NGdVaGGM1Zkw61inQvHTo07jmJyKAxmCOiJvfPsUuyyHxksBuCPRzVbo7pDbV++inwyCNAdnbjNI6IjAqDOSJqcquPKr1PoyoCGKocahW9lvuuZ6j1zBlg5kzgu++AJUsas4lEZCQYzBFRkycK3nkmXe5zvlz1odbhEdc51CpWlIgeucJCYMgQ4IEHGreRRGQUGMwRUZNaG5Msh1hFouAWXhxirermLv76odbyhgy1zpsHbNyorGAV+5a8pBOZI/7lE1HzrGLlEOsV+of7wMXeGiliqPV8Zv2efOkS8OKLyv477wCtWzdJG4nI8DGYI6Imk5lfgh0VQ6yjOMRa81BrB6VW65qjl+r35OefVxY89OwJTJvWNA0kIqPAYI6Imsy648lypWaHAFeEebM+aE10KUrWxoikynUcak1NBf75R0lD8vXXSg1WImqwjIULETt0GE50icTZu+5G4eHDVz9+/nycGTkKJyK74vTgIUiePRvlxcVQC4M5Imoy62KS5e3IioCFrjSwrTfsrC2RmFmIE5dy6/YkHx/gxAlg4UKlZ46IGixn1SqkvPc+vKdORdjSJbBv1w7xDz+CsnRlVOFy2Sv+RspHH8vjW61ciYC330bOqtVI/XgO1MJgjoiaRGGJBltPp8r94RHKUCJdydHWGgPa+Mj9tceU4LdOvLyAe+5puoYRmYn0n+bDffx4uN9xO+zCw+H/xixY2tsja8nSGo8vPHAADt27w23MLbANDoJz/35wvflmFB45ArUwmCOiJiECuaLScgS5O6BDgIvazTFoIzr66YdaryouTsklV9fhWCIzlZubi5ycHP1WXMsQqLakBEXHjsGpbx/9YxaWlnDq0weFBw/W+ByHbt3kc3RDsSUJCcjbsgXOAwdCLQzmiKjJUpLoAhULMbeLajWsvS8sLYBjSTlIzCyo/cCnngLuvBN4/fXmbB6R0YmIiICbm5t+mz17do3HlWVmARoNrERPdxVW3l4oS0ur8TmiR85n2jScu3cijnfqjDPDR8Axqhe8pzwGtVir9spEZLLEoocNJ1LkPodYr83L2Q49Qz1l/Voxz/DBfmFXHrR6NbByJWBjA9x7rxrNJDIaMTExCAoK0t+3s7NrtHPn796DtLlz4f9/r8GhSyRK4s8j+d3ZSP3qK/g88QTUwJ45Imp0+89nIiO/BG4ONogK9VS7OUZhREXQW+O8udJSYPr0yt65du2auXVExsXFxQWurq76rbZgztrDXa4G11y22EGTlg5rb+8an5P62WdwGzsWHuPHw75dW7gOHw7fZ59B+tx50JaXQw0M5oio0a09dkk/fGhtxctMXYyoKO2151yGzM9XzVdfKatXxSrW115Tp4FEJsjC1hb2HTsif+cu/WMiIMvftQsOXbvW+BxtYSEsxLyIqiwr0gOpNJ+VV1kialQiV5rILydwiLXuRKmz9v4u1YaoJTFvZ9asykoPbm6qtZHIFHk9cD+y/vgDWcuWo/jMGVya9QbKCwvhfvtt8udJM2bIVCQ6zkOGIPO335G9ciVKEhORt3277K1zHjIYFirlfOScOSJqVKeS83A+vUBWNxjYVkm5QXVPICxyzYlVrXf0CFYe/L//A7KygMhIYPJktZtIZHJcR49GWUYmUj//DJrUNNh16IAW8+bqh1lLky6KJa76470fnyITdqd++hnKkpNh5ekJlyGD4fPMM6q9BwZzRNSo1lWk1+gf7g0nO15i6jtv7rP1p7H5VKrM0+dgawWMHQts3Ah8+ikrPRA1Ec+J98qtJi1/XlDtvoW1NXyenCo3Q8FhViJqkpQkHGKtv46BrjIvn8jPty22Ii3CyJHA0aPAoEFqN4+IDBSDOSJqNJeyi3A4MVuWDB3WwVft5hgdkY9PFwSvr5pAmD1yRHQVDOaIqNH8W7HwoVuIO3xd7NVujlESQbBVuQb3PPcflH/wAVBUpHaTiMjAMZgjokajW4U5rAOHWBsqKswTk2L+RWR8DMpnvwfUUoaIiEiHwRwRNQoxYX97xTwvDrE2nF1xEZ7Z/pvc3zZhClORENE1MZgjokaxMy4NxWXlCHSzRzs/F7WbY7w++QTuWWmId/PD522Gqd0aIjICBpE3YMHOc/h2cxxS84rRIcAVb4ztiK4h7jUeu+boRXy58QzOpeejTKNFqLcTHhkQhtu7B1dLWjpn3Sn8tjcBOYWl6BnqgbfHdUaYt1Mzvisi8xxiHdLeV07kpwZITQXef1/ufjhwEvYnFyIlt4jzD4nIsHvmVhxKwtt/H8fTN7bBymn9ERHggvu+3420vJrnibg52GLqkHAse6Iv1jwzAON7BOOFPw/LvEw632yOw487zuGdcZ2wfGo/ONhY474fdqOoVNOM74zIfIgvUBuO6+bLcYi1wUSFh9xcoHt3xN84Rj606UTltY2IyCCDue+2ncWEqBDc1TMEbfxc8M64zjJR5uJ9CTUe36e1F0Z28ke4rwtaejlhcv8wWQJn37kM/YfKD9vPYtrQcJlNXfT0fXx3JJJzivX5ry5XXFyMnJwc/ZYrLqZEVGcnk3ORlF0EO2tL9GlVc3FquoaMDGDuXGX//fcxJCJA7q4/UfN1i4jIIIK5krJyHL2QjX7hlRd/S0sLeT/6fNY1ny8CNzHhOi41X64AExIyCpGaW1ztnK72NnLYNvp8Zo3nmT17Ntzc3PRbREREo7w/InMbYu3b2kupWkD15+kJ7Nun1GG98UZ9D+fW02IuIkcViMhAg7nMghJZVNrb2a7a4z7OdnL+XG1yikoR8X9r0OaV1Xjwp71yjt2ANkoNyNS8Iv056nrOmTNnIjs7W7/FxMQ0wrsjMh+6IdahTElyfcQXyddf11eD8HWxQ0GJBrvjlJEHIiKDXQBRX8621lj11ADkl5RhR2w63loZgxBPRzkE2xB2dnZy0xFDrURUN5n5JYiOV3q9h7bnfLkGuXQJ8Pev9pBYRCL+PX/fmyB7Pge2Vb6wEhEZVM+ch6MtrCwtrljsIHrQLu9Zq0oMxYpVrB0D3fDIwFYY3SkAX22KlT/zcVZWfaXW85xE1DBi8VG5FjIdiagrSvW0fz8QEgI8+ihQXl7tR7rgWMybE9NKiIgMLpiztbZEpyA37NAVlIa4lmllb1v3ljWnJqlJuVYr598JIZ4O8HGxk+fQyS0qxcGELHRv6dHI74CIdPPlhnIVa8P83/8BZWVAYaH4plrtR2Lur7hOirnAZ1LzVGsiERk21VezPtw/TOaD+3N/ImJTcvHK8qMoKCnD+B4h8ufTFx3E+2tO6I//cmMstp5ORXx6gTx+3pY4LDtwAbd1C9IPTUzuF4bPN5zGuphknLiUg+mLD8HP1Q4jKgpYE1HjKNOU69MCcYi1AXbuBFatAqys9HPlqnKys0afVsr0kfUV8xKJiAxuztyYyEBk5JfIJL9iFWqHQFfMnxwle9eEC1mF1RKQipJBry0/iovZRbC3sUJrHyfMuburPI/OlEGtUFhShplLj8jFEr1CPTD/wSh5PBE1nuj4LGQXlsLd0Qbdakn0TdfolRMeeAAID6/xEBEki4B5/YkUPDaodfO2j4iMgoWWEzGukJiYiJCQECQkJCA4uLKyBBFV997qE/hm8xnc2jUQn07opnZzjMuWLcCgQYCNDXD6NNCyZY2HJWQUYMB/N8r5xdGvDYebg02zN5XIWCSa6ee36sOsRGS8Nurmy3GItX7Ed+hXX1X2H3641kBOECv1xQiESOO07XTl/GIiIh0Gc0TUIImZBbLyg6UFMIhpM+onPh44fFjkRQJeeeWahw9upwTLm09x3hwRXYnBHBE1yMaTysKHHi094O5oq3ZzjIvoiTt7Fli6FAhSFm9dzeB2SrAs5s5xZgwRXY7BHBE1yOaKYE7Xa0T15OEBjB5dp0NFuUIHGytZY/r4RdaOJqLqGMwRUb2JvI47zijztzjEWk979ihz5urBztpK1r0VNnGolYguw2COiOpt37kMWTNU1FWOCHBVuznGY+tWoHdvYMiQK6o9XMugiqHWTRU9okREOgzmiKjedImCB7b1luX1qI7eflu5bd/+imoP1zK4rTKcHX0+U+bPJCLSYTBHRA0O5jjEWs/h1bVrlWoPM2bU++ktvBzRytsJZbLkIVOUEFElBnNEVC+Xsotw4lIuRGGWAW0YzNW7V27SJCAsrEGn4FArEdWEwRwR1cuWil65LsHu8HRiSpI6OXgQWLFCFI8GZs5s8Gl0K4dFMMcUJUSkw2COiOqFQ6wN8M47yu3ddwNt2zb4NL3DPGFnbYlLOUU4lZzXeO0jIqPGYI6I6qxMU46tp3X55RjM1UlhIXDsmLJfh2oPV2NvY4U+uhQlJ5mihIgUDOaIqM4OJWYhp6hMFnuPDHZXuznGwcEBOHJESUvSqdN1n25wRY8o580RkQ6DOSKqd9WHAW28YcWUJHUnVrD2798op9LNm9t3PgN5xWWNck4iMm4M5oiozjZxvlz9iN64oqJGPWWotxNCvRxRqtFiO1OUEBGDOSKqq7S8YhxOzJb7DObqIDkZGD4cCA0FkpIa9dS6f3/dYhQiMm8M5oioTradVnqBOgS4wtfVXu3mGL7PPgOKi5WccgEBjXpq3VCrGPZmihIiYjBHRHXClCT1kJsLfPWVsv/ii0p+uUZ0Qysv2Fpb4kJWIWJTmKKEyNwxmCOiayov1+qTBTOYq4N584CsLCWn3K23NvrpHWytZEAncFUrETGYI6JrOpaUg/T8EjjbWaNHSw+1m2PYSkqAOXOU/RdeACyb5jKrT1FyivnmiMwdgzkiuqbNFQFD39bK8B5dxW+/AYmJgL+/Uoe1iejqtO49m4mCEqYoITJnvCoTUd3ny7Hqw7VFRyu3zzwD2Nk12cu08nZCiKcDSjTl2BWX3mSvQ0SGj8EcEV1VdmEpouOz5P7ANgzmrunTT4FDh4ApU5r0ZSwsLPT/H7pkzkRknhjMEdFVicS0mnItWvuIniBHtZtjHLp0AdzcmvxlmG+OiAQGc0R0Vbpen0FtldxmVIvYWGWuXDPqG+4Na0sLnEsvwLm0/GZ9bSIyHAzmiKhWIiEt58vVkVi52qoV8MMPzfaSYnVxz1BldfGW0+ydIzJXDOaIqFankvNwKacI9jaW6B3mqXZzDNepU8BffwGlpUCfPs360roeU86bIzJfDOaI6JopSUSCWnsbK7WbY7g++UR0YwJjxgAdOjTrS+vmze04k47iMk2zvjYRGQYGc0RUK5bwqoP0dOCnn5T96dOb/eU7BLjAx8UOhaUa7DuX2eyvT0TqYzBHRDXKLy6TCWkFBnNXMXcuUFgIdO0KDBrU7C8vUpRwVSuReWMwR0Q1EoloRULaYA8HhHk7qd0cwy3d9fnnlb1yFhaqNEMfzHHeHJFZsoYBWLDzHL7dHIfUvGJ0CHDFG2M7omuIe43H/rYnHkujE3HyUq683znYDS/c1L7a8c8tPoQl0dVTBAxs64MFk6Oa+J0QmY4tFb084m9H9P5QDURy4OxsICAAuPtu1ZrRP9wblhbAyeRcXMwuRICbg2ptISIzDOZWHErC238fx9u3dUK3EHf8sP0s7vt+NzY8PxjeznY19haMjQxE97EesLO2wjebz2DS97ux7tlB8Hezr/ZN9YPxXfT37aw4eZuoPracTpO3HGK9il69gIQE4ORJwNZWtWZ4ONkiMsQdB+KzZBB+d68WqrWFiMxwmPW7bWcxISoEd/UMQRs/F7wzrjMcbK2weF9Cjcd/OqEbJvUJRcdAN4T7OuP9O7rIRWQiS31Vohi4r4u9fnNztKm1DcXFxcjJydFvublKrx+RuUrIKMDZtHyZkLZvay+1m2PYPD2bPR1JTThvjsh8qRrMlZSV4+iFbPQL965skKWFvB99XqkFeS1iBVepphzulwVrogevx1vrMPTDTXhl2RFk5pfUeo7Zs2fDzc1Nv0VERFzHuyIyfrqAoHsLD7jY1/5FyKyJ3jgDogvmtp5OQ5mmXO3mEJG5BHOZBSWy5uPlw6k+znZy/lxdvLf6OPxc7asFhCJT/cd3dcXCR3pjxqj22H02Aw/8uEe+Vk1mzpyJ7Oxs/RYTE3Od74zIVObLVf5dURWnTyv55Pr2FV37MARdgt3ll9rcojIcTKjbl2EiMg2qz5m7Hl9tisWKQxfx+6M3VEtoKubU6bT3d0UHf1cM/GCj7K2rGvTp2NnZyU1HDLUSmSvR0y0S0OoWP1ANPv1USRIshlirXDvUZGVpgQFtfOQ8ZNGz2jOUFTuIzIWqPXMejrbyApR2WS+c6JUTvXNXM3fLGXy96Qx+fihKroC9mhZejvB0ssW5dBaiJrqW6POZyCsuk38znQLd1G6O4cnIAH78UbUkwVfDeXNE5knVYE4sUugU5IYdVRYvlJdrsSM2Hd1b1pyaRBArWD9fH4v5k6Pk0MK1iKX6YkhXLIQgoqvTFWyX6S5Evgu6MklwQQEQGQkMGQJDMrCNMvJwODH7ii/JRGS6VF/N+nD/MPy2NwF/7k9EbEouXll+FAUlZRjfI0T+fPqig3h/zQn98aI37uO1p/DfO7vIZKYpuUVyE9nqBXH77qrjiI7PlCvyxCrXRxbsQ6iXE+f/ENXBllNMSVKnJMHPPqtakuDa+LraI6JipGJbRWoZIjJ9qs+ZGxMZiIz8EsxZdwqpucXoEOgqe9xErUHhQlZhtYSlv+w6L7PSP74wutp5nh7WBs8ObyuHbY9fzMGS/YnIKSqVvXEiiJs+vJ3MS0dEtUvPK8bRpGy5P4Bffq70xx9AUhLg7w9MmABDJBaAxVzMkUOt47oFqd0cIqOQsXAhMr7/AWVpabBr3x7+r74Chy6VuWovp8nJQeonnyBn3TqUZ2XDJjAQfi/PhLMKJf0MIpgT7u8bKreaLHqsev6m7S8Nveq5xEKInx/q3ajtIzIX22LT5Lx+MQ+V0xJqsGiRcjt1qsEsfLic6FEVIxhiRbKYtsKhcqKry1m1CinvvQ//WbPgENkFGfMXIP7hR9B69SpYe12ZZ1NbUoL4yQ/ByssTwZ9+CmtfP5QmXYCV69Xn75t8MEdEhkE3cZ5TEmqxdCnwv/8BAwfCUIncgM521kjPL8GxpBxZ8pDI3OTm5lbLTHF51oqq0n+aD/fx4+F+x+3yvv8bs5C3eTOyliyF96OPXHF81tKl0GRnI/S3X2Fho+ThtA0OMu85c0RkGEQvjn6+XBvOl6uRtTVw++2At+EGu2Jhma5qx+ZTKWo3h0gVERER1YoBiOIANRG9bEXHjsGpb+UooIWlJZz69EHhwYM1Pid3wwY4dO2KS2++hVP9+iNuzBikffMttBoN1MJgjoik45dy5ApIBxsr9Aj1ULs5hiU/HygthbEQ8+YEXXBOZG5iYmKqFQMQxQFqUpaZBWg0sLpsONXK20vOn6tJaUIicv/5B9pyDUK+/Rbejz+OjB9/RNrX30AtDOaIqNoHf5/WXlwsdLkPPwRCQ4Gff4YxGFjRs7o/PlMuBCMyNy4uLnB1ddVvtQ2xNkh5uQz+At58Ew6dOsJ19Gh4TZmCzEW/Qy0M5oioWgkvpiSpIR3JN98oq1gr5scYuhBPR7T2cZIlDKvm8SSi6qw93AErK2jSlao3Opq0dFjXMp3C2scHtqEtYWFV+aXXrnUraFLT5LCtGhjMEZHMz7jvfIbcZwmvyyxZAly6BAQEAHfcAWMxqK2vvGU1CKLaWdjawr5jR+Tv3KV/TFtejvxdu+S8uJo4dO+O0vPx8jidknPnZJAnzqcGBnNEJOsWl2q0CPF0QKiXo9rNMSy6JMFTphhNz1zVFcmbT6ZCK/LNEFGNvB64H1l//IGsZctRfOYMLs16A+WFhXC//Tb586QZM5Dy0cf64z3umSBXsya/8y6Kz55F7qZNSPt2Ljzu/Q/UwtQkRKQfYhVzraom6TZ7+/cDO3cqQdyjj8KY3NBKzH20RFJ2EWJT8tDGz0XtJhEZJNfRo1GWkYnUzz+TQ6V2HTqgxby5+mHW0qSLYomr/nibgACEfDcPye+9h6xbx8Hazw+ekybB65GHVXsPDOaICFsqSj9xiLWWXrnx45WqD0ZEJFDv3cpLBupiqJXBHFHtPCfeK7eatPx5wRWPOXbrhjBdEnEDwGFWIjMXn16As2n5sLa00OcnIwCZmcDvFavTpk2DMdItZuG8OSLTxmCOyMxtPp2qrxzgYm88c8KanIcHsGMH8PrrQO/eRh3M7Y7LQEFJmdrNIaImwmCOyMzpU5JUJJqlKrp3B2bNAox0HqFITxLk7oASTbkM6IjINDGYIzJjpZpy7DyTXi3RLIncBKax+lMsZtEF6RxqJTJdDOaIzFj0+UzkFZfBy8kWHQNd1W6O4bj5ZuChh4D4eBg7zpsjMn0M5ojM2JaK+XL923jD0tI4hxIb3dGjwOrVwPz5Rju8WpVY1CIWt4hFLufT89VuDhE1AQZzRGZMV4+VQ6xVfPGFcjtuHBASAmMnFrX0aOlRbX4kEZmWOuWZu/mzrfU6qfgy+919veDvZt/QdhFRE0vPK8bRpGy5P6CiWoDZE+lIfv7ZqNOR1ETMm9t9NkMOtU7qE6p2c4hIjWAu5mIOHhnQCo62lUVlrzZv+OvNZ1BSVlmzjIgMz7bYNPn32iHAFb4u/OIl/fgjUFAAdO4MDBwIUyHmzf13zUnsOJOO4jIN7KyvfS0nosaRPPu9ej/H+/EpsHJ3b/wKEI8ObAVvZ7s6Hfvd1rg6N4CI1KGbEK+r4Wn2NBrgyy+V/SefNIn5cjoRAa7wcbFDam4x9p/LRN9w/p8TNZeMBQvg0LUrLOpY27kgOhoeE+9t/GBu64tD5Gq3ulo3fRD8XPlNn8hQlZdr9fPldKsdzZ5Y9BAXB4gL6L01l/Ux5hQlYl7kkuhEGcQzmCNqXsFffA5rr7pV2DnZvUfTLIAI9nCsV/HtQHcHWHFlHJHBOn4pB2l5xXLqRM+Wnmo3xzD06gW8+SYwYwbg5ARTw3xzROoIePddWLrUvTay/xtv1Dnwa5TVrDfN2YKkrMLrOQURqUDXK9enlRdsrbmoXfLzA157DXjpJZiiAeHecuT4xKVcXMouUrs5RGbD/bZxsLSt++im25hbYOnoWK/XuK6reGJmAco0ppEpncic6FJUDOQQq9nwcLJFZLAyB4cpSojUd/GNN1AmVtA3An4lJzIz+cVl2HdeqdPJYA5Abi4wZgywbJmYTAhTxmoQRIYj538rUJ6Xp34w1yvME/Y2jAeJjMmuuHSUarQI8XRAqFf9uvJN0oIFwN9/m+zwak3z5raeTkWZxrQDVyJzqgF9XZHYTw9GwZerVomMyqaTqfpemvosbDLZi6mu4oNIR2Jp2l9OxTCrm4MNcorKcCgxS+3mEFEjqdOVa11MMkrr8S1u44kUFJVqrqddRNQEtFotNp1KkfuD2/qq3Rz1rV8PnDgBODsD998PUyeyDAxoo6Ql2VwR1BOROtpF74dtI5UMrFMw99jP+5BTWFrnk0777QBScoqvp11E1ATi0vKRkFEIWytL9A2v39J3k/T558rtAw8Arq4wB5w3R9S8NPWcF6fJy6/3a9QpabAY1X3+j0N1TmEgysUQkeEOsUaFecLRts4FYEzT2bPAihXK/tSpMBe6YO7whWxk5JfAsx4J4Ymo/k5F9UabrVvqnDsudtAghC1fVq9euzpdze/oHoz6uLVrEJztzfyDgsgAbTpZMcRaMRHerH31lTJnbvhwoH17mAsxz1nU4z1+MUcuhBDXayJqQlotsv74s86547RlZfV+iTpFXB+Oj6z3iYnIsBSWaLD7rJKShMEcgN69laoP06bB3IjeORHMiaFWBnNETcsmIABZf/xR5+Otvb1hYV2/DjGD6D5bsPMcvt0ch9S8YvmN8Y2xHdE1pOYCs7/ticfS6EScvJQr73cOdsMLN7WvdryY5D1n3Sn8tjdBzvXrGeqBt8d1Rpi36ZXoIaqrnXFpKCkrR5C7A1r7OKvdHPXdeaeyNWJ6AGMxsK03vtl8RlYCEXV6LVl+kajJhG9Yj6am+jr8FYeS8Pbfx/H0jW2wclp/RAS44L7vd8u6kbXlyBobGYjfHr0BS5/ohwA3B0z6fne18jTfbI7DjzvO4Z1xnbB8aj842Fjjvh92c4UtmbWNJ1L1vXJmn5KkKjP8txD1eEVdXnGdjbmYo3ZziMjYg7nvtp3FhKgQ3NUzBG38XPDOuM5wsLXC4n0JNR7/6YRumNQnFB0D3RDu64z37+giv1hvj03T98r9sP0spg0Nx4iO/rKn7+O7I5GcU4y1McnN/O6IDC8lyZB2Zp6SZM8e4OOPgSzzzbMmFrP1bV2RooSrWomMnqrBnBjyOXohG/3CvSsbZGkh70efr9uFtrBUI3PguTvayPsi7UJqbnG1c7ra28hh2OjzNddAKy4uRk5Ojn7LFeV9iEwIU5JU8eGHwHPPATNnwpzpqkEwmCMyk2Au8o21cgm78MIfh5BXXP+VFjXJLCiBplwLb2e7ao/7ONvJ+XN18d7q4/BztdcHb6l5Rfpz1PWcs2fPhpubm36LiIho4DsiMkxMSVIhMRFYulTZf/xxmLNBbZRgTnzJzSmqex5RIjLSYE70fOUVKQHckuhEFBvI3LOvNsVixaGL+HZSD9jbWDX4PDNnzkR2drZ+i4mJadR2EqmNKUkqfPstoNEAAwcCXbrAnLXwckQrbyeUlWuxIzZd7eYQmazEadP0iYOzli9HeYnSOdaY6vQVvXsLDzz68z50CnKTCYRnrYiBfS0JhD+oRxoTD0dbWV7m8sUOogft8p61y83dcgZfbzqDhQ/3lvPidHyc7fXnqFo3VtyPqHJcVXZ2dnLTEUOtRKaCKUkqFBcDc+cq+2aYjqQmA9v6yCF4MdQ6spO/2s0hMkm5mzbDr6AAVs7OuPjyK3AeMACWdUwg3KjB3Jy7u+L7bWcRn5EPse4rt6gUxVaWjTIJVwSIO2LTcFNH5UJSXvEt8b6+LWt9nlhS/+WGWMx/KApdgqunMAnxdICPi508h1gkgYr2HkzIwsQbaj8nkaliSpIKixcDKSlAcDAwbpzarTGYeXM/7TiHLadS5SIZrnImanx2YWFI/XgOHEVuS60WOavXwNK55lRp7g28NtUpmBPB0UujlAzp/d/fgDl3dYVHI5WAebh/GJ774xA6B7uja4gbvt92DgUlZRjfQyljMX3RQfi52WPGSOX1RW+cyCH36YSuCPZwQEquMkfOydYaTnbW8mI0uV8YPt9wGqHeTjK4+2jtKfi52mFEhF+jtJnImDAlSYUvvqicK1fPhJym6oYwL/ml+kJWIc6k5iHc10XtJhGZHP9Zs5D8/nvI27xZpkJK/fTTmlMiWVg0bTBX1bYZQ9GYxkQGysUVIkATq1A7BLpi/uQoGUAK4iJT9QPol13nUaIpx+MLo6ud5+lhbfDs8LZyf8qgVigsKcPMpUfkxN5eoR6Y/2DUdc2rIzL2lCSDzTklSWEhEBoKHDsGPPyw2q0xGCINVO8wT2w9nSYXyTCYI2p8jt27IWzRIrl/vEMEWq9ZXec6rXVloRVX+2v4cfvZOp/wwX5hMHaJiYkICQlBQkICgsWQDJGREr0twz7aLFOSHPi/4bL32qyJ+bCuNc+dNVffbY3D2yuPY0Abb/z8UG+1m0Nk0p/fpRcuwDowsNFHSep0ZRfz5aoSPWkiv5vI3yaI3i8HGyt4OduaRDBHZIopScw+kBMYyF1BDL+LYE4skhGLZURvHRE1nqKTJ6vd15w6Veux9u3aNeg1rOs7tPrXwQv4eed5vH9nF/1kavHtf+aSI/hP7xYNagQRNQ2mJAGwdi3QsiXQwIukqRPXcbE4Rkxp2XU2nRVCiBrZ2XG3KXPkxEDoNXrkOsQca9Br1PurulhM8NW93autihP7r90SgccX7se4bkENaggRNS6mJBFjGqXAgw8CSUnAunXAjTeq3SKDI4Z7RIqS3/bEY/PJVAZzRI0s/N91+v2i48eR/N8P4DV5Mhy6dZWPFR44iIwff4TvC883+DXqHcyJ1aOiasPlNFrtFfniiEg9O84wJQmWL1cCOT8/JVEw1WhQRTAnUpQQUeOyCars5Ep85ln4v/IynAcNqja0ahPgj9RPP4NLA79w1jtZXL/W3nh52RFZU1XnSGI2Xl1+BP2r1EMlInVtOKEMsQ5t72u+KUk+/1y5ffRRwLZx0imZIlGv19rSQiYQjk8vULs5RCar+NQp2NSwMEM8VnzmTIPPW+9g7r93dpFpQ8Z8sQ1tX1ktt1u/3Cbrq753h3mXxyEyFGKRuj6Y62Cmw2YHDwJbtyo55aZMUbs1Bk0sZuve0kPubz7N3jmipmLbuhXS586FtkpJL7EvHhM/a7ZhVi9nO/z0YBTiUvMQm5Inv/G39nFCK3MdxiEyQDEXc3Axu0iuMu/TqnHzGRldr9yddwKBgWq3xiiGWveczZDz5iaxWg5RkwiYNQsJjz+B04OHwK6dkhu3+OQpuTAi5OuvGnzeBucqEMFbmLdSjsJsh3CIDNSG40qvXL9wb/NMlp2WBvz6q7LPOqx1DuY++Oekfq6lqAxBRI3LoUsXhK9bi+wVf6MkLk4+5jpqFNxuuQWWjo7NG8wt2hsvc8+dS1PmVoR6O8oSWhOimJqEyBCsrxhiHWauQ6xHjwLiwtixI9Cnj9qtMQoRAa5yuoxYyCZ66Pq34RxooqYggjaPu+9q1HPWO5j7eO1JfLftLO7vG4ruLZQ5FtHxmXjr7xgkZRVi+gjmciJSkyiLdygxS+6bbZqJwYNFKnjgwoVr5nUihaWlBYa298HifYn493gygzmiJpD27VxYe3vB/Y47qj2etWQJyjIy4P3IIw06b7370X/ZHY/Zt3eWhe+HR/jJTey/e3tn/LzrfIMaQUSNmyhY5KbsFOQKfzd7mC0HByA8XO1WGJVhHfzk7foTyXIRDRE1rqxFi2AbduVCB7vwcGT9rtRvbZZgrlRTji7B7lc83jnIDWU15J8jIrVSkigfzGZn924l0zrVm6jPKubKJWQU4nRKntrNITI5ZWlpsPa9Mom7lacnylJTmy+Yu71bEH6poQdOJJwc15XVH4jUJCau6xK/DmtvhkOshw8DN9wAdOkCVFn6T3XjaGuNvq2V1c9iqJWIGpd1gD8Ko6OveFw8Zu3r27wLIBbvTcDW06noFqLMmTuYkCXny93ePUjOndMRJb6IqPmIiev5JRo5kV30lpudL75Qbjt0YJLg6xhq3XQyFeuPp+CJwRymJmpMHuPHI/nd2dCWlsHpht7ysfxdu5DywYfwFKUHmyuYO5mci45BrnL/fEa+0jgnG7mJn+lYgJOOiZqbmOskiInsYkK7WcnIAH75RdlnOpIGEz26r1UsbEvPK5a5RYmocXg+9BA0WVm49Oab0Ira0SJesrOD18MPwfuxR5svmPv9US7zJzJEYsK66E0x2/ly338PFBYCXbsC/fur3RqjFejuINOUiMTTG0+m4s4eV5YeIqKGEXl5fZ9/Ht6PP47iuDgZyNmGhsLyOkcSmBWSyEScSc1HfEYBbK0szS+thEYDfPllZa8c05Fclxsr8hNuqOjpJaLGZenkBIfOnWHftu11B3LyfI3SKiJSne6Dt3crTzjbNbi4i3FasQI4fx7w8gLuuUft1hi9oRUpSracUqpBEJFhYzBHZCJ0Q6xmuYp15UrlViTcFPnl6Lp0CXKDj4sd8orLsPtsutrNIaJrYDBHZAKyC0qx73ym+c6XmzsX2LABePJJtVtiOtUgKqqH6L4kEJHhYjBHZAI2nUqBplyLcF9ntPBqeLFmoyXmyA0ZAgQx12Vj0dX1FfnmWA2CyLAxmCMyAWtjlPlyIyLMrFcuP1/ZqNH1r6gGkZhZiFPJrAZBZMgYzBEZueIyDTZVlPAa0dEfZuXbb4HgYOCzz9RuiUlWg+jHahBERoHBHJGR23EmXVZ98HWxkxPXzS4dSVYWFz00YTUIYT2DOTJxGQsXInboMJzoEomzd92NQlEasA6yV67E8fYdkDBV3fm6DOaIjNy6iiHW4RF+5lX1YdUqIC4O8PAA7r1X7daY9Ly5AwlZSMsrVrs5RE0iZ9UqpLz3PrynTkXY0iWwb9cO8Q8/grL0q6/kLkm8gJT/fgCHnj2gNgZzREasvFyrD+bMboh1zhzl9uGHAUczXPTRDALcHGSNX7H+4d+K3zMiU5P+03y4jx8P9ztuh114OPzfmAVLe3tkLVla63O0Gg2SXngBPtOehG1wCNTGYI7IiB1MzEJqbrFMEnxDK0+YjYMHgY0bASsr1mFtYjd1VIZa/zl2Se2mENVZbm4ucnJy9Ftxcc09y9qSEhQdOwanvpWlSi0sLeHUpw8KxXWmFmlffgUrL0+433knDAGDOSIjpuuVG9zOB3bWVjAbn36q3IoLaYj634pN2U0VPb7bY9ORW6QUBicydBEREXBzc9Nvs2fPrvG4sswsOf/WSlSPqcLK2wtlaWk1Pqdg/35kLVmCgLfegqEws5o/RKZlbUVviVkNsebkAIsWKfvPPqt2a0yeyF3YytsJcWn52HQyFWMiA9VuEtE1xcTEIKhK3kk7O7tGOa8mLx9JL85AwFtvwlrM1zUQDOaIjNSZ1DycSc2HjZWF7JkzG66uwJEjwPLlQO/earfG5FlYWGB4Rz98uzlODrUymCNj4OLiAldxrbgGaw93OV1Dc9liB01aOqy9va84vjQhHqUXLiDh8ScqHyxX6hcf79gJrVevgm2LFmhuDOaIjHyI9YZWXnC1t4FZad0aeO45tVthVkOtIpgTPXMir6FZDemTSbOwtYV9x47I37kLLjfeKB/Tlpcjf9cueNSwSt62VSuE/e+vao+lfvoZyvPz4ffyTNj4qzNKonowt2DnOXmRSM0rRocAV7wxtiO6hrjXeOyp5Fx8vPYUjlzIxoWsQrx2SwQe6h9W7Zg5607h0/Wnqz3WyscJG54b3KTvg6i5meUQq5jE3EjDJVR3XYPdZR7DlNxi7IhNx5D2SsoSIlPg9cD9SHppJuw7dYJDl87ImL8A5YWFcL/9NvnzpBkzYO3rB9/npsPSzg72bdtWe76Vi4u8vfxxswnmVhxKwtt/H8fbt3VCtxB3/LD9LO77fjc2PD8Y3s5XXrALSzSy7uToLgF46++YWs/b1s8ZvzxcOfxibcl1HmRaUnKLZO4vYXhFYleTJ/Jj3HAD0KqVkpZEhaEMcyXyF47o6IdfdsXLoVYGc2RKXEePRllGJlI//wya1DTYdeiAFvPm6odZS5MuiiWuMGSqBnPfbTuLCVEhuKunshrtnXGdseFEChbvS8ATg8OvOD4yxF1uwvurT9R6XitLS/i62Ddhy4nUtf54ioxtIoPd4O9mJr/r69crKUlOn1bmzVGzD7WKYE4M779zmxZW5pSgmkye58R75VaTlj8vuOpzA9+reaVsc1ItmCspK8fRC9l4YnDrat/++oV7I/q80uPQUOfS8hH1zr+ws7FE9xYeeHFkewS5117uR+SfqZqDRuSnITJk/5jjEKsuSfCDDwLuNU/FoKajzM20Rnp+CaLjM9Er1IzyGhIZONX6DTMLSqAp114xnOrjbCfnzzVU1xbu+HB8JOZPjsLb4zojIaMAd32zE3nFZbU+R+SfqZqPRuSnITJU2YWl2B6bVi2hq8k7eVIp32VhATz9tNqtMUs2Vpb6Wq3/HGUCYSJDYtiDwA0wpJ0vbu4SIBdTDGrrgx8fjEJOYSlWHk6q9TkzZ85Edna2fhP5aYgMlSh6XqrRoo2vM8J9lYm3ZpMkeMwYIPzKKRjUzNUgYi5BK8b5icggqDbM6uFoK+dcXF68WfTKid65xuLmYIMwHyecSy+o9RiRTLBqQkFR+oPIUK2u6BUZ1TkAZiEjA5g/X9lnkmBVDWwrKo1YIiGjEMcv5iIikHMXicy6Z87W2hKdgtywo2K4SFc0XCx7796y8ebD5BeX4Xx6gVxWT2TsxHSBzadS5f7ozmYyX+7774GCAiAyEhg0SO3WmDVHW2sZ0Ams1UpkOFRdzfpw/zA898chdA52R9cQN3y/7RwKSsowvoeyunX6ooPwc7PHjJHt9YsmTqcoixNKNeVIzinCsaRsONlaI9TbST7+zsoYOa9DLHgQ6RvmrDstewDHMms5mQCx2lv8HYjySu38zGSIdcoUwMFBqcEq5syRqkZ29JcrWlcfvYhnh6uXV4uIDCSYE2VhMvJLZKLf1NxidAh0lQsXfCp60URiYFFKRkcEbzd/tk1/f+6WOLn1DvPEosf6yMcuZhfhqd8OIKugFJ5OtugZ6oFlT/SFVyMO3RKpZfWRi/J2VGf/an8bJk0k5HzySbVbQRVujPCTJeROJefhdHIu2pjLlwoiA6Z6BYj7+4bKrSa6AE0nxNMR5967+arn++I/3Ru1fUSGQvRabzyZIvdHdTKD+XK6CfbmErQaCTEPeUAbH9lLvPLIRTzDYI5IdSa3mpXIVIm6mEWl5QjxdEBHc5h4vnatMk9u8WK1W0KXubli8c3Kw0pPMRGpi8EckZFYVTHEOrpTgHkMsf73v8CRI8DOnWq3hGoZaj2dkidrZhORuhjMERmBolKNHNYym5Qk0dHAhg2AlRXTkRjoUOvANsqqVvbOEamPwRyRERDpSApKNAh0s5f1WE3eBx8otxMmAC1aqN0aqsHoii8Vuh5jIlIPgzkio1rFagZDrGfPVs6Te+EFtVtDVxlqtbWy5FArkQFgMEdkBEOsIq+X2SQKnjNHZBAHRoxQFkCQAa9q9Zb7HGolUheDOSIDJ+bK5ZdoZCLsbiEeMPnSXaLig/Dii2q3hq5B1MEWRIoSIlIPgzkiA/e/g0ny9pbIAFhamvgQq4cH8OefStWHoUPVbg3Vcag1lkOtRKpiMEdkwHKKSrGhIlGwWZSkE/MBR40Cvv6ayYKNgKt95VDr3xxqJVINgzkiA7buWLKsxdraxwkRAa7mUfGBjHKo9e9DSdDy/5BIFQzmiAzY/w4l6esYm/QqVo0G6NsX+L//A3Jy1G4N1cOIjv6wt7FEXFo+jlzIVrs5RGaJwRyRgUrPK8a22DTzGGIV8+R27QK+/BKw5GXJmDjbWePGDn5yf/kB5csHETUvXjWJDNSqo5egKdeiU5ArWvk4w2SJobl331X2n34acDbh92qibu0aJG9XHE6Sv7NE1LwYzBEZqBUVq1hNvlfu77+Bw4eVIO7JJ9VuDTXAoLY+cHe0QWpuMXaeSVe7OURmh8EckQG6mF2IPecy5P4tXQJNu1funXeU/SeeADw91W4RNYCttaW+vNfygxfUbg6R2WEwR2SA/j6kpHmICvVEoLsDTNbGjcDu3YC9PTB9utqtoeswrmKodc3RS7JqCRE1HwZzRIa8irWrCffKCe+9p9w+9BDgp0yiJ+PUs6UHAt3skVdcJquWEFHzYTBHZGBOJ+fKFA/WlhYY3cnEa7F+9RXwyCPACy+o3RK6TqI6ydiK3rnlBzjUStScGMwRGZgl0coH4eB2vvBytoNJCw8H5s4FWrZUuyXUCMZ1U3qSN51MRXZBqdrNITIbDOaIDIhI67DsQKLcv7OH0sthksrL1W4BNYH2/q5o7++CEk05Vh9leS+i5sJgjsiA7DiThuScYrg52GBIe1+YrPvuAyZMAE6fVrsl1MjGVszzXMqhVqJmw2COyIAs2a/0yo2JDICdtRVM0okTwK+/AosWAQUFareGmmBVq6g8t+dsBuLT+f9L1BwYzBEZCLEKcM2xS3L/ju7BMFlvvqnklxs3DoiMVLs11MhEKp3+4d5y/89o5csJETUtBnNEBmLVkYsoKi1HK28ndA1xh0mKiQF+/13Zf/11tVtDTeTOHsH6nuZylvcianIM5ogMxNKKXow7egTDQoxTmaK33lJ65W67DejaVe3WUBO5qaM/XOytcSGrELviWN6LqKkxmCMyAImZBdgVp5TvGtfNRFexHjumzJMTZs1SuzXUhOxtrDCmoqbwnxXzQImo6TCYIzIASytyy/Vp5YUgUy3fNWeO0it3xx1Aly5qt4aaaah11dGLyC1izjmipmTdpGcnomsSc4oW7U2Q++N7mvDCh08+Adq2BUaNUrsl1Ay6hbijtY8TzqTmY+Xhi5gQ1ULtJhGZLPbMEalsW2yanFsk5hiN7hwAk+XsDLz4ItC5s9otoWYg5n2O7xki9znUStS0GMwRqUzXK3dbtyA518jkZGez4oOZEr/TlhbAvvOZiEvNU7s5RCaLwRyRitLzirE2RsktN6GXiQ5DTZ4M9OgB7N6tdkuomfm52mNQWx+5v2if8qWFiExwztyCnefw7eY4pOYVo0OAK94Y27HWHFunknPx8dpTOHIhWw5LvXZLBB7qH3Zd5yRSe+FDqUaLLsFuiAh0hcnZtw9YulSMuSnDrGR2xFy5jSdT8ee+REwf3tZ0K5sQmWvP3IpDSXj77+N4+sY2WDmtPyICXHDf97uRlldc4/GFJRq08HLEjFHt4eNi1yjnJFKLVqvFb3vjTbtX7uWXlduJE4GOHdVuDalgWHtf+LnaIT2/BP8cS1a7OUQmSdVg7rttZzEhKgR39QxBGz8XvDOuMxxsrbC4lu74yBB3vDy6A8ZGBsLWyrJRzkmkFmUeUT4cba30xclNyoYNwLp1gI0N8MYbareGVGJtZYm7K76s/Lr7vNrNITJJqgVzJWXlOHohG/0qavjJxlhayPvR57Oa9ZzFxcXIycnRb7m5uQ16faL6+G2P0it3S5cAONupPuOhcYl8cjNnKvuPPQaEXTkdgszHhF4hciGESIx9hgshiEwnmMssKIGmXAtv5+rDpT7OdnKuW3Oec/bs2XBzc9NvERERDXp9orrKLiyVtVgFk8y/tXw5sGcP4OQEvPqq2q0hlQW6O2BIO1+5/9tu5UsMETUermaF6ECYiezsbP0WI4qBEzUhkXerqLQc7f1dZHJVkyMWPQjPPgv4+andGjIA/+mtfGn5M1r87mvUbg6RSVFtbMfD0RZWlhZXLEwQPWiiJ605z2lnZyc3HTHUStSUFR9+3nlO7k/q01ImVzU5CxYAt98ODB2qdkvIQAxu54tAN3skZRdhzdFLpluDmMiceuZsrS3RKcgNO2LTqn3I7YhNR/eW7gZzTqLGtuV0Ks6lF8iKD+O6mugHmghQb7sNcHNTuyVkIMQXbd1CiIVcCEFkOsOsD/cPw297E+SQU2xKLl5ZfhQFJWUY30MpATN90UG8v+ZEtQUOx5Ky5VaqKUdyTpHcP5eWX+dzEqltwU7lg0z8TjqZ2sKHrVuVig9ENbi7V4gM6vaey0RMEkdAiBqLqp8kYyIDkZFfgjnrTiE1txgdAl0xf3KUPoecSAxcdQhKBG83f7ZNf3/ulji59Q7zxKLH+tTpnERqik8vwMaTKfohVpOSlgaMGaOkItm2DWjXTu0WkYHxd7PHyE7+WHn4In7acRb/vTNS7SYRmQQLrchcStUkJiYiJCQECQkJCA4OVrs5ZELeXXVcfgEZ2NYHCyZHwaQ89RTw+edAZCSwfz9gxUz/dKX95zNwx9c75bSYnS8NhVcD50gT1STRTD+/uZqVqJmICiaL9irJq+83tV65EyeAr75S9j/6iIEc1ap7Cw90DnKT02Z+r/h7IKLrw2COqJmIUnMiv1yIp4Nc2WdSXnwR0GiUYdZhw9RuDRkwMXXmwX6hcv/nnefl/Gciuj4M5oiagZjN8MP2s3J/Yu+WchK4yVi/HlixArC2Bj74QO3WkBG4uUuATO5+KacIq49eUrs5REaPwRxRM9gWm4YTl3JlHdYJFekZTILojXvuOWX/8ce56IHqxM7aChNvUP4Ofqr4kkNEDcdgjqgZzNuqfGDd1TMEbo42MBkFBUDXroCnJ/D662q3hoysIoSNlQWi47NwKKFh9biJSMFgjqiJnbyUiy2nUmWh8cn9TKzgvIsL8NNPwOnTgJeX2q0hI+LrYo8xXQLl/nfb2DtHdD0YzBE1sXlb4+StyK/VwssRJkn0zBHV00MDlC83Kw8nyRyMRGrJWLgQsUOH4USXSJy9624UHj5c67GZixfj3L0TcTKqt9zOP/jgVY9vDgzmiJpQSk4R/jp4Qe4/PKAVTMaxY0rt1TglUCVqiI6BbjLnYrm28ksPUXPLWbUKKe+9D++pUxG2dAns27VD/MOPoCw9vcbjC/bshevNo9Fy/k8I/f032PgHIP6hh1GanAy1MJgjakI/7TiHUo0WPVt6yPxaJkHkGX/ySWDZMmDmTLVbQ0bu8UGt5e3ifQlIyytWuzlkhtJ/mg/38ePhfsftsAsPh/8bs2Bpb4+sJUtrPD7oww/g+Z//wL5DB9i1aoWAt98SheCRv3Mn1MJgjqiJ5BaV4pdd502vV27xYmDTJsDeHnj/fbVbQ0buhlaeiAxxR3FZOX7afk7t5pCJyM3NRU5Ojn4rLq75i4K2pARFx47Bqa9SElSwsLSEU58+KDx4sE6vVV5YBG1ZGazc3KAWBnNETeTnXeeRU1SG1j5OGB7hB5OQl1eZikT0yoUqyV+JrieJsK53bsHOc8grLlO7SWQCIiIi4Obmpt9mz55d43FlmVkyxZLVZQu4rLy9UCbqTddBykcfwtrXF059+0It1qq9MpGJl+76viIdyRODw00nSfBbbwEXLgCtWilVH4gawYgIP7TycUJcaj5+2x2PRwaaUE82qSImJgZBQUH6+3Z2TVMDOG3uPOSsWo2WC+bDsoleoy7YM0fUBH7bE4/0/BJZumtsVyX9gtE7ehT4+GNl/9NPlWFWokZgaWmBxyoCuO+2xaG4TKN2k8jIubi4wNXVVb/VFsxZe7jLWtKayxY7aNLSYe3tfdXXSP/+B6TPm4cW330nF02oicEcUSMTH0Tfbjkj9x8fFA4bKxP5M3vvPaCsDLj1VuCWW9RuDZmYcd2C4Odqh+ScYvyxL1Ht5pCZsLC1hX3HjsjfuUv/mFYsZti1Cw4iIXot0r/7Dmlff40W8+bCoXMnqM1EPmWIDMeS/RfkB5K/qz3u6FHZzW/0vvtOqfLwxRdqt4RMtMSXbu7clxtj2TtHzcbrgfuR9ccfyFq2HMVnzuDSrDdQXlgI99tvkz9PmjEDKR99XDm0Om8eUj/9DAHvvAOboCCUpabKrTw/X7X3wDlzRI2oVFOOrzfHyv1HB7aSH1AmQwyrzpqldivIhE2IaoGvN5/BxewiLN6bgEl9uMCGmp7r6NEoy8hE6uefQZOaBrsOHWSPm26YtTTpoljiqj8+67ffoS0txYWnn652HpGnzmfak1ADgzmiRiSGhxIyCuHtbIt7opRC4kafU07kkxs7FrDm5YKalr2NlVww9Pr/juHLjWcwvmeIfIyoqXlOvFduNWn584Jq98M3rIeh4TArUSMpKtXg8w2n5b74QHKwNYEPoT//BO64Axg4UC7fJ2pqd/cKkVMULuUUyUTCRHRtDOaIGsnC3fFyeCjAzR7/6W0CvXJidde0acr+jTfKFV9ETU30xE0dUjl3TnxJIqKrYzBH1Ajyi8vw1UZlrtxTw9qYxtCQKNklag22bw+8/LLarSEzclevEAS62cuFRLoqKkRUOwZzRI1Ug1XklWvp5Yg7ewTD6P3xB/D770pv3Pz5zClHzUosHBJfioQvNsYiu7BU7SYRGTQGc0TXKbugFN9uVvLKTR/e1vjzyoneuMcfryzZFRWldovIDIkvReG+zsgqKMU3FX9fRFQzI//UIVKfWPQgarC283PBmC4mUO3hqaeU+XKRkcBrr6ndGjJT1laWmDGyvdz/YdtZXMwuVLtJRAaLwRzRdTiXlo/5O8/J/Zdv7iDLEhk9kUuuXz9gwQLA1lbt1pAZu7GDL3qFeqC4rBxz1p1SuzlEBovBHNF1eG/1CZRqtBjU1kduJqFDB2DrVqBLF7VbQmbOwsICL43qIPf/3J+Ik5dy1W4SkUFiMEfUQLvj0rHm2CWIzrhXblY+cIxWaSmwd2/lfQsT6GEkk9CjpQdGdvRHuRZ4e2UMtCKRNRFVw2COqAHKy7V4Z9VxfQmitn4uMPqh1RtuAP77X7VbQnSFmaPbw9bKEltPp2FtTLLazSEyOAzmiBpgSXQiDidmw9nOGs/e2BZGbcMGYPZsEaECYWFqt4boCi29nPDIQOV3862/Y5hImOgyDOaI6imroETOlROeHBoOHxc7tZvUcKmpwMSJSg3WRx4Bxo9Xu0VENZo6JFyW+UrMLMTcLXFqN4fIoDCYI6qnD/45KRMEt/F1xuR+RtyTJXri7rsPuHhRWfTwySdqt4ioVo621nLFuPDVplgkZhao3SQig8FgjqgeDiVk4dc98XL/rXGdYGttxH9Cb74JrFmjVHcQ1R4cHdVuEdFVjekSgKgwTxSVlsvhViJSWMMALNh5Dt9ujkNqXjE6BLjijbEd0TXEvdbjVx6+iI/WnZTd7WFeTnhpVHsMae+r//lziw/JOU1VDWzrgwWTmcmeGk5TrsWry4/KEcnbuwXhhlZeMFqHDgFvvKHsf/st05CQ0aQqefPWjrjls23451gy1hy9hJGd/NVuFpHqVA/mVhxKwtt/H8fbt3VCtxB3/LD9LO77fjc2PD8Y3s5XzkXafz4DT/1+AC/e1A7DOvjir4NJePTnffh72gC0869cUShyfn0wvvIDyk7UmCS6Dj/vPIcjF7LhYm+NmaONPBWJqO4wbx5w7Jgy1EpkJNr7u+KxQa3w5cYz+L+/jqJPay+4Odio3SwiVak+RvTdtrOYEBWCu3qGoI2fC94Z1xkOtlZYvC+hxuN/2H5OBmqPDWqNcF8XPDeiHToGuumz8OuI4S9fF3v95ubIP3ZquPj0Avz3n5Ny/8WR7Y170YPOww8Dc+ao3Qqieps2tA3CvJ2QkluM99coi5GIzJmqwVxJWTmOXshGv3DvygZZWsj70eezanzOgfOZ1Y7XDaFGn8+s9tiuuHT0eGsdhn64Ca8sO4LM/JJa21FcXIycnBz9lpvLLONUPafcjCWHUVCiQe8wT9wb1QJGu+Dh3XeVuqtERszexgqzb+8s93/dHS8TeBOZM1WDucyCEjkP6fLhVB9nOzl/ribicW/n6vUifZxtkVbl+EHtfPDxXV2x8JHemDGqPXafzcADP+6Rr1WT2bNnw83NTb9FREQ0yvsj0yAWPOyMS4eDjRX+e2cX462/KubIvfIKMGCAUvGByIiJOav3RIXI/ZeWHkFBSZnaTSIy32HWpjA2MhDDI/zk3IqbOvrjh/t74VBituytq8nMmTORnZ2t32JiuEqKFAkZBZhdUenhxZHtZPJSo/Trr8rqVeGFFwAbTjsg4yfqtorcc2fT8vFuxd8pkTlSNZjzcLSFlaVFtV41Xe+b6J2riXg8La/6kGlqXkmNiyV0Wng5wtPJFufS82v8uZ2dHVxdXfWbi4uRl2aiRiF6cl/48xDySzSICvXE/X1CYZR27gQmT64M5B58UO0WETUKsfDho7si5f4vu+Kx8USK2k0iMr9gTixS6BTkhh2xadXmJ+2ITUf3ljWnJunW0qPa8cK206no3tKj1te5mF0oh3TFQgiiuvp6Uyx2xWXA0daIh1djY4FbbxUTQ4GxY5WyXUQmRMyh1iXvfuHPw8i4yvxoIlOl+jDrw/3D8NveBPy5PxGxKbl4ZflROfdhfA9lLsT0RQerrVaa3C8Um0+lYt6WOMSm5GHOulMyXYSu1yS/uEx2t0fHZ8ohsu2xaXhkwT6EejlhYNvqCyeIarP/fCbm/Hta7r91ayeEehvh8Kqo7DBihFKyq1s3YOFCgCl6yASJKRCiIosY5Zm59DC0IhkkkRlRPc/cmMhA+U1KBGWpucXoEOiK+ZOj9KkfLmQVykSROj1aeuLTCd3w0dqTsqxSqLcj5k7qqc8xJ4Ztj1/MwZL9icgpKpW9cSKImz68Heys+UFG15ZdWIqnfjsgh1nHdQ3E7d2DYJQKC8XycKB1a2D1asDZWe0WETXZ6tZPJnTFuC+3y2TCP+04hweNudQeUT1ZaPkV5gqJiYkICQlBQkICgoOD1W4ONSPx5/Dkrwew8shFtPB0xMqn+sPF3ogXCyQnAwUFQBg/2Mj0/bT9LGatiIG1pQUWT+mD7i1qn35DpinRTD+/VR9mJTIk87bGyUBOfBh8OqGr8QVyJSXA5s2V9/38GMiR2bi/byhu7hKAsnItnlwYzflzZDYYzBFV2HY6De+tVuZnvj4mAt2M7Vu9yB13113AsGHA77+r3RqiZiem5Lx/Rxe08nZCUnYRnll0sNb8okSmhMEcUUU+uWm/RUNc98f3CMbEG1rC6AK5e+4B/voLsLYGPD3VbhGRKpztrPHVxO6wt7HEllOpLPdFZoHBHJk9sQL6sZ/3I7OgFF2C3fDWuE7VFt0YRSA3cSKwZAlgawssX66sYiUyUyJh/Ad3Kvnn5m6Jw6K98Wo3iahJMZgjs1amKcfUX6MRczEHXk62+HpiD7kyzqhWrN5+O7B4sVLVYelSYORItVtFBEPIlPDMjW3k/ivLjmLnGdZvJdPFYI7MeuXqa38dxaaTqXJI5rv7eyLI3QFGo6gIGDUK+PtvwN5e6ZG7+Wa1W0VkMJ4e1ga3VCyIeHzhfpxJzVO7SURNgsEcma2vNp3Bb3sSIEZUP5vQzfgWPNjZAV26AK6uwD//AKNHq90iIoMipkt8OD4SkSHuyCooxaTvdiMpq1DtZhE1OgZzZJZ+2XVeJp0WZo3piBEd/WF0RBT6ySdAdDQwcKDarSEySGLaxA/390QrH2WF66TvdyP9snrgRMaOwRyZncX7EvDq8qNyf8qg1jI3ldEQOeTuuEPJJyfoKjwQUa28nO3wy0O9EehmjzOp+Xjgx73ILSpVu1lEjYbBHJmVvw5ewIwlh+X+A31DMWNkOxiN+fOB4cOVRQ4ffqh2a4iMSqC7A35+uDc8nWxlPe/7ftgjS/cRmQIGc2Q2lh+4gOmLD0EUsPtP7xYyMbBRpCARqUeeew544AFlf/x44Nln1W4VkdFp7eOMBZOj4O5ogwPxWZj43W5kFbBKBBk/BnNkFubvOKfPBi+SAr99q5Hkkrt4Uano8PHHyv2XX1aqOzgY0apbIgPSKcgNvz58g76H7p55nENHxo/BHJl8+pHP1p/G6/87ph9aFeV+LC2NIJDbvRvo3h3YuhVwcVGGV995R5knR0QNFhHoit8fvQHeznY4fjEHd36zE+fT89VuFlGD8VOBTFapphyvLD+Kj9edkvefvbGtHFo1ikBOECW5CgqATp2AffuA225Tu0VEJqOtnwsWP3aDzC15Ni0ft321AwfiM9VuFlGDMJgjkyTmwdz/wx78ujteZvCYNSYCT9/YxvCHVtOrZKlv0wZYtw7YtQto21bNVhGZpFY+zlg2tS86B7khI78E98zbhdVHLqrdLKJ6YzBHJic2JRfjvtyOHWfS4WRrhe/u64kH+oXBoGk0wGefAS1bAmvXVj4eFQU4OanZMiKT5utiL4dch7b3RVFpOR5fGI3315yQpf6IjAWDOTIpS/YnYszn23EuvUAOnyx5oi+GdfCDQTtyBOjXD3j6aSA/H1iwQO0WEZkVJztrzJ3UAw/1V770fb3pDO7/cQ8XRpDRYDBHJqGwRIMX/jiE5/44hMJSDfq29sJfT/ZDe39XGCwRuL3yirLIQSx2EGW5vvqKwRyRCqytLPHaLRH47J5ucLCxwvbYdNz82TZsO52mdtOIrsn62ocQGbb95zPwwh+HEZeWD7G24elhbfHk0HBYGfJCh7/+Ap54AkhKUu6LxQ2ffw4EBandMiKzNjYyEO39XTDl5/3ymjLx+92Y3C8ML45sJ0uDERki9syR0Soq1eCdlTEyrYC46Pq62OGXh3vLhQ4GHcjpiEAuLAxYtkxJO8JAjshgVrr+/VR/TLyhhbz/w/azGPP5Nuw7l6F204hqxGCOjDJ33Prjybjpky2Yt/WsrOhwe/cgrHt2EPq29oZBEsOoixZV3h87FvjlFyAmBhg3Ts2WEVENHG2t8fa4zvjxgV4yH93plDz5xXHm0sOsGkEGx0IrPhmpmsTERISEhCAhIQHBwcFqN4eqOJOah7f+jsGmk6nyvp+rHd69rbPhLnLYsweYNQtYvRrw8ADOngXc3NRuFRHVQ2Z+Cd5bfQKL9iXI+15OtnjmxjaYENUCNlbsEzEkiWb6+c05c2QUknOK8NXGWPy6Jx6lGi1srCzwUP9Wcm6cs5214aUZWbECmDMH2LJFeczKSumBK+bqOCJj4+Fki/fv7II7egTjlWVHZC/da38dww/bz2HGyHa4qaO/4eewJJNmYJ+CRNWl5hbLNAELd59HcZmS90nkgxKrzsK8DTD/2ubNwOTJQFycct/aGpg4EXj1VaB1a7VbR0TXISrME6ueHoDf98Tjk39Py8oRU36JRmSwG54YEo7hHfyMp8IMmRQGc2SQTifnyknHS6Mv6IO4ni09MH14W/QNN6B5ceXlQGYm4OWl3Bfd+mIoVZTieuwxYOpULmwgMiFiWHVSn1CM6xaEeVvi5LzdQ4nZeOzn/Wjj64wpg1pjTGQgbK05/ErNh3PmamCuY+6GUEtVzIVbsPMctlbJ7dQ1xF0GcQPaeBvGUIb4k4mOBv74Q1nU0KWLkmpER8yPGzQIcHRUs5VE1AzS8orx4/azWLDjPHKLy+Rj3s62uKtnCO6JaoEQT14HmlOimX5+M5irgbn+Mqjl5KVc/LEvAcsPXkBanrJKTMRsIyL85Ly4XqEe6gdxYh6cKHYv0oiIIE43jCqIXrn4eAZvRGYsp6gUv+w6j5+2n0NKrjI3Vly2BrX1wa1dAzE8wt/w5veaoEQz/fxmMFcDc/1laC7iVy7mYg7+OZaMtccu4cSlXP3PxDfa27oFYdINoWjhZUDB0Z13AkuWVN53cABuvhkYPx645RYGckSkH2EQqZN+2RWPbbGVIwx21pa4sYMfbukSgAFtfRjYNZFEM/385m8TNYvsglLsjEvHjjNp2HAiBYmZhfqfiZWpw9r74c4ewRjUzkedpf7iO825c8C2bcD27crtP/9Uznfr3x/4919gxAglgBs9GnAywAUYRKQqcf0a2SlAbmKBxPIDF7DiUJJMbL7yyEW5iWter1BPuZhL9NyF+zqrP/pARo09czUw18i+MV3KLsLBhCwciM/EjjPpOJqULeMlHXsbSwxs4yOX9A/r4At3R9vmb+SJE8DixcCBA0pS34sXq//8hx+ABx9U9gsKAFtbZXUqEVE9iI/ZY0k5+N+hJKyLSZZBXlUib50I7nqFeaJ3mKcsJyZqxVL9JZrp5zeDuRqY6y9DQ2jKtYjPKJCrT08l5+JwYjYOJWYhOefKfGqtfZzQL9xbbiKQc7C1avp5bmIu28mTwKlTyu3ddwMDByo/X75cqYmqY2MD9Oih9MKJbcAAZVUqEVEjEsHcxhMp2HgyBXvOZuhX7OuIlbAioOsY6IaOga5ya+PnwqHZOkg0089vg/jNEKsXv90ch9S8YnQIcMUbYzvKFYy1WXn4Ij5ad1IO1YV5OeGlUe0xpL2v/uciPp2z7hR+25uAnMJS9Az1kGVZDDIvmREoLtPgYlaR/PdOzCzAhaxCnEtXAjgxdFBy2YVIEKmWRH3DyGB39G7lKcts+bvZN27DCguV+qbOzoBfRQWIY8eA558Hzp9XFilcnqQ3MLAymOvZE5g0CejWTQnievVS5sIRETUh8VkU1j8Mk/uHyevrkcRs7DmXgb1nM7DvfCZyi8rkF2OxVSXqT4vntvJxRitvJ7T0ckSgu4O8torePQ7VNlzGwoXI+P4HlKWlwa59e/i/+gocRKaCWuSsWYPUTz9D6YULsG3ZEr7PPwdnkcXAXHvmxFyC5xYfwtu3dUK3EHeZW0wEaxueHyzr4V1u//kM3PXtLrx4Uzs5PPfXwSR8s/kM/p42AO38XeQxIsnsV5ti8dH4SLks/KO1p3AyOUfW7rS3uXZvkKlH9iL4yi0qlRcMsWUVliA9r0QusU+ruE2v2E/JLZIrs672WyKGTMWcj3AfZ3QKckNkiLv8JilqG9YpT1t+PpCdDeTkKJvYFwXo27ZVjhFB2VtvAampQEqKcis28Tzh7beBV16pDOY6dao8vxgabdNGOVe7dspcN9HjRkRkgMorRjvEsOyxpGwcTcpBTFKOvC5fja2VpQzqAtzs5a2nk60M8ET1Ck/Hiltx39EWLvbWckGGKQZ/iQ34/M5ZtQpJM16C/6xZcIjsgoz5C5Dzzz9ovXoVrHU5RKsoiD6A85MmwXf6s3AePBjZf/+N9O++R9iSP2Gv+9wyt2Du1i+3y+zZb97aSf+L3Oe99bi/byieGBx+xfFTf41GYYkGPzzQS//YuC+3IyLQVdboFG8n6t31eGRAGB4d2Fq/ZLzn2//iw/GRGBsZqFowJwKonOR0ID0dZZpyaMvL5a2IZzTl5dBoylHk649Se0c5fInMDNgkX4RGo5U/K4cW5RrxHC1Ky8qQ7h2EXAcnFJWWwyIzHU4J51FapkFpaTlKNBqUlWpQUqZBYUkZTrsGIN7aRbbBMScT7dLOw0L+z2vFLwHEn7SlthxW5Rqc9m6JC25KT6dvbjr6nz8IBwstvO2t4GVvCU87S3jZWsDHwQouo26Cz9D+StbzM2eAL75Qesx0W1FR5b5Ioit6wgQxT23wYCA3V1l8cLnXX1dqmtYUoFUlVpE+9xzw5puVc9tE7reQEKBVK6BlS6WUFhGREcsuLJXDs2fT8hCXmi83MVKSlF0kA736fpJbW1rA0dZKDt06VWzKvhWcbK1hZ2MpA0Q7Gyvl1tpSDv8qt1b6+2LBh5WlhTyfpe7WwgLWVhW3lhby59U2C+XW1cEGbg42jfrvlNiAz++zd90Nh06d4P9/r8n74rM5dvAQeEycCO9HH7nyNZ59FtqCQoR8+03lOe6+G/btOyDgjYrPLXMaZhU9REcvZOOJwZVljsQvg5hTFX0+q8bnHDifiYcGtKr22MC2PjLFhZCQUShLQIlz6Lja28hh2+jzmTUGc8XFxXLTyRUBRhNYsPM8Ut/5ALPWz631mPvHv4HNrXrI/bsP/YP313xe67FTxs3Emnb95P7YmM34bMUHtR777M3TEd1pqNwfcOEEvlv6Vq3Hbnr2TaTccSO8nG0RdnAnWn01p/Y3FeQJ3FjR05WcDHzySe3HipWgOmIhgeiFq3pfFKB3dVVuvatUeRCB2bvvAj4+gK9v5a3YxBBr1W+XIrjTLVogIjIRIugRn2M1TUESn6WifvWlnCIkZRXK/Yz8UmTmlyCjoKTabVZhqQz8ysq1yCkqk5taHh/cGjNGtm+Sc+fm5iKnymeMnZ2d3C6nLSlB0bFj1YI2C0tLOPXpg8KDB2s8d+HBQ/B64P5qjzn364/c9euhFlWDucyCEtkDdflwqo+zHc6kVl/toyPm1YlcZNWPt9V3QafmFenPcfk5xXNrMnv2bLzxxhtoamI5uphkX2htB62IPywsRL+YPhgR+z7uTnLIUnyb8U5yQ7azmzgQWnGMLmip2O/axh8uPYLl0HEnmxbI3h0ACwtL+TMLSwvZ2yZ+KUVX+uO3dMUjYwfI7nWP3bbQxrRXutirbqIHy9oag/t2AHqFKK9VEgaMHKkEWzVtERGVb7BFC+Cll5R5Z2Kzt6++37Fj5bGiK1qsJtUFcOKY2rr8xc9nzmy6/xgiIiMmesjElKK6VJsQn7kFJWXIL9Ygr1jcKpvcLxG3GhQUl8kAsURTLhdniH0xt0/s6+7rHisVI0flWpRrtXLUSN6K++XKrUa3aavsV2yix6+pRFT9bJKDPa9jlm60p4qyzCy5WM7qsuFUK28vFIvSjDUQ8+qsvLyvOF48btYLINQ2c+ZMTJ8+XX//woULV/wiNAY57DvwCwBiq9mH1e6Jifq196BNqXpnXCfgrSdrPbbaKP6o4cCo43VqMyIjlfJUdSG6tGfPrtux4huSmMNGRETNRgxvutjbyM2UxcTEIKhKXeyaeuVMiarBnJiIKX6xLp/YKXrQLu9Z0xGP60o+VR5fou/d83G215/D17Vy9aS4HxHgWuM5L+9+rdo1S0RERMbFxcUFrmJU5xqsPdzlqJQmPb3a45q0dFhXne5T9Tne3tCkp9X5+OZgqXbXsFj9uKNKyRPRNbsjNh3dW9acmqRbS49qxwvbTqeie0sPuR/i6QAfFzt5Dh0x6V8ksNUdQ0RERGRhawv7jh2Rv3OX/jGxACJ/1y44dO1a43McukZWO17I37Gj1uObg+opph/uHybzwf25PxGxKbl4ZflROZ4/vocyZ2v6ooN4f80J/fGT+4Vi86lUzNsSh9iUPJlP7siFbNzfJ1T+XMwDm9wvDJ9vOC0zbZ+4lIPpiw/Bz9VOFm4nIiIi0hGLGbL++ANZy5aj+MwZXJr1BsoLC+F+u5JUPmnGDKR89LH+eM9J9yFv2zak//AjiuPikPr5Fyg8dgwe9/4HZjtnbkxkIDLyS2RQJlahdgh0xfzJUbJ3TRAJaqvmwunR0hOfTuiGj9aexAf/nESotyPmTuqpzzEnTBnUSqbjmLn0iExL0ivUA/MfjKpTjjkiIiIyH66jR6MsIxOpn38GTWoa7Dp0QIt5c/XDpqVJF8VqQv3xjt27IejDD5D6yadInTMHtqEtEfLF56rlmDOIPHOGyNSTBhMREZmiRDP9/FZ9mJWIiIiIGo7BHBEREZERYzBHREREZMQYzBEREREZMQZzREREREaMwRwRERGREWMwR0RERGTEGMwRERERGTEGc0RERERGTPVyXoaovLxc3l68eFHtphAREVEdXaz43NZ9jpsLBnM1SE5OlrdRUVFqN4WIiIga8DneokULmAvWZq1BWVkZDhw4AD8/P1haNu5IdG5uLiIiIhATEwMXFxeYGr4/42fq79HU3585vEdTf3/m8B6b6v2Vl5fLQK5bt26wtjaf/ioGc80sJycHbm5uyM7OhqurK0wN35/xM/X3aOrvzxzeo6m/P3N4j6b+/pobF0AQERERGTEGc0RERERGjMFcM7Ozs8Prr78ub00R35/xM/X3aOrvzxzeo6m/P3N4j6b+/pob58wRERERGTH2zBEREREZMQZzREREREaMwRwRERGREWMwR0RERGTEGMwZgOLiYnTt2hUWFhY4ePAgTMXYsWNlORV7e3sEBARg0qRJSEpKgqk4d+4cHnroIYSFhcHBwQGtW7eWq7NKSkpgKt555x307dsXjo6OcHd3hyn48ssvERoaKn8ve/fujT179sBUbNmyBWPGjEFgYKC8nixfvhymZPbs2ejVq5esGODr64tx48bh5MmTMBVff/01unTpIpPoiq1Pnz5YvXo1TNV7770nf0+feeYZtZti9BjMGYAXX3xRXnxNzZAhQ7B48WJ5sV2yZAnOnDmDO++8E6bixIkTsnTMt99+i2PHjmHOnDn45ptv8PLLL8NUiMB0/PjxePzxx2EKFi1ahOnTp8ugOzo6GpGRkbjpppuQkpICU5Cfny/fkwhYTdHmzZsxdepU7Nq1C+vWrUNpaSlGjBgh37cpCA4OlgHO/v37sW/fPgwdOhS33nqrvL6Ymr1798prpwheqRGI1CSknlWrVmnbt2+vPXbsmEgRoz1w4IDWVP31119aCwsLbUlJidZU/fe//9WGhYVpTc2PP/6odXNz0xq7qKgo7dSpU/X3NRqNNjAwUDt79mytqRHXk2XLlmlNWUpKinyfmzdv1poqDw8P7Xfffac1Jbm5udo2bdpo161bpx00aJD26aefVrtJRo89cyoSxYAfeeQR/Pzzz3IYy5RlZGRg4cKFcsjOxsYGpkrUGfT09FS7GVRLL6Po8bjxxhv1j1laWsr7O3fuVLVt1PC/N8EU/+Y0Gg1+//132esohltNiehdvfnmm6v9LdL1YTCnEvHF+YEHHsCUKVPQs2dPmKoZM2bAyckJXl5eiI+Px19//QVTFRsbi88//xyPPfaY2k2hGqSlpckPSD8/v2qPi/uXLl1SrV3UMGKKg5hr1a9fP3Tq1Amm4siRI3B2dpaVEcTnw7JlyxAREQFTIQJUMcVBzH+kxsNgrpG99NJLckLn1TYx10p86Ofm5mLmzJkwxfen88ILL+DAgQNYu3YtrKyscN9998lA1pTeo3DhwgWMHDlSzi8Tva2m9v6IDLF35+jRozI4MCXt2rWTC+F2794t56ref//9iImJgSlISEjA008/LUdpxAIkajws59XIUlNTkZ6eftVjWrVqhbvuugsrVqyQH5w6otdABDz33nsv5s+fD2N+f7a2tlc8npiYiJCQEOzYscOghw3q+x7FCt3BgwfjhhtuwE8//SSH7gxZQ/4PxfsSvSBZWVkw5mFWMZ3hzz//lKsgdcSHpXhfptZrLK4tolen6ns1FU8++aT8/xKrd8VqclMmhiLFSnmxWMDYidXVt912m/ycq/q5J35XxXVTZHao+jOqO+t6HEt14OPjI7dr+eyzz/D222/r74uAQKyqE6vtRLoEY39/tQ2LCOIP1pDV5z2KHjmxardHjx748ccfDT6Qu97/Q2MmglPx/7R+/Xp9gCN+J8V9ERyQ4RN9D9OmTZNB6qZNm0w+kNP9jhr6NbOuhg0bJoeRq3rwwQfRvn17OSWHgVzDMZhTici/VpWYIyGIb2BiebqxE0MEYul5//794eHhIdOSvPbaa/L9GXKvXH2IQE70yLVs2RIffvih7PHS8ff3hykQ8xzF4hVxK75B6/IghoeH639njYlISyJ64sQ81aioKHzyySdygrn4QDEFeXl5cu6mztmzZ+X/mVggcPk1x1iHVn/99VfZKydyzenmOrq5uclcj8ZOTLsZNWqU/L8S03DEexVB6z///ANTIP7PLp/fqJtTbUrzHlWh9nJaUpw9e9akUpMcPnxYO2TIEK2np6fWzs5OGxoaqp0yZYo2MTFRa0rpOsT/WU2bqbj//vtrfH8bN27UGqvPP/9c26JFC62tra1MVbJr1y6tqRD/LzX9f4n/R1NQ29+b+Fs0BZMnT9a2bNlS/m76+Phohw0bpl27dq3WlDE1SePgnDkiIiIiI2b4E3yIiIiIqFYM5oiIiIiMGIM5IiIiIiPGYI6IiIjIiDGYIyIiIjJiDOaIiIiIjBiDOSIiIiIjxmCOiIiIyIgxmCMioxYaGirLcjWln376SRYDF9szzzxT5+fNmjVL/7ymbiMRmS8Gc0REdeDq6oqLFy/irbfeqvNznn/+efkcU6i3TESGy1rtBhARGQPRu+bv71+v5zg7O8vNysqqydpFRMSeOSJSxdy5cxEYGIjy8vJqj996662YPHmy3D9z5oy87+fnJ4OiXr164d9//631nOfOnZNB18GDB/WPZWVlycc2bdqkf+zo0aMYNWqUPKc496RJk5CWllav9p84cQKOjo749ddf9Y8tXrwYDg4OiImJqde5iIiuB4M5IlLF+PHjkZ6ejo0bN+ofy8jIwJo1a3DvvffK+3l5eRg9ejTWr1+PAwcOYOTIkRgzZgzi4+Mb/LoiuBs6dCi6deuGffv2yddLTk7GXXfdVa/ztG/fHh9++CGeeOIJ2Z7ExERMmTIF77//PiIiIhrcPiKi+uIwKxGpwsPDQ/aOiZ6tYcOGycf+/PNPeHt7Y8iQIfJ+ZGSk3HTEfLVly5bhf//7H5588skGve4XX3whA7l3331X/9gPP/yAkJAQnDp1Cm3btq3zuUQgt2rVKkycOBG2tray53DatGkNahcRUUOxZ46IVCN64JYsWYLi4mJ5f+HChZgwYQIsLS31PXNiEUGHDh3g7u4uh0WPHz9+XT1zhw4dkr2BuvlsYhO9bLph3foSgeDhw4cRHR2tX/VKRNSc2DNHRKoRQ6ZarRYrV66UvVpbt27FnDlz9D8Xgdy6devkcGZ4eLicj3bnnXeipKSkxvPpgkBxTp3S0tJqx4gAUbyuGA69XEBAQIOCw/z8fPnaYuVqQ85BRHQ9GMwRkWrs7e1x++23yx652NhYtGvXDt27d9f/fPv27XjggQdw22236QMxscihNj4+PvJWBFViKFWouhhCEOcXvYEiP5219fVdAsUcP9G+V155Rb6m6GkUPXQi6CQiai4cZiUiVYkASPTMieFK3cIHnTZt2mDp0qUyIBM9YP/5z3+uWP1alQiibrjhBrz33ntyOHbz5s149dVXqx0zdepUGYTdc8892Lt3rxxa/eeff/Dggw9Co9HUq+1iwYOYayde4+OPP5bPF72JRETNicEcEalKrCz19PTEyZMnZbBWlQiQxEKJvn37yqHRm266qVrPXU1EUFhWVoYePXrIag1vv/12tZ+LdCiix08EXiNGjEDnzp3lcWJOnm6Yti4WLFggFz/8/PPPsofPyckJv/zyC+bNm4fVq1fX81+BiKjhLLRVJ5cQEdEVxMIGEfCJtCYNIYZ0xfPrUwqMiKiu2DNHRFQH2dnZcuXrjBkz6vwckf5EPOd6Vt8SEV0Le+aIiK4hNzdXJhYWxHCsyIVXF2Junth0izPc3NyatJ1EZJ4YzBEREREZMQ6zEhERERkxBnNERERERozBHBEREZERYzBHREREZMQYzBEREREZMQZzREREREaMwRwRERGREWMwR0RERATj9f/JTL4W4tBkHQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "stochast = Stochast()\n", "stochast.distribution = DistributionType.normal\n", "stochast.location = 0.0\n", "stochast.scale = 1.0\n", "stochast.plot()" ] }, { "cell_type": "markdown", "id": "28f5e8ef", "metadata": {}, "source": [ "To truncate a distribution, we use the [truncated](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.truncated) attribute." ] }, { "cell_type": "code", "execution_count": 13, "id": "d1d23a7e", "metadata": {}, "outputs": [], "source": [ "stochast.truncated = True" ] }, { "cell_type": "markdown", "id": "d4cf7c54", "metadata": {}, "source": [ "The truncation interval is specified using the [minimum](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.minimum) and [maximum](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.maximum) properties. If these are not defined, the original domain of the distribution is used (i.e., no truncation is applied).\n", "\n", "Suppose we want to truncate this distribution to the interval [-0.5, \\infty). If this is the first time truncation is applied in the project, it is sufficient to specify only the [minimum](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.minimum) value:" ] }, { "cell_type": "code", "execution_count": 14, "id": "2dd8eaa6", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [ "gallery", "statistics" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Variable:\n", " distribution = normal (truncated)\n", "Definition:\n", " location = 0.0\n", " scale = 1.0\n", " minimum = -0.5\n", " maximum = inf\n", "Derived values:\n", " mean = 0.0\n", " deviation = 1.0\n", " variation = 0.0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAGyCAYAAABUV+igAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAZp1JREFUeJzt3Qd4U2XbB/B/2zTdey9KoYyWvcqW5QSRJUORIaKA4NYPcYIL8FVRcQHKUgREhjIVQdl7Q0FoKdBFJ90zSb/rOYcWCi22Je3J+P+u67w5SU+Su30lvfuM+7YoKSkpAREREREZHEulAyAiIiKiijFRIyIiIjJQTNSIiIiIDBQTNSIiIiIDxUSNiIiIyEAxUSMiIiIyUEzUiIiIiAwUEzUiIiIiA8VEjYiIiMhAqWBmNBoNjh07Bh8fH1haMk8lIiIyBjqdDklJSWjTpg1UKvNJXxT/Tpfuu4R5Oy4iJacQYX7OmPFIM7QOcq30+sz8Ynzyx7/YcuYqMvOKEeBmh3ceDkevpt5Vej+RpEVEROjxOyAiIqK6cvDgQXTo0AHmQtFEbf2JBHyw4Sw+GNQcbYJcsXBPDEb/cADbX+0JT0eb264v0ugw6ocD8HBQ49uRbeHjbIv4jHw421pX+T3FSFrp/9F+fn56/X6IiIiodiQmJkoDLaW/x82Foona97tjMCIiCMPaB0n3PxzYAtvPJeOXw7F4tmfobdeLxzPyirF6UhdYW8nTlkHu9tV6z9LpTpGkBQYG6uX7ICIiorphaWbLlhRL1MTo2On4TDzbs2HZY5aWFuga6omjlzMqfM5fZ5PQtp4r3vntNLZGJsHdQY0BrQMwsUdDWFlaVPicwsJC6SiVnZ1dC98NERERkf4plpZeyyuCVldy2xSnl6ONtF6tIlfS87Dp9FXpeYvGRuC53o2wYNdFzN1+odL3mTlzJlxcXMqO8PBwvX8vRERERLXBqMYPS0oATwc1Zg5uiRaBLujfyh9TeoVi2YErlT5n2rRpyMzMLDsiIyPrNGYiIiIio5v6dLNXS9OVqbeMnonRNDGqVhEvJxtYW1mUm+Zs6O2IlOxCaSpVrbo977SxsZGOUllZWXr9PoiIiIhMbkRNJFXNA1ywNyq17DGdrgR7o9LQNrji8hztg91wKTVPuq5UTEouvJ1sKkzSiIiIiIyZotnN+G4hWH4oFr8eiUNUcjbeXHcaeUUaDG0n7wJ9eeVxzN5yruz6JzoFS3XUZqw/g4spOdh+Lgnf/BOF0Z2DFfwuiIiIiEywPIdYY5aeW4Q5W89L05dh/s5YMi5CmuIURI00C4sb05z+rnbS19/fEIkHv9gFX2dbPNk1RNr1SURERGRqLEpKxBJ98xEXF4egoCDExsayjhoREZGRiDPT399c2EVERERkoJioERERERkoJmpERERkkvIOHULsxEm40P0enG0ahuy//vrP5+QeOIiLgwfjXIuWiLr/AWSsWQslMVEjIiIik6TLz4dN0ybweeftKl1fFBeH2IkT4RDRESHr1sJ99Ggkvv02cnbthlnu+iSiuyPaqWUXFKOgWAd7Gys4qFWV9r0lIpLodIBWK9+K/YTiEBUWbG1vXJObC2g05a+5+VpPzxvXpqYCBQXy18T14nV8fGAIHO+5RzqE+Cpcn7FiBdSBAfB5fap036ZhQ+QfPYL0JUvg2L0blMBEjchIiA3akYlZ2HY2GSfjMnAmIQtXswqkz8ZSIkcL9nBAEx8ndAhxR5+m3qjv6aBk2ESmSyQ7+fnykZdX/nByAlq3vnHtV1/JyUxR0e1HgwbAiy/euHbUKCA9vfw1ImkS7xcWBixbduNakYRcuSJ/rTT5Kj1v0gTYt+/GtS1aAKdPV/y9BAcDly7duN+zJ3D4cMXXiiQtJeXG/UcfBXbsuHH/3nuBrVtRW7Kzs8t1Gbq1A9HdyDt+HPadO5d7zKFrNyTNnAmlMFEjMnBpOYX4+cAVrDwci7hr+RVeI0bRxOiaaNoRk5orHVvOXJVqDjb1dcLIjvUwqG0gHG34T56ojEh+CgsBh+t/zIhEaulSIDNT9BuUb28+79IF+OAD+VqREKnu8O+pb19g48Yb96dOlRO4inTvXj5R+/NPIDm54mtvqi0qiY0FLl+u+NqMjPL371SN69av3fo+d7pW/BzEYWkpP8/aGrUpPDy83P13330X06dP18tra1NSofLwLP/teXpAl5MDXUEBLG8edawj/NQmMlCiD+6X2y5gxaFYqZetYGttiXsaeaFzQw8083dBfU97uNqppR64hRodruUVISo5B5EJWdhxPgUHY9Jx7mo23v7tDD7e8i8m9GiAcd1CYK/mP30yUSKJEMlX6S9UMYX3ySdAfDyQlCRP04nRIHF77RrwxBPAjz/K14okY8KEyl/b3v7GuUhKxCiOeC9BvJ/4eunh51f+uY89BhQXy0mMWl3+CAkpf+2nn8pJZOnXxXPEId7T9ZYWi6tXy69rZXX7cWtS8fffcoIpviZeqzSxEoc4v9nu3TemOW++pvT8ZlVYoK9PkZGRCAgIKLuvr9E0Q8VPayIDo9Hq8P3uGHy1PQo5hRrpsVaBLlIXjgea+cJObVXh82ytreDnYicd3Rt5YUKPhsjMK8bqo3H4af9lXEzNxSd/nseSfZfxZt8wDGjtX67zB5HREEnM0aPAxYtAdLR8Kw4xBZiQAAwbBixZIl8rRnruNNoiErZS4hf+8OFycuTsDLi4yEfpef365Z8rkj87OzkhujXRudX331f9+xPJY1W1bVv1a728qn6t+BkYKCcnJziL/09qgZWXJzRpqeX/c0tNg6WjoyKjaQITNSIDciEpG6+sOoGTcZnS/RYBLpjWtyk6N/CoUVLlYm8tjaCN7VIf608m4JM//0Vsej5eXHkc608k4MNBLeDrosyHD9EdiTVWIvk6c0YMoQD+/sDYsfLXxAhSx46VP1ckUDcnX2JaUYxE+frKyYpYYyUOce7mVv65K1ZUPUYPj+p+V2Tg7Fu3Rs6OneUey927F3Y3rzesY0zUiAzEioNX8M7vZ6RpTmdbFd5+OBxD2gbCUg+7OMVrDGgdgIea+2Hejmh8uf0Ctp1LxtEvduLLx9pII3BEio+SzZ0LHDkiL3g/d+7GtGLp4vbSRE2MYrVrJ08xioX4DRvKt/XqAWJKTCR1N5szp26/FzIYutxcFImR1pvKbxScPQsrFxdY+/sj+dPPoElOgv/s2dLXXUeMQPqyn5H0v//BdcgQ5O7fj6wtWxD03XeKfQ/s9UmksEKNFtN/j8Tyg/KHSc8mXpg1uGWtjnSdT8rGSyuPSztHxUDdq/c3wbM9G3IqlGqfGA07dgzYs0deL/XKK/Lj4leRWNcl1pGVEgmZ2OUoFo936gRMnqxY2GScv79zDxzElTFjbnvcZeBA+M+aiYTXp6E4Ph7BPy4t95ykWbNQFBUFla8vPCdNguvgQVAKEzUiBWUVFOOZpYex/2J6WcI0qUdDvYyi/ZeCYpEgnpE2KwhD2wXio8EtYG3FOtikR2Ix//79wK5d8iHOS3c/ipGvm6cpS3dUtmoFNGsmrwn7r7VfZDbizPT3N6c+iRSSnF2AsQsPSbXRRNmMrx5vg55NvOvs/cXmg1lDWqJFoAveXncaq47EITm7EN8+0Za7QqnmSncK3qkel1gX1rWrvM5MTHmWlrl46626jZXICPDTmEgByVkFGD5/v1TvzNPRBouf7IDmAS6KxDKyYzB8nGwxZflRqaTHU4sPY+HYDpXuLiW6jagzJmqGbdgA7Nwpry8rrU3Wp488nSlqhXXrJt+KqUyOlBFVCac+iRSojzZi/n6p3lmAqx1+frqj1E1AaUcup2P0DweRW6RFt1BPfD+mvTTqRlQhUZD199+BNWuAbdvk6vmlRNImCr4K4nEDLvVAxiPOTH9/808aojp0LbcIT3x/QErS/FxsseKZTgaRpAntgt2xeFwE7NVW2B2Vigk/HikrtEtUzqJF8sL/p58GNm+WkzHRruj11+VWQvfdd+NaJmlEd4WJGlEdEYv3n156WOoU4OVkg5+f7oQg95sqnRuADvXdsUhMe1pbSdOgb6w9JfUYJTPfpbl+vbwJ4Ob+kmLHpiiR8eGHcp0zMd0p+iGKr9VyCyEic8I1akR1QKcrwWu/nsThy9fgZKvCsvEdEWKgzdI7NvDANyPbYvzSw/j1SByC3Ozxwr2NlA6L6ppo0D1vHrBwoTzNOWAAsG6d/DVRt0x0ALi1TRIR6R1H1IjqwGdbz0udAFSWFpj3RDs09nGCIevV1BvvDWgmnc/56zxWH4lTOiSqq24AYkNAv35yAdlZs+QkzccHaNq0fDNuJmlEdYIjakS17PcTCfjq7yjpXNQp6xLqCWMgdoPGXcvHt/9EY9raU2jk44iWgbc0hCbTIjYA/PnnjftirdmkSUD//jdKaBBRneKIGlEt9+58ffVJ6Xxij4YY1j4IxuS1+5vg3jAfaVPBpJ+OIj33pp19ZPxEQ/KCghv3hwwB3N3lbgHnz8tJ26BBTNKIFMREjaiW5BRqMOGnI8gr0qJrqAdee6AJjI3okPDpsFao72GP+Ix8vLDiGLQ6bi4wemJ92fPPy70xf/zxxuOi1U5sLPDJJ0AjrkskMgRM1IhqgdgpOXX1SVxMyYWvsy2+GNEGVnXQFqo2uNhZY96o9tJO0F0XUjF3+wWlQ6KaEuvNxGiZ2AwgGqDn58s10ErZ2MiNzonIYDBRI6oFoh3TxpOJ0uaBr0e2lboPGLMmvk6YObiFdP7ltgtScVwyIhkZwBtvyBsEPvtMnu4ULZz++gtYvlzp6IjoDpioEenZlbQ8zPj9jHT+8v2N0S7YDaZgYJsADGoTADHz+cKK41JDeTISo0bJNc5Eg/T27eUitaJBumjvdHNfTiIyOEzUiPRIo9XhpV+OS22YIuq7Y8I9DWFKRMmOIHc7aTfoO+tOKx0O/VepjVJvvw00aybXQTt4EHjwQSZoREaCiRqRHolSFkdEUVsblbQI31jXpVXGydYanw+X19utO56ATacSlQ6JbhUTAzz8MPDmmzcei4gATp6Ui9YyQSMyKkzUiPTkTEImPt8mL7R/b6AYeTLNRdliKvfZnvJI4Tu/nZb6l5KBtHqaPVseORNN0b/5BsjMvPF1S37cExkj/ssl0tOU5+urT0mlKx5q7ouBrQNgyqb0DkUjb0ek5hThvQ2RSodD+/bJfTdFU3Sxk7NXL+DQIcDFRenIiOguMVEj0oNFey7hVHwmnG1VmDGgGSxMfHrJRmWFjx9tCTGzu/ZYPLafS1I6JPOUlwe8+KK8g/PUKcDDA1iyRC650cT46vYR0e2YqBHpYZfnp1v/lc7f7BcGbydbmIM29dzwVLcQ6fyNNae5C1SpwrULFsg9OMeOBc6dA0aP5jo0IhPCRI3oLgvbvrnuFAqKdejcwMPoWkTdrZfvayJ1LbiaVYDP/jyvdDjm4ebG6KGhwLffyuU2Fi0CPI2jjywRVR0TNaK7bLguqvXbqCylhuumPuV5Kzu1FT4YKBfCXbrvkrShgmpRdDTQqZNcA62UGEET5TaIyCQxUSO6i16eH206K50/1zsUIZ4OMEfdGnmiX0s/qRDuO7+dgY69QGvHqlVA27ZyHbSXXy4/skZEJouJGlENiZ6XSVmFCPawx/juDWDO3uoXBnu1lVRDbvXROKXDMS2FhcCUKcCwYUBWlrxxYO1arkMjMhNM1IhqIDolBwt3x0jn7zwcDltrK5gzPxc7vNCnkXQ+a/M5ZOZxY4FeXLwIdOkCfP21fF+U3/jnHyAwUOnIiKiOMFEjqsEGgum/n0GxtgS9mnihT5iP0iEZhHHdQqTaamm5RZjzFzcW6CVJ69ABOHoUcHeXi9iKfp0qldKREVEdYqJGVE1/nU2WNhCorSzxTv9mSodjMKytLPHu9Z/HT/sv42JKjtIhGbf69YHeveUm6sePA337Kh0RESmAiRpRNRRrdZh5fQOBGEEy1w0Ed9pYIEYZNboSzN5yTulwjE9RkdxZoLTlkyheu3MnEGReZV+I6AYmakTVsOJQLC6m5sLdQY1ne8n9Lqm8N/qGSU3b/ziThAMX05QOx3ikpwP33ScXri3d0WlvD9jZKR0ZESmIiRpRNcpxfHF97ZVYOO9sa610SAapkY8TRnSQR4A+3HSW5Tqq4soVoFs3efRMFK+9cEHpiIjIQDBRI6qi+TuipSbkohL/YxH1lA7HoL10X2M42qhwMi5TKgpMd3DiBNC5M3D2LBAQAOzdCzRurHRURGQgmKgRVUFSVgEW7JLLcUx9sCnUKv7TuRNPRxtM6ilPDX+85RwKirVKh2SYtm8HuneXe3Y2awbs2wc0b650VERkQPjbhqgK5mw9j/xiLdrWc8WDzX2VDscoiIbtfi62SMgswLIDV5QOxzA7DYjWT9nZQI8ewO7d3DRARLdhokZUBZtOJUq3r97fxOz6edaUKAL8/PUiuN/8HYXcQo3SIRkWURtN7OwcOhTYsgVwdVU6IiIyQEzUiKpAlJsQAt3slQ7FqDzaLlBa0yeK4C7ee0npcAxLnz7AgQPAihWAra3S0RCRgTKIEtdL913CvB0XkZJTiDA/Z8x4pBlaB1X81+Wqw7F47deT5R4T64XOf/BQHUVLRNUpgis2Fryw4jjm7YjGE52C4WJnxrtl580D7rkHCAuT77dqpXRERGTgFE/U1p9IwAcbzuKDQc3RJsgVC/fEYPQPB7D91Z7SguSKONmosO3VHmX3LcCpKCJD1b+lP775Oxr/JmVjwc6LePWBJjBLs2fLvTr9/ICTJwFPT6UjIiIjoPjU5/e7YzAiIgjD2gdJ9Zc+HNgCdmor/HI4tvInWQDeTrZlh5dTxQkdESnP0tICL98vl5sQf4il5hTC7HzyiZykCc88A3h4KB0RERkJRRO1Io0Op+Mz0TXUs9yHurh/9HJGpc/LK9Ki66zt6DxzG8YvOYzzSdmVXltYWIisrKyyI1vssCKiOnV/uA9aBbpI/3a//ScaZuWbb4DXXpPP338fmD4d4IYUIjKGRO1aXhG0upLbpji9HG2k9WoVaeDliI+HtMT80e0wZ3hrlJSUYMg3e5GYeb0/3i1mzpwJFxeXsiM8PLxWvhciqpzYKfvy/fKU57IDl81nVG3RImDyZPn8zTeBt95SOiIiMjKKT31WV7tgNwxpF4hm/i7o1MAD341qB3dHNX6upE7TtGnTkJmZWXZERkbWecxEBNzTyBOtglxRUKzDgl0XYfI2bACeeko+f/FFeTSNiMiYEjU3e7XUvPnWv67FaJoYVavqrrJm/s64lJZX4ddtbGzg7Oxcdjg5OekldiKq/qja871DpfMf913GtdwimLSuXYEOHYAJE4DPPuN0JxEZX6Imymo0D3DB3qjUssdEA+e9UWloG1y14o9i6vTc1Wx4c0MBkcHr3dQb4X7O0lq1RXvkllwmy81NbhEl1qgxSSMiY536HN8tBMsPxeLXI3GISs7Gm+tOI69Ig6Ht5FYqL688jtlbzpVd/8VfF7DzfAqupOVJGxFeXHkc8dfyMaIDW68QGcOo2nPXR9UW7b2ErIJimJRz54Affrhx38FB7j5ARGSsddT6t/JHem6R1EsxJbsQYf7OWDIuoqzkRnxGfrmWPZn5xZi25pR0rbOdNVoEOGP1pC5SaQ8iMnwPNPNFYx9HnE/KwZI9l/Dc9TZTRi8xUe7defkyUFICjB+vdEREZAIsSsS2STMSFxeHoKAgxMbGIjAwUOlwyEiEv7NFmq7b+Vov1PNgG6m79dvxeKlbgau9NXZP7Q1HG8X/Zrw7WVlyx4ETJ4BGjYA9ewAvL6WjIjIpcWb6+5tj8kRU5x5u6Y8QTwdk5BXjp/2XYdSKioAhQ+QkzdtbbrDOJI2I9ISJGhHVObHb+9meDaXzH3bHoKBYC6MkJiSeew746y95PdqmTUCDBkpHRUQmhIkaESliYJsA+LnYSutN1x2Lh1GaOxeYP1/e1bliBdCundIREZGJYaJGRIoQNRCf6hYinc/fdVEqzWN0cnLk248/Bh5+WOloiMgEMVEjIsWMiKgHJ1sVLqbk4q+zSTA6b7wBHDgAvPKK0pEQkYliokZEihG7PZ/oFCydz99pJG2lMjKAvJs6oUREsKAtEdUaJmpEpKgnu9SH2soShy9fw5HL6TBoWi0wfDjQvbuoFaB0NERkBpioEZGivJ1tMahNgHQ+b4eBj6pNnw78+Sdw9iyQbuBJJRGZBCZqRKS4p++RNxVsPZuE6JTrC/QNzYYNwAcfyOcLFgAtWyodERGZASZqRKS4UG8n3BvmI5Ul+36XAY6qXbwIjBoln0+eDIwcqXRERGQmmKgRkUGY0EMuFLv6SDySswtgMPLz5c4DYhNBp07AZ58pHRERmREmakRkENoHu6FNPVcUaXX4af8VGIypU4HjxwFPT2DVKkCtVjoiIjIjTNSIyCBYWFiUFcD9+cBlw2kr9fLLcgkO0XnAjBpBE5mK9GXLENW7D861bIWYYcORf/Lkna9fsgTRDz6Ec61a40LPXkiaORO6wkIohYkaERmMB5r5Sm2lUnOKsP5EAgxC/frAvn1Anz5KR0JE1ZS1aROSZ82G5+TJCFmzGrZNmuDK+KehSUur8PrM9RuQ/Oln0vUNNm6E3wcfIGvTZqR8NgdKYaJGRAbVVmpUZ7kA7qI9l1AidhcoQfz1vGvXjfuW/KgkMhTZ2dnIysoqOwrvMNqVtngJXIcOheuQwbAJDYXvjOmwtLVFxuo1FV6ff+wY7Nq2hUv/h6EODIBjt65w7tcP+adOQSn89CEig/JYh3qwtbZEZGIWDsYoVKvs9deBe+4BPvpImfcnokqFh4fDxcWl7Jg5c2aF15UUFaHgzBk4dOlc9piFpSUcOndGvlh3WgG7Nm2k55ROjxbFxiJn5044is8DhagUe2ciogq4OagxqE0glh+8Io2qdWzgUbcBbNwIfP65fM5aaUQGJzIyEgEBcpFswcbGpsLrNNcypG4iVh7lP0OsPD1QGBNT4XPESJr22jVcGvkEpHpBGg1cRwyH58QJUApH1IjI4DzZtb50+2fkVcSm39RXs7YlJABjx8rnzz8PPPxw3b03EVWJk5MTnJ2dy47KErWayD1wEKnz58P3nbcRsno1AuZ+iZwdO5HyzTdQChM1IjI4jX2c0L2RJ3QlwNJ9l+rmTXU6OUlLTQVatwY+/rhu3peIaoXKzRWwsoL2lo0D2tQ0qES5nQqkfPklXB55BG5Dh8K2SWM433cfvF96EWnzF6BEfEYogIkaERn0qNqKQ7HILdTU/ht++y2wdStgZwcsXy7mU2r/PYmo1lio1bBt1gy5+/aXPSaSrdz9+2En/hirQEl+PiwsLco/aGl1/YvKbG5iokZEBqlnY2+EeDogu0CD1UfjavfN4uOB116Tz2fPBpo2rd33I6I64TF2DDJWrULG2nUojI7G1ekzoMvPh+vgQdLXE6ZOlcpxlHLs1QvXlq9A5saNKIqLQ86ePdIom2OvnrCwup6w1TFuJiAig2RpaYExnYMxfX0kFu+5hCc6BkuP1Qp/f2D+fGDdOrmXJxGZBOe+faFJv4aUuV9Cm5IKm7Aw1Fswv2zqszghUWwFLbvec9JEUX0bKV98CU1SEqzc3eHUqye8XnxRse/BokSxQkXKiIuLQ1BQEGJjYxHIKuNUReHvbEFekRY7X+uFeh72SodjNnIKNej80TZkF2qw+MkO6NnEW+mQiEghcWb6+5tTn0RksBxtVHi0vfyB/NP+y/p/gwsXgEoqlBMRGQImakRk0J7oJHcq2HYuWb+lOkQ18yFDgBYtgIMH9fe6RER6xESNiAxaQy9HdAv1lDZc/Xzwiv5eWHQdEG1hNBq5nycRkQFiokZERjOqtvJQLAo12rt/QdEeprQ9lChk6c21b0RkmJioEZHBuzfMG34utkjPLcLmU1fv7sXECNpTT8m3gwbJ059ERAaKiRoRGTyVlSUej6gnnd91pwLRx/PwYcDFBfj6a2krPhGRoWKiRkRGYXhEEFSWFjh6JQOn4zNr9iJRUcDbb8vnn30G+PnpNUYiIn1jokZERsHbyRYPNveVzpcdqGGpDjc3YNgw4N57gSef1G+ARES1gIkaERmN0Z3l3ZnrjiUgM7+4+i/g4QEsWQJs2MApTyIyCkzUiMhodKjvhiY+Tsgv1mL1kWr0/ywqKn+fDdeJyEgwUSMio2FhYYEnOgeXdSqocge88eOBAQOAK3qsw0ZEVAeYqBGRURnUJkBqLXUxNRd7o6vQ/umff4AffwTWrweu3mVpDyKiOsZEjYiMikjSBrcNkM5/3Hf5v6c8n31WPp8wAYiIqIMIiYj0h4kaERmdkR3l6c+/ziYhOaug8gtFCY6zZwEvrxudCIiIjAgTNSIyOk18ndAu2A0aXQlWVbap4NIl4L335PNPPpFLcxARGRkmakRklB673qlgxaEr0Okq2FTw/PNAfj7QowcwalTdB0hEpAdM1IjIKPVr4QcnWxVi0/OxOyq1/BdTU4HTpwGVSm66zpppRGSkmKgRkVGyU1thSNtA6Xz5wVvKbnh6yonaxo1AeLgyARIR6QETNSIyWiMigqTbrZFJSM6+ZVOBvT1w//3KBEZEpCdM1IjIaDX1dUbbeq7ypoLDcUBcHDBvHqDVKh0aEZFeMFEjIqP2+PVSHWJTQcnU14GJE+WaaUREJoCJGhGZxKYCr5NHYfHzMnnjwKRJSodFRKQXKv28DBGRgpsKWvlh0Lzn5AfGjQPatVM6LCIivWCiRkRGb8Ll3fC7egE5ajvkT3sbXkoHRERkSlOfS/ddQtdZ29H4rc0Y8PUeHI/NqNLzfj+RgPqvb8TTSw/XeoxEZKCysuA3S+5A8EWXx/DLlWKlIyIiMp1Ebf2JBHyw4SxeuLcRNj7XDeF+Thj9wwGk5hTe8Xmx6Xn4aONZRNR3r7NYicgAffghkJSE7HohWNy+f+WdCoiIjJDiidr3u2OkWkjD2gehkY8TPhzYQlpz8svh2Eqfo9WV4MWVx/HSfY0Q5G5fp/ESkYEZMgTo3h3qz+fA1sFO6lSwJ/qWTgVEREZK0UStSKPD6fhMdA31vBGQpYV0/+jlyqc/v9h2AR4OagzvIPf6u5PCwkJkZWWVHdnZ2XqLn4gMQEQEsGMHbAY+gsFtAiruVEBEZKQUTdSu5RVJo2OejjblHvdytEFKJVOfhy6l45dDsZg1pGWV3mPmzJlwcXEpO8LZTobINJTcNL0pSnJYWOCxjvIfb3+eqaBTARGREVJ86rM6cgo1eGnlccwc0gLuDuoqPWfatGnIzMwsOyIjI2s9TiKqgyStXz/g//4PyMgo16mgzfVOBb8eiVM0RCIioy/P4WavhpWlxW0bB8RomhhVu9XltFzEXcvH+CU3dnnqrv9V3fCNTdj+Sg8EeziUe46NjY10lBLTn0Rk5DZtAjZvBrZvByZPBlxdy770WId6OHYlQ2opNalHQ1iI0TYiIiOlaKKmVlmieYAL9kal4oFmvtJjYrfW3qg0jO4it4W5WUMvR/zx4j3lHvvkz3+RW6jBu/2bwc/Frs5iJyKFaDTySJrw/PNAcPnPin4t/TBj/RnEpObiYEw6OjbwUCZOIiJTmPoc3y0Eyw/FStMUUcnZeHPdaeQVaTC0XZD09ZdXHsfsLeekc1trKzTxdSp3ONtaw8FGJZ2LxI+ITNzixYBYwuDuDrzxxm1fFp8H/Vv5S+crD1W+e5yIyBgo3plAfKCm5xZhztbzSMkuRJi/M5aMi4CXkzxdGZ+Rz6kLIpLl5gLvvCOfv/VWuSnPmw3vEIQVh2Kx8VQi3n2kGVzsrOs2TiIiU0nUhDFd6ktHRVZO6HzH5346rFUtRUVEBufTT4HERCAkBHj22Uovax3kisY+jjiflCN1MBnV6falFERExoBzhURkHIqKgK+/ls8/+kjsFKr0UjEKX1pnceUh1lQjIuPFRI2IjINaDRw7Brz3HjBs2H9ePqhNAKytLHA6PksqrE1EZIyYqBGR8fD3B95+W7Qw+c9LRa3F+6/vJr9TSzoiIkPGRI2IDN+lSzV62vD28u7xdcfiUVCs1XNQRES1j4kaERm26GigUSPgkUeAguq1heoW6okAVztkFWiw5fTVWguRiKi2MFEjIsM2fbpc5La4GLC1rdZTLS0tMLR9oHTOmmpEZIyYqBGR4Tp9Gli2TD7/4IMavcTQ9kFSz/Z9F9OkNnRERMaEiRoRGS5R1Fb08330UaBduxq9hJj67N7ISzrnpgIiMjZM1IjIMB04APz2m7zDU5TkuAsjOsibCkSjdo1Wp6cAiYhqHxM1IjJMb74p344eDYSF3dVL3RvmI5XrSM4uxI7zKfqJj4ioDjBRIyLDk5wMnDsHWFsD77571y+nVllicJsA6Vz0ACUiMhZM1IjI8Hh7y2U5tm4F6lfcB7i6RKN2Yfu5ZCRnV6/MBxGRUpioEZFhEr08e/TQ28s18nFC23qu0OpKsPpIvN5el4ioNjFRIyLDsnmzXDetFpSOqondnyViNykRkYFjokZEhuOff4C+fYG2beUCt3r2cEt/OKitEJOai4Mx6Xp/fSIifWOiRkSGY8YM+bZbN3kjgZ452KikZE1YyZpqRGQEmKgRkeGMpolDJGjTptXa2wyPkKc/N51KRFaB/kftiIj0iYkaERnWaNr48UCQnEzVhjZBrmjk7YiCYh1+P55Qa+9DRKQPTNSIyGxG0wQLC4uyTQVs1E5Eho6JGhGZzWhaqcFtA2FtZYFT8Zk4k5BZ6+9HRFRTTNSISFnZ2XI5jjoYTSsl2kndH+4rnf/CUTUiMmBM1IhIWU5OwM6dwOnTdTKaVqp0+nPtsXgUFGvr7H2JqG6lL1uGqN59cK5lK8QMG478kyfveL02KwtX33sP57t3x7kWLRH9wIPI2bEDSmGiRkTKs7AAGjeu07fsFuqJAFc7ZBVo8MeZq3X63kRUN7I2bULyrNnwnDwZIWtWw7ZJE1wZ/zQ0aWkVXl9SVIQr455CUXw8Ar/4Ag02b4bv++9B5eMDpTBRIyLl/PwzkK5M4VlLSwsMbR8ona84yOlPImORnZ2NrKyssqOwsLDSa9MWL4Hr0KFwHTIYNqGh8J0xHZa2tshYvabC6zPWrIE2MxNBX30F+7ZtoQ4MgENEBGybNoVSmKgRkTJOnQJGjgRCQoBr1xQJYWj7IGkwb9/FNFxOy1UkBiKqnvDwcLi4uJQdM2fOrHR0rODMGTh06Vz2mIWlJRw6d0b+8eMVPid7+3bYtW6Nq++9j/Ndu+Fi//5I/W4eSrTKLY9gokZEypg1S769/37AzU2REMTUZ/dGXmX9P4nI8EVGRiIzM7PsmFbJJiTNtQxAq4WVh0e5x608PaBJTa3wOcWxccj+4w+U6LQImjcPnpMmIX3RIqR++x2UwkSNiOpedDSwYoV8/sYbioYy4vqmglWH46DR6hSNhYj+m5OTE5ydncsOGxsb/b24Ticldn7vvQe75s3g3LcvPCZOxLWV1z+vFMBEjYjq3uzZ0gciHnoIaNNG0VDuDfORynUkZxdix/kURWMhIv1RubkCVlbQ3rJxQJuaBpWnZ8XP8fKCun4wLKysyh6zadgA2pRUaSpVCUzUiKhuxccDixcbxGiaoFZZYnCbAOl8BWuqEZkMC7Uats2aIXff/rLHSnQ65O7fL61Dq4hd27YovnxFuq5U0aVLUgInXk8JTNSIqG598glQXAzccw/QrRsMQWlNte3nkpGcVaB0OESkJx5jxyBj1SpkrF2HwuhoXJ0+A7r8fLgOHiR9PWHqVCR/+lnZ9W6PjZB2fSZ9+BEKY2KQ/c8/SJ03H24jH1fse1Ap9s5EZJ7E7imVyiBG00o18nFC23quOHolA6uPxmNSz4ZKh0REeuDcty806deQMvdLafrSJiwM9RbML5v6LE5IFFtBy6639vND0PcLkDRrFjIGDJTqp7mPGgWPp8cr9j1YlJSUlMCMxMXFISgoCLGxsQgMlGsoEf2X8He2IK9Ii52v9UI9D3ulwzGN6U9/f7nQrYEQraT+b/VJ1Pewx9+v9pSatxOR4Ygz09/fnPokoroXEGBQSZrQr6UfHNRWuJSWhwMxyhThJSK6FRM1IqobmzbJRW4NlIONCv1b+UvnbNRORIaCiRoR1T7R4mX8eKBlS+DPP2GoSjcVbDyViMz8YqXDISJiokZEdWDZMiAxUZ7y7NkThqp1kCua+DihUKPD7ycSlA6HiIiJGhHVMlGPSJTkEF58EVCoFlFViA0Ew66Pqq08dEXpcIiImKgRUS3buBE4exZwdgaeeQaGblCbAKitLHE6Pgun4zOVDoeIzBwTNSKqXf/7n3w7caKcrBk40U7q/mY+0jkbtROR0qpU8Lbfl7uq9aJi1/33ozvA18W2pnERkSnYtw/YtQuwtgZeeAHGQmwq2HAyEWuPxeONvmGwtb7R94+IyOAStcjELDzdvQHs1f/9YSXK5367IxpFmht9sojITIkNBN7eQL9+coFbI9G1oScCXO0Qn5GPzacTMaiN+RTXJKLqSZo5q5rPADwnTYSVq6t+W0g9c08DeDraVOna73ddrOrLEpEpGzwY6NsXyMmBMbG0tJBG1T7beh4rD8UyUSOiSqUvXSo1ebcQMwdVkHf0KNyeGKnfRG3X//WCh0PVd2ptfbkHfJw57UlEAGxt5cPIPNouEHP+Oo/9F9MRk5qLEE8HpUMiIgMV+NVcqDw8qnTtv23b6X8zQaCbfbX63vm72sHK0rDawxBRHUpKAtaskRuwGynxOdajsZd0zk0FRFQZv48+gqWTE6rKd8aMKid1d73r84E5O5GQkX83L0FEpmjuXGDIEOCJJ2DMRlyvqfbrkThotFx3S0S3cx00EJbVqA/p0v9hWNrb102iFnctDxptyd28BBGZGrEe7Ztv5POhQ2HMejf1kZZ9pGQX4u9/U5QOh4iMSOKMGdBcu3bXr8M6akSkXz/8AIgPp0aNgAEDYMzUKksMaSdvJGCnAiKqjqzf10Onh41Ud5WodQhxh601cz0iuk6sSfv8c/n8lVcAK+OvPzasvTz9KUbUkrIKlA6HiIyFqFemB1Uuz1GRxU9G6CWIpfsuYd6Oi0jJKUSYnzNmPNJMao5ckS2nE/H139G4lJYrTbvW93TA091DMLgtt88TKW7dOuDSJUAslB09GqYg1NsR7YPdcPjyNWmt2uReoUqHRERmpErDYVsjk1BcjYW0f59LRkFx1XZ7rT+RgA82nMUL9zbCxue6IdzPCaN/OIDUnMIKr3exU0sflGuf7YItL3bH0HaBeO3Xk9hxnutHiBQ3Z86NdlF2djAVoqZa6e5PnY7rconovzU5egTqIPmzo9YTtQk/HkZWfnGVX/S55ceQnFVxonWr73fHYEREkDS90MjHCR8ObAE7tVWl2+E7N/TAg819EerthGAPB4zrFoKmvk44fCm9wusLCwuRlZVVdmRnZ1f5+yCiasjKEv/g5HZRkyfDlPRr6QdHGxUup+XhQEzFnzVEZJ601VyHps3J1f/Up/j78dVVJ6SFtVVRqKnaaJpoM3U6PhPP9mxYriJ411BPHL2c8d9xlZRgb3QaLqbk4vWH3Cu8ZubMmZgxY0aV4iGiuyAarh88CERFAX5+MCX2ahX6t/LH8oNXpE0F4g9GIiLhfERHNNq1s8q10aJ69EDIurVVHm2rUqI2pJrrvwa0DoCj7X+/9LW8Imh1Jbe1pvJytEF0SuUZZ1ZBMTp9tE1K9ERi98GA5ujeSC5Meatp06bh5ZdfLrsfHx+P8PDwan0/RFRFojC22O1pgkRNNZGobT59FTPyiuFiX7V2MURk4kpKkLHq1yrXRivRaKr18lVK1D4Z2gqGxFGtwqbnuyO3SIO9UWl4f2MkgtztK/wr18bGRjpKielPItKzXbuAli0BFxeYqpaBLtIyi3NXs/HbiXiM7lxf6ZCIyABY+/khY9WqKl+v8vSEhUpVN7s+75abvVpqNXXrxgGx+1OMqlVGjKKJ3Z5CM38XRCXn4Jt/ojgdQaQEsT7jkUcA8Vfi/v1As2YwRaKNnthUMGN9JFYcjGWiRkSS0O3bUJsULYIm1rw1D3DB3qjUssfEjioxStY2uGpd5aXnlJRI06BEpIAlS4CMDMDXFwgLgykb1CZA+tyKTMzCqbhMpcMhIjOgeLXa8d1CsPxQrFSfKCo5G2+uO428Ig2GtpMX2b288jhmbzlXdv3Xf0dh14UUXEnLk65fsPMi1h6Llz5AiaiO6XQ3Cty++KIY7oYpc7VX48FmvtL5zwfZqYCIap+iU5+C2EmVnluEOVvPS/30wvydsWRcBLyc5KnP+Ix8acqhVH6RFm+vO43EzALYWluhoZcD5gxvLb0OEdWxDRvkXZ6ursCYMTAHj0XUw+8nEvD78Xi82S9MKttBRFRbqvQJ02rGn/j71Z5wd1DjtVUn8O4jzfT64TSmS33pqMjKCZ3L3X/1gSbSQUQGVOD2mWcAR0eYg04N3NHAy0EqC/Tb8XiM7BisdEhEZMKqNE8huhLkFMjbSVcfjUNhFbsOEJEJO3YM+OcfuZ/nlCkwF2KE//GIetL5zweuSPUcich8xT33XFnR24x166ArKtLr61dpWKxtPTc88+NhaeG/+Eiavj4StpUUv/2fgZXyIKJaInZ4iiRt6FBAD21SjMmj7QLx8R//4kxCFk7EZVbam5iITF/2Pzvgk5cHK0dHJL7xJhy7d4dlFYvf6i1RE2vAftgdgyvpuRCrxbILilFoZdqLhonoP0yaBPTrJ5flMDNiU0G/Fn7SRqafD1xmokZkxmxCQpDy2RzYd+woFb/N2rwFlo5yCbFbuQ4cWDuJmljY//pDTaXzbrO3Y86w1nBzUFf7zYjIxNSTpwDN0eMd60mJ2voTiXjr4XA427JTAZE58p0+HUmzZyFnxw6pO0vKF1/IXVpuZWFRe4nazXZP7V3tNyEiEyIar1+5YrKtoqqqfbAbGvs44nxSDtYdY6cCInNl37YNQlaulM7PhoWj4ZbNVe77qbdEbdGemCq/4JNdQ+4mHiIydL/8AoweDYwfDyxYAHNVuqlArNkVmwpGdQouV0qIiMxP6F9bYeXurtfXrFKiJtan3UzUPcsv1pYN9Ysm6XbWVvBwVDNRIzJ1c+fKtyH8tz6obSBmbTkn9f88euUa2gXr9wOaiAxfwb//lruvPX++0mttmzSpnUTt5ulOUTfox32XMfvRlmjoJddNik7JwbTVp6Q1G0Rkwg4cAA4dAmxsgKefhrlzsbPGwy39pc4qyw5cYaJGZIZiBg6S16SJUj3/MaoeFnmm9teoffrneXwzsm1ZkiaI87cfDsekZUcwkK2ciEx/NG3ECMDLS+loDMLIjvWkRG3jyUS8+3AzuNhzUwGRuU13lio4exZJH/8PHuPGwa5Na+mx/GPHkb5oEbxfexU1Ue1ELTm7AFrd7QUetSUlSM0prFEQRGQErl6V16cJzz2ndDQGQ5TmCPNzxtnELKkg+LhunBImMifWATcGqOJefAm+b74Bxx49yk13Wvv5IuWLL+F0773Vfv1qF0Pr2tATb6w9hdPxmWWPnYrLxFvrTqFbqGe1AyAiIzFvHlBcDHTpArRrp3Q0hrWp4PqyD9GonZ0KiMxX4fnzsA4MvO1x8VhhdHSNXrPaidrHj7aU6qr1/2o3Gr+5WToGfL0bno42mDWkZY2CICIDJ5KPVavkc46m3WZga3/Yq60QlZyDgzHpSodDRApRN2yAtPnzUXJTGylxLh4TX6uTqU8PRxssfjICF1NypA8l8ddkQy8HNLhpzRoRmRixQPbgQXnqc8gQpaMxOE621niklT9WHIqVRtU6NtBfDSUiMh5+06cjdtKzuNCzF2yaNJYeK/z3vPQZGvTtN3WTqJUSiVmIp9wigbWDiMyAvT0wdqzSURiskR2DpURt86mreLd/EdzZvYXI7Ni1bInQrX8ic/0GFF28KD3m/NBDcHn4YViKz9C6StRWHroi1Va7lJon3a/vaY9xXUMwIoLlOYhMTnY24Oj4n9vOzV2LQBe0CHDBqfhM/HokFs/c01DpkIhIASIhcxs+TH+vV90nfPbnv5ixPhJ9wnzw9ci20iHO398QKX2NiEzMlClAs2bAtm1KR2IUpToEUVNNV8HueCIybanz5iNj9erbHhePpdawk0u1E7WfDlzBzMEtMPXBprgv3Ec6xPlHg1vgx/2XaxQEERmo5GRgxQrg7FnA2VnpaAzeI6394WyrwuW0POy4kKJ0OERUxzJWroQ65PZNAzahochYIfcDrfVErVirQ8tA19seF0P+Gv4FSWRa5s8HxO6ljh2BDh2Ujsbg2atVGNo+SDpfuveS0uEQUR3TpKZC5X17MXDR/1OTklI3idrgNgH4qYKRs+UHr2Bga3YlIDIZombat9/K5yzJUWWiObvwz/kUXE7LVTocIqpDKj9f5B89etvj4jGVt3fNXrMmT/rlUCx2XUhBmyA36f7x2AwkZORjcNsAaa1aKdFWioiM1Jo1QEIC4OsLDB2qdDRGo76nA3o09sKO8ynSH7Vv9uPnIJG5cBs6FEkfzURJsQYOnTpKj+Xu34/k/30C9yefrJtE7d+kbDQLkNeqXE6X/1p0c7CWDvG1UhbgDjEik+jrOWECoGapieoY3TlYStR+ORyHl+9rAju1ldIhEVEdcH/qKWgzMnD1vfdQImYlRD5kYwOP8U/Bc8IzdZOorXimc43eiIiMyMmTwJ49gEolJ2pULT2beCPI3Q6x6fn4/UQ8hndg6SIic2BhYQHvV1+F56RJKLx4UUrS1PXrw/Iu/tit9ho1IjIDLVoAf/0FfPwx4OendDRGx8rSAk90lNeqLdl7mf0/icyMpYMD7Fq0gG3jxneVpEmvpbeoiMh0iOK2ffoAL72kdCRGa1j7INioLBGZmIWjV64pHQ4RGSkmakRUHkd/9MLNQS31/xSW7mONSSKqGSZqRFQ+SeveHXj1VSAtTelojN7ozvWl202nEpGSXah0OERkhJioEdENf/8tbyKYN487PfXU/7N1kCuKtSVYcfCK0uEQkRFiokZEN3z3nXz7xBOAk5PS0ZiEMV2Cy/p/arQ6pcMhIiPDRI2IZImJwNq18vmkSUpHYzL6tvCDh4MaV7MKsDUySelwiMjIMFEjItkPPwAaDdClC9CypdLRmAwblRWGd5D7fy7Zx/6fRHUtfdkyRPXug3MtWyFm2HDkizqRVZC5cSPONg1D7OQpUBITNSICtFq5AbvA0TS9G9kpWKqttv9iOs4mZikdDpHZyNq0CcmzZsNz8mSErFkN2yZNcGX809D8x2aporh4JH/8P9i1bwelMVEjImDTJiA2FvDwAB59VOloTE6Aqx0ebOYrnS/aE6N0OERmI23xErgOHQrXIYNhExoK3xnTYWlri4zVayp9TolWi4TXXoPXc1OgDpRHw5XERI2IgGbNgBdflA9bW6WjMUnjusmlOtYdT0BqDkt1ENVUdnY2srKyyo7Cwor/PZUUFaHgzBk4dLnR+tLC0hIOnTsj//jxSl8/9etvYOXhDlcD+aOViRoRAQ0aAHPmAG+9pXQkJqttPTe0CnJFkUaHZftZqoOopsLDw+Hi4lJ2zJw5s8LrNNcypGUdVmKm4CZWnh7QpKZW+Jy8I0eQsXo1/N5/H4aCiRoRUR01ax7XVR5V+3H/ZRRqtEqHRGSUIiMjkZmZWXZMmzZNL6+rzclFwv9Nhd/770Hl5gZDwUSNyJyJKYOnnpIL3bJ1VJ2U6vBxtpGmPjecSFQ6HCKj5OTkBGdn57LDxsamwutUbq6AlRW0t2wc0KamQeXpedv1xbFXUBwfj9hJz+Jss+bSkfnbb8jZvl06L7qizEg4EzUic7ZmDbBwITBqlLzzk2qVtZVlWVuphXtiUMLkmKjWWKjVsG3WDLn79pc9VqLTIXf/fti1bn3b9eoGDRDy+28IWbum7HDs3Rv2HTtK59a+8oagusZEjcicffutfPv004BKpXQ0ZuHxiHqwtbbEmYQsHIxJVzocIpPmMXYMMlatQsbadSiMjsbV6TOgy8+H6+BB0tcTpk5F8qefSeeWNjawbdy43GHl5ARLBwfpXCR+SuAnM5G5On0a2LVLmhrA+PFKR2M23BzUGNw2ED8fuCKNqnVsUH6hMxHpj3PfvtCkX0PK3C+hTUmFTVgY6i2YXzb1WZyQKLaCwpAxUSMy976eAwYAAQFKR2NWxKYCkaj9GZmEK2l5qOdhr3RIRCbL/YmR0lGR4B+X3vG5/rMq3lFalww7jSSi2pGTAyy9/gHFTgR1LtTbCT0ae0n7NxbvZVspIqocEzUic7R8uagaCTRqBPTurXQ0ZmlctxDp9pfDscguKFY6HCIyUEzUiMyRkxPQuDEwcSJgyY8BJdzTyBOh3o7IKdRg5aFYpcMhIgPFT2giczRiBHDuHDBlitKRmHUB3PHXR9UW7o5BsVandEhEZICYqBGZKwsLQKHt5iQb2CYAXk42SMgswIaTCUqHQ0QGiIkakTlJT5c3EeTnKx0JAbC1tsLYLnIB3Hk7LrIALhHdhokakTlZsgQYMwbo10/pSOi6JzoGw0FthXNXs7HzQsWNoonIfBlEHbWl+y5Jf02m5BQizM8ZMx5phtZBrhVeu/zgFaw5God/r2ZL91sEuuC1B5pWej0RXSdGa0prpw0frnQ0dJ2LvTVGRNTDD7tjMG9HtFS2g4jIYEbU1p9IwAcbzuKFexth43PdEO7nhNE/HJCaFldk/8U0PNLKH8uf6YQ1z3aFn4sdRv1wAFczC+o8diKjsn07cP68vONzZMXFH0m5Uh0qSwvsjU7DqbhMpcMhIgOieKL2/e4YjIgIwrD2QWjk44QPB7aAndpKqi1UkS9GtMGozvXRzN9F2to+e0hLaaBgT1TFUwaFhYXIysoqO7JF7Sgic+7rKRqwOzoqHQ3dJMDVDv1b+Uvn83ZGKx0OERkQRRO1Io0Op+Mz0TXU80ZAlhbS/aOXM6r0GvnFWmlbu6u9dYVfnzlzJlxcXMqO8PBwvcVPZDQSEoB16+RzdiIwSE93byDdbjqViNj0PKXDISIDoWiidi2vCFpdCTwdbco97uVoI61Xq4pZm8/Cx9m2XLJ3s2nTpiEzM7PsiIyM1EvsREbl++8BrRbo1g1o3lzpaKgC4f7OuKexF3QlwPe7LiodDhEZCMWnPu/GN/9EYf2JRMwb1U7a5l4RGxsbODs7lx1OYn0OkbmJvj6dxtE0gzbhHnlUbeXhWKTnFikdDhGZe6LmZq+GlaXFbRsHxGiaGFW7k/k7o/HtP9H48akIaacoEf1HWQ7RiWDIEKUjoTvo0tADzQOcUVCsw+I9MUqHQ0TmnqipVZZoHuCCvTdtBNDpSrA3Kg1tgysvt/HdjmjM3RaFJeMi0DKQZTmIqqRJEzHErHQU9B9tpSb3DJXOF++9hCw2aycye4pPfYped8sPxeLXI3GISs7Gm+tOI69Ig6HtgqSvv7zyOGZvOVd2vRhF++zP8/j40ZYIdLNDcnaBdOQWahT8LogMVHIycPWq0lFQNTzQzFfa0Z5VoMGP+y4rHQ4RmXvBW7ElXazFmLP1PFKyCxHm7yyNlIn+d0J8Rr70V2apn/ZfRpFWh0nLjpZ7nRf6NMJL9zWu8/iJDNqnnwKffQa8/z7w+utKR0NVIHa+T+7VEC+tPCEVwX2ya33YqxX/qCYihRjEv/4xXepLR0VWTuhc7v6e13vXUVRERq6wEFi4ENBogLAwpaOhaujf0h9ztl7AlfQ8LD8Yi6e6hSgdEhGZ69QnEdWSX38FUlOBwED29jQyKitLTOrZsGzjVKFGq3RIRKQQJmpEpt6J4JlnAJVBDJ5TNQxuGwBfZ1skZRVKa3iJyDwxUSMyRadOAXv2AFZWwPjxSkdDNWCjssKEHg3KNlGJDixEZH6YqBGZ8mjawIGAn5/S0VANjehQDx4OasRdy8fvxxOUDoeIFMBEjcjUFBcDq1fL5+xEYNTs1FYYf70H6Nf/REkt94jIvDBRIzI11tZyF4L584He3CVt7J7oVA/OtipcTMnFxlOJSodDRHWMiRqRKXJzA55+WpS6VzoSuktOttZlo2pf/HWeo2pEZoaJGpGp1U4jkyOK3rrYWSM6JRe/n4hXOhwiqkNM1IhMiSjF0akTsHu30pGQnkfVnrmndFTtAjTcAUpkNpioEZmKtDRg5UrgwAF5nRqZlLFd6sPdQY1LaXlYc4yjakTmgokakalYvFie+mzTBoiIUDoa0jMHGxUmXq+r9uW2C6yrRmQmmKgRmQKdDvjuuxslObiJwCSN6lQfno42Ul01disgMg9M1IhMwbZtQFQU4OwMPPaY0tFQLdZVK+0B+tX2KPYAJTIDTNSITKkTwahRgKOj0tFQLRrZsR58nG0Qn5GPXw7FKh0OEdUyJmpExi4+Hvj9d/mcnQhMnq21FSb3CpXO526PQn4RR9WITBkTNSJj5+0N/PIL8MorQLNmSkdDdWB4hyAEutkhObsQC/fEKB0OEdUiJmpExk6U4hg8GPjkE6UjoTpio7LCq/c3kc6/+yca13KLlA6JiGoJEzUiIiP0SCt/hPk5I7tQg6//jlI6HCKqJUzUiIzZuHHA++/LxW7JrFhaWmDqg/Ko2tJ9lxF3LU/pkIioFjBRIzJWohzHokXAu+8CWVlKR0MK6NHYC50beKBIq8OcrReUDoeIagETNSJjNW+efPvgg0BIiNLRkAIsLCzw+kNNpfM1x+Jw7ioTdiJTw0SNyBgVFMijaQJLcpi1VkGu6NvCFyUlwP+2/Kt0OESkZ0zUiIzRqlXyurSgIKBvX6WjIYWJHaBWlhbYdi4Z+y9yvSKRKWGiRmTMnQieeQawslI6GlJYAy9HPBYRJJ2/vyESWl2J0iERkZ4wUSMyNidOAPv2ASoVMH680tGQgXjp3sZwslXhTEIWVrNhO5HJYKJGZGwcHIAnnwRGjgR8fZWOhgyEh6MNXujTSDr/+I9/kVOoUTokItIDJmpExiY0FFi48MZmAqLrRneujxBPB6TmFLIILpGJYKJGZKwsLJSOgAyMWmWJN/uGSec/7IpBbDqL4BIZOyZqRMZC1F+YPh04dkzpSMiA9QnzRrdQT6kI7szNZ5UOh4juEhM1ImMhNhDMmAF07cpOBHTHIrhvPRwGSwtg06mrOMByHURGjYkakbGV5BgxAnB2VjoaMmBNfZ3xWEQ96XzG+khotDqlQyKiGmKiRmQMUlOBX36Rz9mJgKrg5fsaw8XOGpGJWfhp/2WlwyGiGmKiRmQMxA7PoiKgXTugQweloyEjKdfx2gNNpPNP/zyP5KwCpUMiohpgokZk6HS6Gw3YOZpG1SCmP1sFuiC7UIOPNnFjAZExYqJGZOi2bgWiowEXF3l9GlEVif6f7w9sLlVyWXc8AXujU5UOiYiqiYkakaHLzAT8/YHRo+WuBETV0DLQFSM7yhsL3vntDIo03FhAZEyYqBEZumHDgEuXgPffVzoSMlKv3d8UHg5qRCXn4IfdMUqHQ0TVwESNyBhYW8tTn0Q14GJvjWnXOxZ8se08LqflKh0SEVUREzUiQ1VcDKxfD2jYXJvu3pC2AejcwAMFxTpMW3MKJaLTBZEZSF+2DFG9++Bcy1aIGTYc+SdPVnrttV9+waWRT+DfiI7ScfnJJ+94fV1gokZkqH77DXjkEaBLF7l9FNFddiyYObgFbFSW2BudhlWH45QOiajWZW3ahORZs+E5eTJC1qyGbZMmuDL+aWjSKu7YkXfwEJz79UXwksWov2I5rH39cOWp8ShOSoJSmKgRGapvvpFvH3iADdhJL+p7OuCV+xtL5x9sjGRtNTJ5aYuXwHXoULgOGQyb0FD4zpgOS1tbZKxeU+H1AZ/8D+6PPw7bsDDYNGgAvw/el0ok5YoWfgphokZkiM6eBf7+G7C0BJ55RuloyISM6xqCFgEuyCrQ4N3fzygdDlG1ZWdnIysrq+woLCys8LqSoiIUnDkDhy6dyx6zsLSEQ+fOyD9+vErvpcsvQIlGAysF1wgzUSMyRN99J9/27w8EBSkdDZkQlZUlZg9pCZWlBTafvootp68qHRJRtYSHh8PFxaXsmDlzZoXXaa5lAFotrDw8yj1u5ekBjWjLVwXJn34Clbc3HMQSFIWoFHtnIqpYbi6wZIl8zk4EVAvC/Z0xsUdDfPV3FN5adxoRIe5wd1ArHRZRlURGRiIgIKDsvo2NTa28T+r8BcjatBnBS5fAspbeoyo4okZkaJYvl4vcNmwI3Hef0tGQiZrSOxSNvB2RmlOIt9ZxFygZDycnJzg7O5cdlSVqKjdXwMoK2ls2DmhT06Dy9Lzje6T9sBBpCxag3vffSxsQlMREjcjQ7Nkj306cKK9RI6oFttZW+GxYa2kKdNOpq/jteILSIRHplYVaDdtmzZC7b3/ZYyViY8D+/bBr3brS56V9/z1Sv/0W9RbMh12L5lAafwsQGZpFi4CDB4Fx45SOhExci0AXPN+nkXT+9m+nkZiZr3RIRHrlMXYMMlatQsbadSiMjsbV6TOgy8+H6+BB0tcTpk5F8qeflV2fumABUr74En4ffgjrgABoUlKkQyeWpJjrGrWl+y5h3o6LSMkpRJifM2Y80gytg1wrvPZ8UjY++/M8TsVnIj4jH28/HI6nuoXUecxEta5DB6UjIDPxbM+G2HYuGSdiM/DaqpNYOi4ClpYsB0OmwblvX2jSryFl7pfQpqTCJixMGikrnfosTkgUW0HLrs9YvgIlxcWIf+GFcq8j6rB5PTcFZpeorT+RgA82nMUHg5qjTZArFu6JwegfDmD7qz3h6Xj7nHN+kRb1POzRt6Uf3t8QqUjMRLUmO1vaoQTXiv9QIaqtXaCfDWuFfl/uwu6oVPy4/zLGdKmvdFhEeuP+xEjpqEjwj0vL3Q/dvg2GRtGpz+93x2BERBCGtQ9CIx8nfDiwBezUVvjlcGyF17cKcsUbfcPwSCt/qK04a0smZv58QOxkmjVL6UjIzDT0csS0h+ReoB9tOotzV7OUDomIrlMs2ynS6HA6PhNdQ2/svBDD7eL+0csZensfUQjv5sJ4olAekcHR6YBvvwXy8gB3d6WjITM0qlMwejT2QqFGhyk/H0NeEXvMEpl1onYtrwhaXcltU5xejjbSejV9EYXwbi6MJwrlERmcv/4CoqMBZ2fg8ceVjobMkPhD+dNhreDtZIOo5BzM+J3LS4gMgcnPH06bNg2ZmZllhyiUR2RwxGiaMHo04OiodDRkpsQfzp8Pby21ll15OBa/HY9XOiQis6dYouZmr4aVpYVUbPFmYjRNjKrpiyiEd3NhPFEoj8igxMYCv/8un7MTASmsS6gnpvQKlc7fXHsal1KVK0tARAomamqVJZoHuGBv1I1+WzpdCfZGpaFtMHe9kRlZsEBeo9azp2hip3Q0RHihTyNE1HdHTqEGU5YfRUGxVumQiMyWolOf47uFYPmhWPx6JA5Rydl4c91paQHr0HZyE+qXVx7H7C3nym1AOJOQKR3FWh2Ssgqkc/7FR0ZLJGiLF8vnHE0jAyrZ8cVjreFmb43T8Vl457fTbDFFpBBF66j1b+WP9NwizNl6HinZhQjzd8aScRHwcpKnPkVRWwuxWOI6kZj1+3J32f35Oy9KR8cQd6yc0FmR74HorogWUfv2AUuXAgMHKh0NURk/Fzt8+VgbjFl4EL8cjpPKI43sGKx0WERmx6LEzP5MiouLQ1BQEGJjYxEYGKh0OGQkwt/ZgrwiLXa+1ksqukxkLr79J1qa2bC2ssCKZzqjXbCb0iGRmYoz09/fJr/rk8igpz2JDNzEHg3wUHNfFGtL8OyyI0jOLlA6JCKzwkSNSCmvvAI88ACwf7/SkRBVSiw/+d/QVmjk7YikrEJMXnYUhRpuLiCqK0zUiJSQkwMsXAj8+SeQmal0NER35GijwrxR7eBko8KhS9cwbc0pbi4gqiNM1IiU8NNPQFYW0KgRcN99SkdD9J8aeDniq5FtpfqXa47G46vtUUqHRGQWmKgR1TUxEvHVV/L55Mnyzk8iIyB6gc54pJl0/unW8/j9RILSIRGZPP6GIKprO3YAZ84ADg7AmDFKR0NULU90CpZqYAqvrjqBI5fTlQ6JyKQxUSOqa6WjaaNGAa7swkHGZ1rfMNwX7iMVIX966RFcTMlROiQik8VEjaiu+3quW3dj2pPICIl1al+MaI0WAS5S0fJRPxxEYma+0mERmSQmakR1ydNT7u357LNA8+ZKR0NUY/ZqFRY92QENPB2kLjKjfziIa7lFSodFZHKYqBHVJTs74Mknga+/VjoSorvm6WiDpU9FwNfZFheSczB28SHkFmqUDovIpDBRIyKiGgt0s8ePT0XA1d4aJ2IzMOHHIygoZkFcIn1hokZUV0aOBObOlYvdEpmQRj5OWPxkBOzVVtgdlYqJPzFZI9IXJmpEdeHgQeDnn4FXXwXy8pSOhkjvWge54ocxHWBrbYl//k3hyBqRnjBRI6rLkhzDhwPe3kpHQ1QrOjf0wKKxEbCztsKO80zWiPSBiRpRbUtOBlaulM+nTFE6GqLaT9ae7FCWrD3DZI3orjBRI6pt338PFBUBHToAERFKR0NU6zo1uJGs7TyfglE/HEBmfrHSYREZJSZqRLVJowG+/VY+52gamVmyJkp3ONmqcOjSNQyftw/JWQVKh0VkdJioEdWm338H4uIALy9g2DCloyGqUx3qu+OXCZ3h5WSDc1ezMeS7vbiUmqt0WERGhYkaUW0KDgYGDwYmTgRsbZWOhqjOhfk5Y/XELgj2sEdsej4e/W6vVG+NiKqGiRpRbWrXDli9GpgxQ+lIiBRTz8MeqyZ2RrifM1JzijBs3j5sOJmgdFhERoGJGlFdsLBQOgIiRXk72WLlhE7o3dQbhRodpvx8DJ//dR4lJSVKh0Zk0JioEdWGjAy5uO3Fi0pHQmQwnGytsWB0e4zvFiLd//yvC3h+xXHkF7F8B1FlmKgR1YYffgA+/VRen0ZEZawsLfDWw+GYNbgFVJYWWH8iAYO+2YMYbjIgqhATNaLaKMkhenoKzz2ndDREBmlERD38NL4jPB3V0o7Q/nN3Y9OpRKXDIjI4TNSIaqMkx+XLgIcH8PjjSkdDZNC11jY+3x0R9d2RU6jBs8uO4r31kSjS6JQOjchgMFEj0rfPP5dvRUkOOzuloyEyaD7Otvj56Y6Y0KOBdH/hnhhpKvRCUrbSoREZBCZqRPp09CiwaxegUgHPPqt0NERGQWVliWkPhUkbDdzsrXEmIQv95u7Gwt0x0Om4K5TMGxM1In364gv5VnQh8PdXOhoio3JfuA/+ePEe9GziJU1/vrchEqMWHkDctTylQyNSDBM1In0KDARcXIAXXlA6EiKj5O1si0VjO+D9gc1ha22JPVFpuH/OTvywOwZajq6RGWKiRqRPH34IJCQAERFKR0JktCwsLDCqU7C00aBDfTfkFWnx/oZIDPx6D07HZyodHlGdYqJGpG/29kpHQGQSGno5YuUznTFzcAs426pwKj4Tj3y1G+/+dhrXcouUDo+oTjBRI9KH7dvlg+1wiPTK0tICj0XUw1+v9ED/Vv4Qs59L9l1Gz0/+waI9MSjWspQHmTYmakR3SyRnr7wC9OkDzJ+vdDREJtsrdO5jbfDz+I5o6uuEzPxizFgfiQc+34k/zlxlz1AyWUzUiO7Wzp3A8eNyzbShQ5WOhsikdQn1lNauielQDwc1LqbkYsKPR9D/q93Yfi6JCRuZHCZqRPoqyTF6NODurnQ0RGbRL1RMh/79Wk9M6RUKB7UVTsdnYdziwxj0zV7sOJ/ChI1MBhM1ortx8SKwbp18/vzzSkdDZFacba3x6gNNsGtqb0y4p4FUzuN4bAbGLDyIvl/uxtpjcVzDRkaPiRrR3fjqK3mN2v33A+HhSkdDZJbcHdSY1jcMO/+vF8Z1DYGdtRXOJmbhpZUn0H3235i3IxqZecVKh0lUI0zUiGoqMxP4/nv5nAVuiQxiw8E7/cOxb1pvvPZAE3g62uBqVgFmbj6HiI/+wiu/nMCRy9c4LUpGRaV0AERG6/JlICBA1A8AHnxQ6WiI6DpXezUm9wrF+O4h+O14gtQz9NzVbKw+GicdYtfo8A5BUrkPkcwRGTImakQ11bIlcOYMkJgoJ2tEZFBsVFYY1j4IQ9sF4uiVDCw/eAUbTiZISZso7fHBxrPo0tADA1oH4IFmPnCytVY6ZKLbMFEjuhsiQROjakRk0C2p2gW7ScfbD4dj3bF4rDkWjxOxGdh1IVU63lhrid5NvHFvuA96N/WW1r0RGQImakTVJda3rFwJDBgg104jIqPhYmeNMV3qS8el1Fz8fiIBvx2PR3RKLracuSodlhaQkro+YT7o09Qbod6OUrJHpAQmakTV9fffwGOPAcHBwIULgDWnS4iMUX1PBzzfpxGe6x2KyMQs/HEmCX9FJknnhy5dk45Zm8/By8lGmiLt2tATnRt6IMid/Xyp7jBRI6quTz+Vbx9+mEkakQkQo2XN/F2k4+X7GiM+Ix/bzyZh69lkHLiYhpTsQmlTgjiEIHc7tA92R5t6rmgd5IowP2dYW3GdKtUOJmpE1aD69yywaZP4ZAdefFHpcIioFgS42mFU5/rSUVCsxbErGdgbnYq90WlSQd3Y9HzEpsdj7bF46XoblSVaBLiUJW1N/Zyk6VKxmYHobjFRI6oG52/myieDBgGhoUqHQ0S1zNbaSpruFMcrAHIKNVIttmNXxJEh3WYVaHD48jXpuLnNVUMvBzT1dUYTXyc09HJEiKcDgj3spdckqiomakRV5JVzDQ6rlst3XhEf2URkbhxtVOjR2Es6BJ2uBDFpuVLSdjIuQyr9cS4xS0reziflSAdO3Hi+GIz3c7aV1seJI8TDAf6udvBztYW/i520Hk4keUQGlagt3XcJ83ZcREpOoTRsPOORZtIQcmU2nkzEp1v/Rdy1fOk/8tcfaopeTb3rNGYyP6OOboBFURHQuTPQpYvS4RCRAbCURs4cpePRdoHSY6LzQWJmAc5dzbqeuGUjJjVX2mWaXahBQmaBdIip1FupLC3g42wLPxdb+LnawdvJBh6Oang6yLcejjbwcFBLhXrt1ByZq4r0ZcuQ/sNCaFJTYdO0KXzfehN2og5mJbK2bEHKF1+iOD4e6uBgeL/6Chx79IDZJmrrTyTggw1n8cGg5mgT5IqFe2Iw+ocD2P5qzworRh+5nI7nVxzD/z3QBH3CvKXFnc/8eBgbnusuDS8T1ZaA7BT5hKNpRPQfmxPEKJk4ejf1KXtcJHDpuUW4lJaLmNQ8KXET5yKpS8zIR1J2ITS6Emkzgzhw01RqRezVVnC1s4azOGzFrer6rbivKnvc0VYlJXX21lawV4tzS9ipVdJ98bhYY2eq5UeyNm1C8qzZ8J0+HXatWiJ9yVJcGf80Gm7eBJWHx23X5x09hvhXXoX3yy/BsWdPZG7YgNgpzyFk9a+wbdxYke/BokThpmcDvt6DVoEueG9A87Jh5M6ztkk1bp7tefsaoMk/H0V+kRYLx3Yoe2zg13sQ7u+Mjwa1+M/3i4uLQ1BQEGJjYxEYKP/1ow+FGi1S0rJhlXS10mt0Tk4ocXWT7xQXw+pqYuXXOjqixM1dvqPVwipBXrRakRJ7e+g8PK8/UQer+LjKr7Wzg87Tq6wemFVcbOXX2tpC53VjpNIq9krl19rYQOd94wPJKi4OKNFVfK21NXS+fjeujY8HdNqKr1VZQ+d341rLhARYaDUVX2ulgs7f/8a1VxNhUVxJI2YLS2hv+v/fMumqPFpW4bUW6PXLRRQU67B3oD/8O7QErPiXLBHpl0ark2aWEjIKkJiZj8SMAqTmFCIttwhpZbdF0jVFmoo/X2tCzLTaXU/axKG2spR2sYoETtyKQ626+TGLco+JW/EcMWUrvmZlaQl/V1up44M+xdXg93fMsOGwa94cvu+8Ld0v0ekQ1bMX3J54Ap7PPH37e7z0Ekry8hE077sbrzF8OGybhsFvxnSY3Yia+A/tdHwmnu3ZsNwwctdQTxy9nFHhc45dvoanujco99g9jb3w55mKE6TCwkLpKJWdnY3acCYhC9Nm/Iw/Fk6p9JpvOz6K2T3HSuf1riVi5/zb/yMptbjtw5h+38SytVGHvh5V6bUrW9yHqX3lpuAOhXk48/mwSq9d37Q7nhswVTq31Glx8X8DKr32r4YdMP7Rd8vu//vJINhoK0589gS3xMgRH5XdP/bFY3ArqPhnfcyvCQaNvl7iAsDeb8bCPzu1wmvPeQbjwae+Lru/bcFENEyvOBG97OqLHhO+v/G9Ln4BLZKiK7w2xcEVnaf8VHb/l2X/h4i4yAqvzVHboeClVdK5plETJmlEVCtUVpbwc7GTDuD6H/UVEOMruUVapGYXIjO/GFkFxcjK11y/vf1+doEG+cVaaZBD3OaJ2yItirRysqcrgfR64tAXUbpE34nazb/Hs7Kyyu7b2NhIx61KiopQcOZMuYTMwtISDp07I//4cVQk//gJeIwdU+4xx67dkL1tG5SiaKJ2La8IWl3JbVOcXo42UpXoioi/JDwdy7f28HJUS391VGTmzJmYMWMGapsYNBZ/WRSo7tB2RCUPMQvWqjtfW6JSlV2rVllU+Vob7Z1fV3fTtZa6kjteq1VZl10rFKrUKKlkeFxrVf7aIpW60tcuti5/bbHKutJrNaqqX1t827WVxyC+l5uvFd9rZdcWXX9dsf0+wI2dCIhIWWKaUmxqEMfdjuBJCdz1JE5K4Iq10iBKsVZXdlso3ZZU8NiN++JWTNuK3+nitl4tFgUODw8vd//dd9/F9Om3j3ZprmXIM1K3THFaeXqgMCamwtcW69isSmeobrpePG62a9Rq27Rp0/Dyyy+X3Y+Pj7/t/2R9aFPPDRvmTwLEUQnxlXJf/Xpcpdc+ef0o8/nISq8dcf0o87+Kk1ZBjJ+VG0P7qPJrHxCjaDc/8EFOpdfec9u1lf9HHXHbtXIRyYo0v+3ai5VeG3rbtQ9Vem1gNa61vfVaIiITGcFzEoeRNaOPjIxEwE09lisaTTMliiZqbvZqaU771tEwMWomRtUqIh5PzSm/liglp6jCjQcVDYnePFxKRERExsXJyQnOzs7/eZ3KzVVaqqJNK7+7VpuaBpWnZ8XP8fSENi21ytfXBUV7XogFiM0DXLA36sYPRWwm2BuVhrbBFZfnaBPsVu56YfeFFLQNrnw+n4iIiMyLhVoN22bNkLtvf9ljYjNB7v79sGvdusLn2LVuVe56IXfv3kqvrwuKNycb3y0Eyw/F4tcjcYhKzsab604jr0iDoe2CpK+/vPI4Zm85V3b9uK71seN8ChbsvIio5BzM2Xoep+IzMaZzfQW/CyIiIjI0HmPHIGPVKmSsXYfC6GhcnT4Duvx8uA4eJH09YepUJH/6Wdn17qNGI2f3bqQtXITCixeRMvcr5J85A7eRj5vvGrX+rfylujIi4RKNb8P8nbFkXIRUnVkQtWRuru/SLtgdX4xog0///Bf/++Nf1Pe0x/xR7VlDjYiIiMpx7tsXmvRrSJn7JbQpqbAJC0O9BfPLpjKLExKlck2l7Nu2QcAn/0PK518gZc4cqOsHI+iruYrVUDOIOmp1rbbqqBEREVHtiTPT39+KT30SERERUcWYqBEREREZKCZqRERERAaKiRoRERGRgWKiRkRERGSgmKgRERERGSgmakREREQGiokaERERkYFiokZERERkoBRvIVXXdDqddJuYmKh0KERERFRFidd/b5f+HjcXZpeoJSUlSbcRERFKh0JERETVFBsbi3r16sFcmF2vT41Gg2PHjsHHxweWlvqf+c3OzkZ4eDgiIyPh5MRG8dXBn13N8OdWc/zZ1Rx/djXDn1vNZWZmonnz5khLS4O7uzvMhdmNqKlUKnTo0KHWXj8rK0u6DQgIgLOzc629jyniz65m+HOrOf7sao4/u5rhz63mnK//vMTvcXPCzQREREREBoqJGhEREZGBYqKmZzY2Nnj33XelW6oe/uxqhj+3muPPrub4s6sZ/txqzsZMf3Zmt5mAiIiIyFhwRI2IiIjIQDFRIyIiIjJQTNSIiIiIDBQTNSIiIiIDxUStlly6dAlPPfUUQkJCYGdnh4YNG0q7VYqKipQOzSh8+OGH6NKlC+zt7eHq6qp0OAbt66+/Rv369WFra4uOHTvi4MGDSodk8Hbu3In+/fvD398fFhYWWLdundIhGYWZM2dKBcNFRX1vb28MHDgQ//77r9JhGYVvv/0WLVu2lIq2iqNz587YvHmz0mEZnVmzZkn/Zl988UWYCyZqteTcuXNS49h58+bhzJkzmDNnDr777ju88cYbSodmFERCO3ToUEyaNEnpUAzaypUr8fLLL0t/BBw9ehStWrXCAw88gOTkZKVDM2i5ubnSz0okuVR1O3bswOTJk7F//35s3boVxcXFuP/++6WfJ91ZYGCglGQcOXIEhw8fRu/evTFgwADp9wNVzaFDh6TfqSLhNSuiPAfVjY8//rgkJCRE6TCMyqJFi0pcXFyUDsNgRURElEyePLnsvlarLfH39y+ZOXOmonEZE/ExuHbtWqXDMErJycnSz2/Hjh1Kh2KU3NzcSr7//nulwzAK2dnZJY0aNSrZunVrSY8ePUpeeOGFEnPBEbU6bihrTo1kqfZHHcVf5/fee2/ZY5aWltL9ffv2KRobmc9nmsDPterRarVYsWKFNBIppkDpv02ePBn9+vUr93lnLsyrs6mCoqKiMHfuXHzyySdKh0ImIjU1VfrA9/HxKfe4uC+m3olqk1jaIdYJde3aFc2bN1c6HKNw6tQpKTErKCiAo6Mj1q5di/DwcKXDMngrVqyQlnaIqU9zxBG1anr99delhYx3Om79JRkfH48HH3xQWnP19NNPw1zV5GdHRIY7wnH69GnplyhVTZMmTXD8+HEcOHBAWn87ZswYREZGKh2WQYuNjcULL7yAZcuWSRumzBFH1KrplVdewdixY+94TYMGDcrOExIS0KtXL2kH4/z582HOqvuzozvz9PSElZUVkpKSyj0u7vv6+ioWF5m+KVOmYMOGDdLuWbFInqpGrVYjNDRUOm/Xrp00QvTFF19IC+SpYkeOHJE2R7Vt27bsMTGTIP7b++qrr1BYWCh9DpoyJmrV5OXlJR1VIUbSRJIm/kEuWrRIWj9kzqrzs6OqfeiL/7a2bdsmlUkonY4S98UvUiJ9E3svnnvuOWnK7p9//pHKD1HNiX+vItGgyvXp00eaMr7Zk08+iaZNm2Lq1Kkmn6QJTNRqiUjSevbsieDgYGldWkpKStnXONrx365cuYL09HTpVvz1JKYLBPHXqFjbQTJRmkNMn7Rv3x4RERH4/PPPpQXK4oOMKpeTkyOtGy0VExMj/TcmFsXXq1dP0dgMfbrz559/xm+//SbVUrt69ar0uIuLi1Qvkio3bdo0PPTQQ9J/X9nZ2dLPUSS7f/zxh9KhGTQnJ6fb1kA6ODjAw8PDfNZGKr3t1JTLSogfb0UH/bcxY8ZU+LP7+++/lQ7N4MydO7ekXr16JWq1WirXsX//fqVDMnjiv6OK/vsS/91R5Sr7TBOfd3Rn48aNKwkODpb+nXp5eZX06dOn5M8//1Q6LKPUw8zKc1iI/1E6WSQiIiKi25n3oikiIiIiA8ZEjYiIiMhAMVEjIiIiMlBM1IiIiIgMFBM1IiIiIgPFRI2IiIjIQDFRIyIiIjJQTNSIiIiIDBQTNSIyWPXr15faYtWmxYsXw8LCQjpefPHFKj9v+vTpZc+r7RiJyHwxUSMis+fs7IzExES8//77VX7Oq6++Kj0nMDCwVmMjIvPGpuxEZPbEqJivr2+1nuPo6CgdVlZWtRYXERFH1IhI7+bPnw9/f3/odLpyjw8YMADjxo2TzqOjo6X7Pj4+UsLToUMH/PXXX5W+5qVLl6SE6vjx42WPZWRkSI/9888/ZY+dPn0aDz30kPSa4rVHjRqF1NTUasV/7tw52Nvb4+effy577JdffoGdnR0iIyOr9VpERHeDiRoR6d3QoUORlpaGv//+u+yx9PR0bNmyBSNHjpTu5+TkoG/fvti2bRuOHTuGBx98EP3798eVK1dq/L4icevduzfatGmDw4cPS++XlJSEYcOGVet1mjZtik8++QTPPvusFE9cXBwmTpyI2bNnIzw8vMbxERFVF6c+iUjv3NzcpFEtMSLVp08f6bFff/0Vnp6e6NWrl3S/VatW0lFKrA9bu3Ytfv/9d0yZMqVG7/vVV19JSdpHH31U9tjChQsRFBSE8+fPo3HjxlV+LZGkbdq0CU888QTUarU04vfcc8/VKC4iopriiBoR1QoxcrZ69WoUFhZK95ctW4YRI0bA0tKybERNLMgPCwuDq6urNFV59uzZuxpRO3HihDSKV7p+TBxidKx0qrW6RJJ38uRJHD16tGx3KBFRXeKIGhHVCjGNWVJSgo0bN0qjUbt27cKcOXPKvi6StK1bt0pTjKGhodL6r0cffRRFRUUVvl5pgides1RxcXG5a0TyJ95XTFHeys/Pr0aJX25urvTeYodnTV6DiOhuMFEjolpha2uLwYMHSyNpUVFRaNKkCdq2bVv29T179mDs2LEYNGhQWZIlNgxUxsvLS7oVCZOY3hRu3lggiNcXo3ii/ppKdXcfb2JNnYjvzTfflN5TjBCKkTWRUBIR1RVOfRJRrRHJjRhRE1OIpZsISjVq1Ahr1qyRki0xcvX444/ftkv0ZiJB6tSpE2bNmiVNke7YsQNvvfVWuWsmT54sJViPPfYYDh06JE13/vHHH3jyySeh1WqrFbvYPCDWton3+Oyzz6Tni1FAIqK6xESNiGqN2IHp7u6Of//9V0rEbiaSH7HpoEuXLtJ05QMPPFBuxK0iIuHTaDRo166d1EXggw8+KPd1URJEjNSJpOr+++9HixYtpOvEGrjSqdOqWLp0qbSR4Mcff5RG5hwcHPDTTz9hwYIF2Lx5czV/CkRENWdRcvOCDyIiMyM2CYhkTpT2qAkxzSqeX532U0REVcURNSIye5mZmdIO0alTp1b5OaIEiHjO3exSJSL6LxxRIyKzlp2dLRXFFcQUqaj1VhViLZw4Sjc6uLi41GqcRGSemKgRERERGShOfRIREREZKCZqRERERAaKiRoRERGRgWKiRkRERGSgmKgRERERGSgmakREREQGiokaERERkYFiokZEREQEw/T/4wNKYkQCHS0AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "stochast.minimum = -0.5\n", "\n", "stochast.print()\n", "stochast.plot()" ] }, { "cell_type": "markdown", "id": "b1d8774b", "metadata": {}, "source": [ "If we want to truncate the same distribution to the interval $(-\\infty, 0.5]$, we need to specify both the [minimum](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.minimum) and [maximum](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.maximum) properties. Otherwise, the minimum would remain set to -0.5." ] }, { "cell_type": "code", "execution_count": 15, "id": "692ab47e", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Variable:\n", " distribution = normal (truncated)\n", "Definition:\n", " location = 0.0\n", " scale = 1.0\n", " minimum = -inf\n", " maximum = 0.5\n", "Derived values:\n", " mean = 0.0\n", " deviation = 1.0\n", " variation = 0.0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAGyCAYAAABUV+igAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAY7dJREFUeJzt3Qd0FGXXB/B/eu+9kdBJgNA7CigqoiBFiiKgiIhgxYL4vr6KDax82AUBAVGKNAUUEQXpvYcWIAGSkN77lu88M0kgkEASkszuzP93zpydXWaTm9Vs7j7lXguj0WgEEREREZkcS6UDICIiIqKKMVEjIiIiMlFM1IiIiIhMFBM1IiIiIhPFRI2IiIjIRDFRIyIiIjJRTNSIiIiITBQTNSIiIiITxUSNiIiIyERZQ2N0Oh0OHToEPz8/WFoyTyUiIjIHBoMBiYmJaNeuHayttZO+KP6TLtoVg++2nkdyTiHCA1wxfWBLtA1xr/T6zPxifLLxNP44cQWZecUI8nDA/x6MQJ8WvlX6fiJJ69y5cy3+BERERFRf9u7di06dOkErFE3UfjsSj/fWncR7g1uhXYg75u+4gDHz9uDvV3rD29nuhuuLdAaMnrcHXk62+GZUe/i52iMuIx+u9jZV/p5iJK30P3RAQECt/jxERERUNxISEqSBltK/41qhaKL2/fYLGNk5BMM7hkj33x/UGn+fSsLy/ZcwqXeTG64Xj2fkFWPlM91hYyVPW4Z4Olbre5ZOd4okLTg4uFZ+DiIiIqoflhpbtqRYoiZGx47HZWJS78Zlj1laWqBHE28cjM2o8Dl/nUxE+wbu+N/a49gUlQhPJ1s81DYIE3s1hpWlRYXPKSwslI5S2dnZdfDTEBEREdU+xdLS9Lwi6A3GG6Y4fZztpPVqFbmYlocNx69Iz1vweGc8d1dTzN12Hl/8fbbS7zNjxgy4ubmVHREREbX+sxARERHVBbMaPzQaAW8nW8wYEonWwW4Y0CYQz/ZpgiV7Llb6nGnTpiEzM7PsiIqKqteYiYiIiMxu6tPD0Vaarky5bvRMjKaJUbWK+LjYwcbKotw0Z2NfZyRnF0pTqbbWN+addnZ20lEqKyurVn8OIiIiItWNqImkqlWQG3ZGp5Q9ZjAYsTM6Fe1DKy7P0THUAzEpedJ1pS4k58LXxa7CJI2IiIjInCma3Yzv2RA/77uEXw5cRnRSNv6z5jjyinQY1kHeBTpl2WF8+Mepsusf6xoq1VGb/tsJnE/Owd+nEvH1lmiM6Raq4E9BREREpMLyHGKNWVpuEWZtOiNNX4YHumLhuM7SFKcgaqRZWFyd5gx0d5D+/d11Ueg3exv8Xe3xRI+G0q5PIiIiIrWxMBrFEn3tuHz5MkJCQnDp0iXWUSMiIjITlzX695sLu4iIiIhMFBM1IiIiIhPFRI2IiIhUKW/fPlya+AzO3nEnTrYIR/Zff93yObl79uL8kCE41ToS0ffeh4xVq6EkJmpERESkSob8fNi1aA6//71ZpeuLLl/GpYkT4dS5CxquWQ3PMWOQ8OabyNm2HZrc9UlERLVP7BHLKtAhv0gPBxsrONpZwcbKxD6Xix7MubmAp6d8X6cD4uIqv97ZGfDyks8NBuDSpcqvdXQEfHzkc7Ff7mLl3Wvg4AD4+l69Hxtb+bX29oCf39X7IgYRS0VEoXV//6v3L18G9PqKr7WxAQIDr94Xr4N4PSpibQ0EBV29Hx8PFBdXfK2VFXDtovsrV+TXvSKiwkKDBlfvJyYCBQWoVOg1ZbGSkoD8/MpfJwU533mndAg3+b+rTMbSpbANDoLf61Ol+3aNGyP/4AGkLVwI5zt6QglM1IiIzFxMSi7+OpmIQ5cycDwuE3Hp+dBdUxhcCHJ3QDM/Z3QI9UDv5r5oGeharvxRvRJ/1CMjgf79gdmzr/6xDwur/DnjxwNz58rn2dk3v/aRR4CffpLPRcJzs2sHDgTWrr16v2nTyhOfvn2BTZuu3hc/Q0ZGxdd26wbs3Hn1fpcuclJVEfF1jhy5er9PH+BsJT2smzQp/28PPAAcPlzxtQEB5b/n0KHlY7qWqyuQmXn1/ujR5X/W65PFa1+jp58G1qyp/HWqZdnZ2eW6DF3fgeh25B0+DEfx3+4aTj16InHGDCiFiRoRkRkSxcFFsfCf9lzEqSvZFV4j2u3pSxI2UZdSHP+cTsYnf56RErdHOodgeKcQ+LrY12/wc+YA0dHAoUPlHxcjMZURo051ca2t7Y3XipGoql5b2deuzrXXJxnifm1ce/3jIqbauFYkaje79vqfvZZFRESUu//WW2/h7bffrpWvrU9OgbWXd7nHrL29YMjJgaGgAJY3+3+pjjBRIyIyswRt7r8XMG/7eWl6szQh69bICz2aeKN1kBsa+zpJ/ZTtbaykPshZBcU4l5QjJXTbo1OwIzpFStpEwjZ781mM6hKKyX2alBUbr1NiOu3DD+XzUaOuPi6m/q6dPrsZN7eqXyuStqpeK1SnH3RCQtWvPXeu6tceO1b1a3fvrvq1//xT9WvXrav6tcuWoT5FRUUh6Jrp39oaTTNVTNSIiMxk3dnaw/GY+fspXMmS1w6FeTlK3VkeahsId8eKRzFEH2RvZzvp6NLIC2O7h6GgWI8NxxKweHcsDl3MwA87Y7B8/yU8f3dTqbWfdV2uZ1uwQE5wQkKAJ56ou+9DquXi4gJXMVVbB6x8vKFLvdqDXNClpMLS2VmR0TSBiRoRkYlLyi7AG6uO4a+TSdL9YA8HvNavBR5oHSCNplWXGGkb0j5YOsTomuipfPRyppQErj+agI+HRaKFfx38IRQL72fNks9feaXOp8iIqsuxbVvkbP233GO5O3fCoW1bKMXEtgEREdG1/j2TjPtm/SslaTZWFnjl3mb4a0ovDGwTWKMk7XpiunTt5B746OFIuNpb41hcJgZ+uQPL9t1kp2RNiek0sRBeTF2OG1f7X5/oOobcXBScPCkdpeU3xHlxySaLpE8/Q/xUeYen4D5ypHRN4scfo/D8eaT99BOy/vgDnmPHQikcUSMiMtGpzm+3nsfHG09B7AcID3DFrBFt6mSkS+z+HN4xBL2b+eC1lUex5XQypq48hgOx6XhvUGtp+rRWfPbZ1V2CotwGUR3LP34CF69JspJmyusj3QYNQuDMGdAlJ6M4/upaQ9vgYIR8+y0SZ85E+qLFsPb3R8C77ypWmkNgU3YiIhOj0xvw+qpj0q5OYXjHYLzzUCtpyrKuGQxGfL0lGp9tOiMliN0be+Hb0R3gan/dTsqaOHAA+L//A0SpA77/UjVd1ujfb059EhGZEFGk9unFB6QkTUxtvjuoFT4cGlkvSZpgaWmBZ+9qivmPd4KTrRV2nkvF8G93IalkA8Nt6dABWLyYSRpRNTBRIyIyoSTt8QV7sflUEuysLfHdYx0wumuoIoVpRVHcZU93k0p2iLIeI+fuljY1EFH9YqJGRGQCRMmMCYv3Y8+FNLjYWePH8V3QN0LZNjytgtyw6pnuUnHc88m5eGTObiRnV9KC6GbeeguYMEEucktE1cJEjYhIYaIo7aQlB7HtbAocba3ww7hO6BRW0gNTYSGejvj5qa4IcLPHueRcPDp3NzLyiqr+BUS7J9EmSrR/OnWqLkMlUiUmakREChL7uV5feRR/l0x3zhvbCR1CTSNJK9XAyxFLJ3SFv6s9ziblYMKiA9IIYJXMny/3kGzeXO7tSUTVwkSNiEhBX/wdjVWH4qSNA2J3ZbfGXjBFoV5OWDiuszQtuzcmDa+sOCLtEL0pvV7e5Sm89JLYqVAvsRKpCX9riIgUsvZwnFQGQ3j3oVbo09wXpqy5vwu+G91BKry77mgCPtp4+uZPWL0aiIkBvLyA0aPrK0wiVWGiRkSkgCOXMvDqiqPS+YQ7G+HRLg1gDro38ZbKhQjfbj2HdUflCu83LXA7aRLg6FhPERKpCxM1IqJ6lp5bJG0eKNIbcE+EH17v1wLmRPQIfbpXI+n8tV+O4kxi9o0X7dolH6Kfp0jUiKhGmKgREdUjvcGIF5YdRlxGPsK8HPHp8DZSkVlz8+q9zaWuBXklBXqzCorLX9CkiVyW44UXAH9/pcIkMntM1IiI6tEXf5+VGq3b21jim8dqqTWTAqytLPHFI+0Q6GaPCym5mLbymLSDtYyPD/D228BHHykZJpHZY6JGRFRP9sek4fPNZ6XzDwa3lhqtmzMvZzt8/VgHWFtaYP2xBKwo6U1KRLWHiRoRUT3ILijGS8sPS43Oh7QPktZ5qUHbEHdMubeZdP72rycQE5sEDBoE/Pqr6PCudHhEZo+JGhFRPXjntyhcSsuX2jG9PbAl1OTpOxujayNPab3ahlc/BNauBV5+WemwiFSBiRoRUR3747g8LSh6q88a0dZs16VVRhTrFT+Xm7017t28XH7wuedY4JaoFvC3iIioDqXmFOKN1cel84m9GqNzQ9NqD1VbAtwc8I1fKpqkXUaOrQPO3D9E6ZCIVIGJGhFRHXpnXRTScovQwt8FL/WV13KpVbf1P0m3K1r3xSsbY6DTc40a0e1iokZEVEf+OZ2EtYfjIcqkffRwJGytVfyWe/YsLNavh9HCAr90G4SjlzPx/fYLSkdFZPZU/K5BRKSc3EId/lsy5TmuR0NEBrtD1b78Urqx6N8fY8feI52LPqbnknMUDozIvDFRIyKqA5/+eUbqPhDs4VBWvkLVuncH2rUDnn8ewzoE485mPijSGfDW2hPlC+ESUbUwUSMiqmXHLmdiwU552u/9wa3haGsN1RsxAjhwALjnHlhYWODdh1pKU73bo1OkYrhEVDNM1IiIapHBYMRbvx6HGEQa2CYQvZr5QDNE/RFxAAj1csKk3o2l83fXRSGnUKdwcETmiYkaEVEtWnM4DgcvZsDR1gpv9A+H6m3ZAsyeDWRm3vBPohxJA09HJGYVlrXOIqLqYaJGRFRLxKjRjN9PSefP3tUE/m72UL0PPgBefFG+vY69jRWml3RhmL/9As4kZisQIJF5Y6JGRFRLvvj7LJKzCxHm5YgnezaE6kVFAZs2yR0Innmmwkv6tPDFvRF+0BmM0hQoNxYQVQ8TNSKiWnA+OUcaNRL+NyACdtZWUL2SkhwYOBAIC6v0sv8+EAFbK0tsO5uCLWeS6y8+IhVgokZEVAveW38SxXoj+jT3wV0t/KB66enAwoXy+fPP3/TSBl6OeLyHnMh9sP4kOxYQVQMTNSKi27TzXAr+PpUEa0sLvPlgBDRh/nwgLw9o3Rro3fuWl0/u0wQejjY4m5SDpfsu1UuIRGrARI2I6DbLccws2UAwqksDNPJxhuoZDMBXX10dTSspyXEzbg42eOHuptL5rE1nkF1QXNdREqkCEzUiotuw4XiC1NfSydYKz5UkIqqXkQG0bw94ewOPPlrlp43qGopG3k5IzS3CN1vO1WmIRGrBRI2IqIZEi6SPN56Wzifc2RjeznbQBE9P4JdfgNhYwNGxyk+zsbLE6/e3kM5Fw/b4jPw6DJJIHZioERHV0M97LyI2NU9K0MbfoYFyHNerRpJW6p4IP3Rp6CkluWIKlIhujokaEVENiDVWpdX2X+zbFE52GujnKfzxBxAdXeOniz6gL90jN6n/4/iVWgyMSJ2YqBER1cD87THSWiux5mpEpxBoQlERMHYs0LSp3DqqhoLcHaTbYrEpgYhuyiQ+Ai7aFYPvtp5Hck4hwgNcpZYjbUPcK7x2xf5LePWXo+Ues7W2xJn37q+naIlI6zLzivH99vPS+ZR7m0lrrzRh9WogKQnw9wd69FA6GiJNUDxR++1IPN5bdxLvDW6FdiHumL/jAsbM24O/X+ld6cJcFztrbH6lV9l9C9x6azgRUW2Zt/08sgt0aOHvgv6tAqAZ33wj344fD9jYKB0NkSYo/jFQ7PwZ2TkEwzuGoKmfC94f1BoOtlZYvv8mBREtAF8X+7LDx0UjO62ISHEZeUWYvyOmbG2apaVGPiiKvp5bt8p9PSdMUDoaIs1QdERN7Po5HpeJSb0blz0m3vR6NPHGwdiMSp+XV6RHj5l/w2A0omWgG17r1xzN/FwqvLawsFA6SmVnZ9fyT0FEWjJ323nkFOqkZRr3RvhDM779Vr4dMAAI0ciaPCKtj6il5xVBbzDeMMXp42wnrVeriKj6/dHQSMwZ0wGzRrSF0WjE0K93IiGz4no8M2bMgJubW9kREaGR9i5EVOvScovwgxZH03Jzr/b1fOYZpaMh0hTFpz6rq0OoB4Z2CJZG0ro28sK3ozvA09kWP+25WOH106ZNQ2ZmZtkRJYbviYhqYM6/55FbpEfLQDGapoHG66WOH5enPBs3Bu65R+loiDRF0alPD0dbWFlaIOW60TMxmiZG1apC7LYSb5oxqXkV/rudnZ10lMrKyrrNqIlIi8T7lNihLrzUt5lUD0wzunQB4uKA8+flhI2I6o2iv3GirEarIDfsjE4p1+B4Z3Qq2odWXJ7jemLq9NSVbPhyQwER1aHvt12Q1sdGBrvh7nBfaLILQatWSkdBpDmKl+cY37MhXl5xBK2D3dE2xA3ztscgr0iHYR3kxapTlh2Gn5s9pvaT+8PN/uss2jVwR5iXE7IKivHdv+cRl56PkVopOElEitRN+3F3rHT+/F1NtTWadvo00KyZaCmgdCREmqR4ojagTaC0QFf0fEvOLkR4oCsWjutcVnIjLiO/3JtiZn4xpq06Jl3r6mCD1kGuWPlMd6m0BxFRXRBTnmKnp6ibpqnRtLQ0oG1bICxMLs3hW7s/u9FYq1+OSJUUT9SEsd3DpKMiy57uVu7+/wZESAcRUX3IL9JjwU55bdozvRtrazRN7PQsKABsbQEfn1r7slp6CYluF1eFEhHdxNJ9F6VR/waejnigtYa6EIjhrtLaaaIkB7MrIkUwUSMiuklRblGSQ3i6VyNYa6Wnp/D338CZM4CzMzBqlNLREGmWht51iIiqZ83hOCRkFki7yoe2D4amlPb1HD0acOEaYCKlMFEjIqqk9M+3W85J5+PvaAh7GytoRnw8sGaNfM5OBESKYqJGRFSBjSeu4HxKLtwcbPBol1BoyvLlgF4P9OgBtG6tdDREmmYSuz6JiEyJ6CEsajQKY7uFwtlOY2+VL7wAREYC1hr7uYlMEH8LiYiusz82HUcuZUjdU8ZUUjpI1cQOz7vuUjoKIuLUJxHRjeaWjKYNbR8E7yr2HVaN4mKlIyCiazBRIyK6xoWUXGw6mSidP9mzETQlOhoICABefZVtA4hMBBM1IqJrzN9+QcpR7mrhiya+ztCU774DUlOB48frtMBtaXcHpoJEt8ZEjYioRHpuEVYcuFRWkkNTRKuoBQvkc5bkIDIZTNSIiEos2ROLgmIDIgJc0a2RFzRlxQp5NC0kBHjgAaWjIaISTNSIiAAU6vRYuCtWOn/qzobaar5+bSeCCRMAKw0V9yXVS1uyBNF33Y1TkW1wYfgI5B89evPrFy7EuX7341Sbtjjbuw8SZ8yAobAQSmGiRkQEYO3heCRnF8Lf1R4PRgZCU44cAXbtkuumjR+vdDREtSZrwwYkzfwQ3pMno+GqlbBv3hwXxz8FnRg9rkDmb+uQ9Oln0vWN1q9HwHvvIWvD70j+bBaUwkSNiDRPFLidt+2CdP54jzDYaKn5+rWjaYMHA/7+SkdDdFPZ2dnIysoqOwpvMtqV+sNCuA8bBvehQ2DXpAn8p78NS3t7ZKxcVeH1+YcOwaF9e7gNeBC2wUFw7tkDrg88gPxjx6AUjb0bERHdaOe5VJxOzIajrRUe6dwAmjNlCvDSS8DzzysdCdEtRUREwM3NreyYMWNGhdcZi4pQcOIEnLp3K3vMwtISTt26If/w4Qqf49CunfSc0unRokuXkPPvv3C+804ohZ0JiEjzftgZI90ObR8s9fbUnGbNgM8+UzoKoiqJiopCUFBQ2X07u4qLUuvSM6SetVZe5TcGWXl7ofCCPIJ+PTGSpk9PR8yox+Ragjod3EeOgPfEp6EUJmpEpGmX0vLwV0mB27HdNdZ8ncgMubi4wNXVtU6+du6evUiZMwf+/3sTDpFtUHQxFokfzEDy11/DZ9IkKIFTn0SkaYt3x0ofnO9o6o0mvi7QlJ07geHDgX//VToSolpn7eEu7WDWX7dxQJ+SCmtv7wqfk/z553AbOBAew4bBvnkzuN5zD3xfehGpc+bCaDBACUzUiEiz8ov0WLZPLnA7tpsGm69/9ZVcP23RIqUjIap1Fra2sG/ZErm7dpc9JpKt3N274dC2bYXPMebnw8LyutI8liXlahRqq8apTyLSrDWH45CZX4wQTwf0aeELTUlKkpM0BToRlP0ZZA8pqmNej49F/OvTYN+qFRwiWyNt4SIY8vPhPmSw9O/xU6fC2tcPvi9Pke479+mDtB9+gF14OBzatEFRbKw0yubcpzcsFKovyESNiDRbkmNhySaCMV3DYHX9p2i1mz8fKC4GOnUCOnRQOhqiOuHavz90aelI/uJz6JNTpASswdw5ZVOfxfEJYito2fXez0yU+twmz/4cusREWHl6wqVPb/i8+KJiPwMTNSLSpD0X0nDqSjYcbKwwvGMINEWvlxuwC+zrSSrn+dgo6ahI6OLy0/4W1tbweXaydJgKrlEjIk0qHU0b3D4Ibo4aK8mxcSMQEwO4uwMjRigdDRHdBBM1ItKcuIx8/BmVqN1NBKWdCB5/HHB0VDoaIroJTn0Skeb8uDsWeoMR3Rp5obm/xkpyCPfcA5w9C0ycqHQkRHQLHFEjIk0pKNZj6d6L0vnY7hocTRNEq6iTJ4HmzZWOhIhugYkaEWnKb0fikZ5XjCB3B/QN11hJjmtZaGyXK5GZYqJGRJqb9hQe6xoKayuNvQVu3gwsXAjk5ysdCRFVkcbepYhIy45dzsSRy5mwsbLA8I7B0Jx335U3EHz8sdKREFEVMVEjIs34aa88mnZ/qwB4OdtBU6KigK1bAUtL4IknFA2Fs65EVcdEjYg0IaugGGsOxZdNe2rOt9/KtwMGACGmUeDXyB5SRLfERI2INGHNoTjkF+vR1NcZncI8oCm5ufLaNIGdCIjMChM1ItJEX88lu+WSHKO6NICF1ubefv4ZyMoCGjeWa6gRkdlgokZEqrc/Nh2nE+W+nkM6aGwTgdF4tRPB00/La9SIyGzwN5aIVG9JSUmOgW0C4Wqvsb6eOTmApydgb6/4JgIiqj62kCIiVUvLLcKGY1ek81FdG0BzXFyATZuApCTA21vpaIiomjiiRkSqtmL/JRTpDWgd5IbIYHdolq+GuzAQmTEmakSkWgaDET+V9PV8TIujaXv2AAkJSkdBRLeBiRoRqdb26BTEpubBxc4aA9oEQnObCMaMARo0ADZuVDoaIqohJmpEpFpL9sibCIa0D4KjrcaW5P79N3DmjLyJoHt3paMhohpiokZEqnQlswB/nUySzkdpsRNBaUmO0aPlDQUmxAIaq2NHdBuYqBGRKi3ddxF6gxGdwzzRzM+0EpU6FxcHrFlj8p0IxOwsEd0cEzUiUh2RoC3bd0m7JTm+/x7Q64EePYDWrZWOhohuAxM1IlKdf88mIyGzAO6ONrivpT80RacD5s6VzydNUjoaIrpNTNSISHWW7ZVH0wa3C4K9jRU05dgxIC0N8PEBhg5VOhoiuk0a2wZFRGqXklOIv04mSucjOoVAc9q1k9eonTgB2NkpHQ0RqSFRW7QrBt9tPY/knEKEB7hi+sCWaBty6wrivx6Jx/M/H8I9EX6YO6ZjvcRKRKZt1cHL0BmMaBPijhb+rtAkDw+gZ0+loyAiNUx9/nYkHu+tO4kX+jbF+ud6IiLABWPm7ZE+Fd/MpbQ8fLD+pLSji4hIMBqNWFqyiWCkFkfTEuWRRCJSD8UTte+3X8DIziEY3jEETf1c8P6g1nCwtcLy/fKbbWU7ul5cdhgv3dMUIZ6O9RovEZmuA7HpOJ+cCwcbKzwYGQBNyc8HIiKALl3kqU8iUgVFE7UinQHH4zLRo4n31YAsLaT7B2MzKn3e7M1n4eVkixGdbr3tvrCwEFlZWWVHdnZ2rcVPRKaldDRNJGku9jbQlBUr5E0EV64A/hrb6UqkYoomaul5RdLomLdz+QWvPs520nq1iuyLScPyfZcwc2hklb7HjBkz4ObmVnZEiE+cRKQ62QXFWH9UbkAuRuk124lgwgTASmM7XYlUTPGpz+rIKdThpWWHMWNoa3g62VbpOdOmTUNmZmbZERUVVedxElH9++1IAvKL9Wjs44T2DTygKYcPA7t3A9bWwJNPwtRZsIMUkXns+vRwtIWVpcUNGwfEaJoYVbtebGouLqfnY/zC/WWPGUp6kDR+YwP+frkXQr2cyj3Hzs5OOkqJ6U8iUp9l+y5KtyM7NYCF1jKB0tG0IUPMatqTHaSITDxRs7W2RKsgN+yMTimrHm4wGLEzOhVjut/YRLmxjzM2vnhnucc++fM0cgt1eGtASwS4OdRb7ERkOqLis3DkciZsrCwwuH0QNEV8+FyyxOT7ehKRmdZRG9+zIV5ecQStg93RNsQN87bHIK9Ih2Ed5DUmU5Ydhp+bPab2ayFVGG/uX765smvJguHrHyci7SjdJS5qKl6/5lX1li4FcnOB8HCgVy+loyEitSVqA9oEIi23CLM2nUFydiHCA12xcFxn+LjIb7ZxGfnam8YgoiorKNZj9SG5HIUo86M5TzwBeHvLGwj4XkmkOoonasLY7mHSUZFlT3e76XM/Hd6mjqIiInOw8cQVZOYXI9DNHnc09YHm2NjIa9OISJXMatcnEdH1lpXUThvWMUTanKQpJZupiEi9mKgRkdm6mJqHnedSpRm/YR2DoSlJSUDTpsA77wA6ndLREFEdYaJGRGa/iaBnE28Ee2isndz8+cC5c8C6dXL9NCJSJSZqRGSWdHoDVhwobcB+63ZyqqLXA999J5+zJAeRqjFRIyKz9O/ZZCRmFcLD0QZ9I3yhKRs3AjExgLs7MGIEzI3GVhIS3RYmakRklpbulUfThrQPhp21lTY7ETz+OOCosSlfIo1hokZEZicpuwCbTyVJ5yM6aax2mhhJW79ePp84EebMyF2rRLfERI2IzM6qg3HQG4xo18Adzfw01pVkzhy5LMdddwHNmysdDRHVMW4VIiKzG4UprZ02UmujacKwYUBiIvDQQ0pHQkT1gIkaEZmVvRfScCElF062VngwMhCa064dMG+e0lEQUT3h1CcRmZVlJbXTRJLmZMfPmkSkbkzUiMhsiJ6eG44lSOcjOmts2vP4cWD8eODgQaUjIaJ6xI+jRGQ2fj0Sj4JiA5r5OaNdiDs05euv5SnPzExgxQqloyGiesIRNSIyG8tLNhGM6NQAFqLBp1ZkZQGLF8vn7ERApClM1IjILByPy8SxuEzYWFlgcLsgaMqPPwI5OXI5jj59lI6GiOoREzUiMqsG7Pe29Ienky00Q9RME9OewqRJgBpGElXwIxDVFyZqRGTyCor1WH0oTpu107ZvB06ckFtFjRkDNWFfAqJbY6JGRCbvj+NXkF2gQ5C7A3o09oamlI6mjRolN2EnIk1hokZEJm/pvovS7fCOIbC01Ni8WWQkEBgoT3sSkeYwUSMikxaTkovd59OkpVnDOgZDc6ZNA2JjgbZtlY6EiBTARI2IzGITwZ1NfRDo7gBNsmbJSyKtYqJGRCZLpzdgxYHL2txEsHMnsGYNoNMpHQmRWUtbsgTRd92NU5FtcGH4COQfPXrT6/VZWbjyzjs4c8cdONU6Eufu64ecrVuhFCZqRGSy/jmdjOTsQng52eLucD9oyjvvAIMHA++/r3QkRGYra8MGJM38EN6TJ6PhqpWwb94cF8c/BV1qaoXXG4uKcHHckyiKi0Pw7Nlo9Pvv8H/3HVj7Kff+w/F0IjJZy0o6EQxpHwRbaw19royOBjZulGumjR6tdDREJiU7OxtZoltHCTs7O+moSOoPC+E+bBjchw6R7vtPf1saHctYuQreE5664fqMVaugz8xE2M8/wcLGRnrMNljZAtsaeucjInOSmFWAf04nSecjtDbt+e238u399wONGikdDZFJiYiIgJubW9kxY8aMSkfHCk6cgFP3bmWPWVhawqlbN+QfPlzhc7L//hsObdviyjvv4kyPnjg/YABSvv0ORr0eSuGIGhGZpF8OXIbeYETHUA808XWBZuTnAwsWyOcqLclhwdYEdBuioqIQFHR1lKuy0TRdegag18PKy6vc41beXii8cKHC5xRfuoy83XvgOuBBhHz3HYovxuLK9Hdg1Ong8+xkKIGJGhGZHKPRWLbbc7jWRtOWLwfS0oDQUKBfP6WjITI5Li4ucHV1rZsvbjBIiV3AO+/AwsoKDq1aojgxCanz5zFRIyIqJeqmxabmwdnOGg+0DoAmOxFMnAhYWUHtbUyJ6oq1h7v0O6S/buOAPiUV1t4Vdzix9vEBbKylJK2UXeNG0CenSFOpFrb132eYa9SIyOQsK+lEMKBNIJzsNPR5MjNTzl7EH4Nx45SOhsisWdjawr5lS+Tu2l32mNFgQO7u3dI6tIo4tG+P4tiL0nWlimJipAROiSRNYKJGRCYlM68Yvx+/os3aaW5uwN69wOnTgK+v0tEQmT2vx8ciY8UKZKxeg8Jz53Dl7ekw5OfDfchg6d/jp05F0qeflV3v8chIaddn4vsfSOvYsrdsQcp3c+Ax6lHFfgYNfVQlInOw9kgcCnUGtPB3QWSwGzQpLEzpCIhUwbV/f+jS0pH8xefS9KVdeDgazJ1TNvVZHJ8gtoKWXW8TEICQ7+ciceZMZDw0SKqf5jl6NLyeGq/Yz8BEjYhMytK9l8pKcliIOmJaceAA0Lgx4O6udCREquL52CjpqEjo4kU3PObYrh0aLlsGU8GpTyIyGcfjMhGVkCUVtx3cTtkik/VK1GgaNgwQJQe2b1c6GiIyIUzUiMhkLC3ZRHBfS3+4OyqzcFcRGzYAoq6TqAfVvr3S0RCRCWGiRkQmIb9Ij7WH4qXzER01tongyy/l2yefBBwdlY6GiEwIEzUiMgkbjiUgu1CHEE8HdG9cvpK4qokdnn/+Kff1VGknAiKqOSZqRGRSDdjFaJqlpYX2RtMefBBo2BBaoKU9IkS3i4kaESkuOikHe2PSIPKzYVqa9szKAn74QT5/7jmloyEiE8REjYgUV9rX864WvvBztYdm7NghN2Fv3hzo21fpaIjIBFWpjtoDn2+r9rD292M6wd9NQ2+4RFQjRToDVh64LJ2P6NQAmnL//UBsLHDpEucDiajmiZqoa/TUHY3gaHvrBsGiTd03W89Jb75ERLey+WQiUnOL4Otihz7NfaA5onaaOIjILCXOmFnt53g/MxFWVSxuXeXOBBPubARvZ7sqXfv9tvNV/bJEpHFLSzYRPNwhGNZWGlqNER8PBAYqHQUR3aa0RYukJu8WNjZVuj7v4EF4PDaqdhO1ba/1gZdT1YtPbprSS1vrTIioRuIy8vHv2WTpfLiWNhGI4rZNm8rr0n79FbDVUHFfIhUK/vILWHtVrazQ6fYdqvW1q5SoBXtUrwBjoLtDta4nIm1avu+StFyiWyMvhHk7QTO+/lpuGyV+eCZpRGYt4IMPYOniUuXr/adPr3JSJ9zWPMN9s/5FfEb+7XwJItIovcGIFSW7PUd21tBoWl4eMG+efP7ss0pHQ0S3yX3wIFhW4wOX24AHYVmNDiS3lahdTs+DTm+8nS9BRBq17Wwy4jML4OZgI/X21IyffgLS0+Xitv37Kx0NEdWRhOnToRO/67dJQyt3icgUOxEMbhcEe5tb7yhXBTHV+cUX8vnkyYCVRn5uIg3K+vU3GHJylE3UOjX0hL0Ncz0iqp6UnEJsikqUzkd00tC057ZtwNGjgIMDMG4ctIoV40gzH8xqQZXLc1Tkhyc610YMWLQrBt9tPY/knEKEB7hi+sCWaBtS8bbVP44n4Kt/ziEmNVeadhULkJ+6oyGGtA+ulViIqO6tOngZOoMRbULcpd95zViwQL597DHAw0PpaIjIDFQpUROffHs394FNFWsc/XMqCd0ae1VpOuO3I/F4b91JvDe4FdqFuGP+jgsYM28P/n6ld4V129wcbDG5TxM08XWS4tl8Mgmv/nIUXs526NVMg8UyicyM0Wgsq502UkujacI33wB33AF066Z0JCb1/4MFuzKQCjU/eKBWvk6VMq+nF+9HVn5xlb/ocz8fQlJWYZWu/X77BWnHl6ih1NTPBe8Pag0HW6uy3n/XEwlgv1b+aOLrglAvJ4zr2RAt/F2wPyatwusLCwuRlZVVdmRnZ1f55yCi2rcvJh3nk3OlTicD2mis4Ku9vTzlGR6udCREVEv01VyHps/Jrf0RNTHL+sqKI7C1rtqIWqFOX6XrRJup43GZmNS7cdljlpYW6NHEGwdjM24dl9GInedSpTf91+/3rPCaGTNmYPr06VWKh4jq3tJ9F6XbAZGBcLa7rdUX5qO4WN44YMk1vURqc6ZzFzTd9m+Va6NF9+qFhmtWwzakajMKVXqXHFrN9V8PtQ2Cs/2tv3R6XpFUS+n6KU4fZzucS64848wqKEbXDzZLiZ5I7N57qBXuaFrxtOe0adMwZcqUsvtxcXGIiIio1s9DRLUjM78YG44lSOcjtFQ7be5cYPZs4J13gBEjlI6GiGqT0YiMFb9UuTaaUaer1pevUqL2ybA2MCXOttbY8PwdyC3SYWd0Kt5dH4UQT0dpWvR6dnZ20lFKTH8SkTJ+PRKPgmIDmvk5S2tSNcFgkJO0M2eApCSloyGiWmYTEICMFSuqfL21tzcsrKs+m6DovIOHoy2sLC2krfrXErs/xahaZcQoWmm7mZaBbohOysHXW6IrTNSIyHQsK5n2HNGpgXYWkP/+u5ykubkBTzyhdDREVMua/L0ZdUnRBRNizVurIDfsjE4pe8xgMEqjZO1Dq/5p22A0StOgRGS6xHrU43FZsLWylIrcasb//Z98O3484OysdDREZGYUX8k7vmdDvLziCFoHu6NtiBvmbY9BXpEOwzrI61emLDsMPzd7TO3XQrr/1T/RiAx2Q6inE4r0evxzKhmrD8XhvUGtFP5JiOhmftorj6bd29IPnk4aaUR+/Djw11/yJgL29SQic0zUxPb8tNwizNp0BsnZhQgPdMXCcZ3h4yJPfcZl5JebIskv0uPNNceRkFkg1Wlr7OOEWSPaam+bP5EZySnUYe2hOOn80S4NoBlibZoweDAQFqZ0NCZDM9PeRPWVqLWZ/if+eaW39Cn41RVH8NbAlrW6rX5s9zDpqMiyp8sXhnzlvubSQUTm49fD8cgt0qORtxO6NdLIWtLUVGDxYvn8xReVjoaIzFSV1qgV6w3IKZC3k648eBmFxVWrk0ZEJOodLtkTK50/0llDmwg8PYGNG4GXXwZ69FA6GiKqI5efe66s6G3GmjUwFBXV6tev0rBY+wYemLB4v7TwXxS/ffu3KNhXUvz2YxMr5UFEyjp6ORMn4rOkzUNDO2ioJ69ISHv1kg+6ad9qreTupE7ZW7bCLy8PVs7OSHjjP3C+4w5YVrH4ba0lamIN2LztF3AxLRfi9ym7oBiFVez7SUTa9tMeeRNB/1b+2tlEwOyDSDPsGjZE8mez4Nili/S7n/X7H7B0lkuIXc990KC6SdTEwv7X75d3Xfb88G/MGt4WHlp5wyWiGhNdRESRW+HRLqHQTJJ2zz1AmzbA668DPhV3TSEidfB/+20kfjgTOVu3Sh/QksUmooo+qFlY1F2idq3tU++q9jchIm0SOz3zi/Vo4uuMTmEe0IQdO4DNm+VbkagRkao5tm+HhsuWSecnwyPQ+I/fq9z3s9YStQU7LlT5Cz7Ro+HtxENEqtpEIE97PqqlTQSzZsm3jz3G0TQijWny1yZYiY1EtahKiZpYn3YtUfdMfEp2tbcpm95wsLGCl7MtEzUikhy6lIFTV7JhJzYRtNfIJoKzZ4HVq+Xzl15SOhoiqgcFp0+Xu68XLeMqYd+8ed0katdOd649HIfFu2Lx4cORaOwjt0M5l5yDaSuPaauQJRFVaRPBA5EBcHOUP9RpYjRNrFF74AEgIkLpaIioHlwYNFhek1aFTUThUSfqfo3ap3+ewdej2pclaYI4f/PBCDyz5AAGaamHHxFVKDO/GOuOypsIRmnlA1xyMrBggXz+yitKR0NE9TjdWarg5EkkfvQxvMaNg0O7ttJj+YcOI23BAvi+WrP3hWonaknZBdAbRDW18vRGI1JyCmsUBBGpy+qDl1FQbEALfxepDqMmfPMNUFAAdOjA2mm3oJHViqQRNkFXB6guv/gS/P/zBpyveQ8Q0502Af5Inv05XPr2rftErUdjb7yx+hg+HBopFcAVjl3OxH/XHEPPJt7VDoCI1LeJoLQBu1gOoZlNBGPHAhkZwB13sIYakUYVnjkDm+Ab1+SKxwrPnavR16x2ovbRw5F4ecURDPhyO2ws5aK3OoMBdzbzwcyhkTUKgojUY39sOs4k5kgbjDS1FCI0FPjsM6WjICIF2TZuhNQ5cxDw7ruwsJXrzRqLiqTHxL/VS6Lm5WyHH57ojPPJOYhOypE+LTf2cUKja9asEZF2lW4iGNAmoGxnOFFlblxIQ2S+At5+G5eemYSzvfvArnkz6bHC02ekUfaQb76un0StlEjMGnrLLRI0M7VBRDeVnluE9ccStNWJ4NdfgXnzgKlTge7dlY6GiBTkEBmJJpv+ROZv61B0/rz0mOv998PtwQdh6ehYf4nasn0XpdpqMSl50v0wb0eM69EQIztrZHcXEVVoxYFLKNIZ0DLQFW2C5TWsqvfRR3IXAlGOg4kakeaJhMxjxPBa+3rVTtQ++/M0vt9+AWO7h5Xt5jp4MR3vrotCfEY+ptxb/WJuRGT+DAYjftwtT3uO6RaqjZH2XbvkJM3GBnj+eaWjISKFpXw3B9beXnAfOrTc4xkrV0KXlgbvp56q9teUdwNUw497LmLGkNaY2q8F7onwkw5x/sGQ1li8O7baARCROmw9k4yLaXlwtbfGwDYa2UTw6adX20UFBCgdDREpLGPZMtg2vHHTgF2TJshYKvcDrfNErVhvQGSw+w2Ptw5yg66C+mpEpA2LdsVIt8M6hsDB1gqqJ7bar1oln7/8stLREJEJ0KWkwNr3xh6/ov+nThTFro9EbUi7IPxYwcjZz3svYlBbjXyKJqJyLqbmYcsZ+U3osa4a2UQgSnGIljH9+wMtWyodDRGZAOsAf+QfPHjD4+Ixa1/fmn3Nmjxp+b5L2HY2Ge1C5DVqhy9lSOvThrQPktaqlRJtpYhI/X7cEyvlLKKeYulucM20i+JoWrVpYfkiaZPHsGFI/GAGjMU6OHXtIj2Wu3s3kj7+BJ5PPFE/idrpxGy0DHKVzmPTcuXAnGykQ/xbKQs2CSHShIJiPZbvvySdj9HKaJqLi7w+7Z9/gD59lI6GiEyE55NPQp+RgSvvvANjcbH0mIWdHbzGPwnvpyfUT6K2dEK3Gn0jIlKnX4/EIyOvGEHuDujTomZD+2bH3h545hn5ICIqIXa7+77yCryfeQaF589LSZptWBgsS7oU1GvBWyIi0ddz8a7YsrVpVpYcSScisnRygkPr1rXztWrlqxCRJon1qcfiMmFrZYnhHW9sRKw6BQXyVKdYn1YyrUG3n+wTUeU4okZENVY6mvZgZIDUB1j1Fi4EtmyRS3OMGqV0NESkARxRI6IaSc0pxLqjcl/P0d00sIlAp5PbRQmvvALcxpoTIqKqYqJGRDWyfP9lFOkNUrHrtiE3FsFWnRUrANFk2dsbGD9e6WiISCOYqBFRtemlvp6xZaNpqu/rKdZRzZwpn7/wAuDoqHRERKQRTNSIqNo2RSUiLiMf7o42GNgmEKq3YQNw9Cjg7AxMnqx0NESkIUzUiKja5u+4IN0+2rkB7G000Ndzxgz5VtRN85A7shCReUhbsgTRd92NU5FtcGH4COSLD11VkLl+PU62CMelyc9CSUzUiKhaTsRnYu+FNKlmmiY2EYhpz3feAfr1A158UeloVIGda6i+ZG3YgKSZH8J78mQ0XLUS9s2b4+L4p6BLTb3p84ouxyHpo4/h0LEDlMZEjYiqZcGOGOm2f+sABLg5QPXE+ru77gJ+/x0I1MA0L5GKpP6wEO7DhsF96BDYNWkC/+lvw9LeHhkrV1X6HKNej/hXX4XPc8/CNjgESmOiRkRVlpxdiF8Px0vnT/QIUzocItKg7OxsZGVllR2FhYUVXmcsKkLBiRNw6n619aWFpSWcunVD/uHDlX79lK++hpWXJ9wffhimgIkaEVXZT3suSiU5RDmO9g00sFbr0UeBadOAW0yTEFH9iYiIgJubW9kxo3QN6XV06RmAXg8rL69yj1t5e0GXklLhc/IOHEDGypUIePddmAp2JiCiKinU6bG4pCSHJkbTDh4Efv4ZsLQEnngCuO7NnmoHG0hRdUVFRSEoKKjsvp1d7XRF0efkIv61qQh49x1Ym9CmISZqRFQl648mICWnEH6udtL6NNUr/UT9yCNAs2ZKR0NEJVxcXODq6opbsfZwB6ysoL9uRFyfkgprUbj6OsWXLqI4Lg6Xnpl09UGDQbo52bIVGv++AbYNGqC+MVEjoio1zi4tyTGmWxhsrFS+auLIEWDNGnkjwX/+o3Q0RFQDFra2sG/ZErm7dsOlb1/pMaPBgNzdu+FRQa9e20aN0PDXteUeS579OQy5ufB7Yxps/P2hBCZqRHRL+2PTcTwuC3bWlnikc/1/olRsNG3ECCA8XOloiKiGvB4fi/jXp8G+VSs4RLZG2sJFMOTnw33IYOnf46dOhbWvH3xfngJLOzvYXzd6buXiIt1e/3h9YqJGRLe0oGQ0bXC7IHg6qbwZ+fHjwMqV8vl//6t0NER0G1z794cuLR3JX3wOfXIK7MLD0WDunLKpz+L4BLEVFKaMiRoR3dTl9Dz8cfyKdP64FjYRfPCBfCu25rdsqXQ0RHSbPB8bJR0VCV286KbPDZxZ8Y7S+sREjYhuauHOGBiMQPfGXmjhf+sFvGZPbPV3cwMmTlQ6EvViYwKiKmOiRkSVyiooxs97L0nnT93ZCJoQGgp8843SURARSUx7YpaIFPXznovIKdShqa8zejfzgaoVFysdARHRDZioEVGFinSGsr6eYjTNQpSqULOxY4FBg4AzZ5SOhIioDBM1IqrQb0ficSWrAL4udniorcqbkR89KnchWLsWyMtTOhoiojJM1IiowgK3c7edL9vpaWdtBVV76y35dtgwoG1bpaPRFCN7SBHdFBM1IrrBv2dTcOpKNpxsrTCqSyhUbf9+uQuB6Ok5fbrS0RARmd6uz0W7YvDd1vNIzilEeIArpg9sibYh7hVe+/Pei1h18DJOX8mW7rcOdsOr97Wo9Hoiqr65/8qjaSM6NYCbgw1U7c035VvRUoZdCIjIxFiawjqY99adxAt9m2L9cz0REeCCMfP2SM2fK7L7fCoGtgnEzxO6YtWkHghwc8DoeXtwJbOg3mMnUqPjcZnYHp0CK0sLjOup8gK327cDf/wBWFtfnf4kIjIhiidq32+/gJGdQzC8Ywia+rng/UGt4WBrheX75dpN15s9sh1GdwtDy0A3NPF1xodDI6U1DjuiUyq8vrCwEFlZWWVHdrY8EkdEFfu+ZG3aA60DEOzhCFX7/HP5dtw4oHFjpaMhIjKtRE1s/xef3ns08b4akKWFdP9gbEaVvkZ+sR7FegPcHSuenpkxYwbc3NzKjoiIiFqLn0ht4jLy8dvRBOl8ghYK3C5cCHz6KXt6EpHJUjRRS88rgt5ghLezXbnHfZztpPVqVTHz95Pwc7Uvl+xda9q0acjMzCw7oqKiaiV2IrWOponfSdEuqlWQG1TPwQGYMgUICVE6Ek1Re0k+ItVtJqipr7dE47cjCVg6oSvsbSouH2BnZycdpcT0JxHdSKwLFZt1hEm9m0DV4uMBPz/ASuVlR4jI7Ck6oubhaCstWL5+44AYTROjajcz599z+GbLOSx+srO0U5SIbs+CHRdQUGxAm2A39GjiBdXS64F+/YDISODIEaWjISIy3UTN1tpSml7Zec1GAIPBiJ3RqWgfWnm5jW+3nsMXm6OxcFxnRAazLAdRbTRfX7QzVjqf3KeJuttFLVkCHDsGxMUBwcFKR0NEZNpTn+N7NsTLK46gdbA72oa4Yd72GOQV6TCsg7xmZMqyw/Bzs8fUfi2k+2IUbdamM5g9si2CPRyQlC2X5XCytYaTneI/DpFZWrwrFtmFOjTzc0bfcD+oVkHB1bpp06YBXioeOSQiVVA8sxnQJhBpuUVS8pWcXYjwQFdppMzHxa5sF9q1n+5/3B2LIr0Bzyw5WO7rvHB3U7x0T7N6j5/I3OUX6TFv+4WytWli57Vqff01cPEiEBQEPP+80tGQaCEF9pAiMulETRjbPUw6KrLs6W7l7u94/a56iopIG8QGAvFhqYGnIx6MDIBqZWQA778vn7/zjrzjk4jIxCle8JaIlK1lOKekXdTEXo1hbaXit4QPPwTS0gBRS3HMGKWjISKqEhW/KxPRraw+dBlXsgrg52qHoR2CoFqifcnBkuUSM2fKLaOIiMwA362INEqnN0ibc4Sn7mgEO2sV1xQT61xFT8+tW4FevZSOhoioypioEWnU+mMJiEnNg4ejDR7p3ACqJ5K13r2VjoKIqFo49UmkQaJN1OzNZ6XzJ3s2VHdpm7lzgfR0paOga6h4XzFRrWOiRqRBvx2Jx/nkXLg72lS641oV/vwTmDBB3kCQl6d0NERE1cZEjUiDa9M+LxlNE2vTXOxtoEo6ndxwXRg5EnB0VDoiIqJqY6JGpDG/itG0lFxpbZqqR9PElOeJE4CnJ/C//ykdDRFRjTBRI9LqaNqdjeCs1rVporhtaXI2fTrg4aF0RERENcJEjUhD1hyOl3Z6ejrZYmw3FY+mvfcekJIChIcDTz+tdDR0ixJ3RFQ5JmpEGhpN++JveTRtwp2N1LvTMzoa+Pxz+fyzzwAbla7BIyJNUOk7NRFdb9WhOMSm5sHLyRZjuoVCtVxd5RZRCQlAv35KR0NEdFuYqBFppKdn6Wja070awdFWxb/6vr7A99/Luz6JiMwcpz6JNGDpvou4lJYPHxc7PNZVpaNpBkP5++znSUQqwESNSOVyC3X4fHO0dP783U3VO5o2ezbw4IPAObl/KZkuC9HOi4iqRKXv2ERUasGOC0jJKUSolyNGdgqBKon1aG+9BWRnA4MGAY0bKx0REVGt4IgakYql5xbhu63npfMp9zSDjZVKf+VffVVO0rp0AcaNUzoaIqJao9J3bSISvtl6DtmFOoQHuGJAZCBUaetWYMkSMZ8GfPUVYMm3NSJSD76jEalUQmY+ftgZI52/1q85LC1VuC6ouBh49ln5fOJEoEMHpSMiIqpVTNSIVGr2X2elshydG3qidzMfqNKXXwLHjwNeXnI3AiIilWGiRqRC0Uk5WL7/knQ+tV9zde6yE+U4Fi+Wzz/8UG6+TkSkMtz1SaRCM38/CYMR6Bvuhw6hKk1gxFq0nTvlZO2JJ5SOhoioTjBRI1KZHdEp+OtkEqwtLTCtfwuomr098NRTSkdBRFRnOPVJpCJ6gxHvrouSzkUHgsY+zlCdnBx5dydbRBGRBjBRI1KRXw5cwqkr2XC1t8YLdzeFKr35przTc8QIpSMhIqpzTNSIVCKnUIePN54paxXl4WQL1dm3D/j8c/l8wgSlo6EaUuHWFqI6w0SNSCW+3XJOahUV5uWIMd3CoMqaaWI9mtjtOWoUcN99SkdERFTnmKgRqUBcRj7mbpNbRU3rHw5baxX+as+aBRw5Ipfh+OwzpaMhIqoXKnw3J9Kej/44hUKdAV0aeuLeCD+ozpkzctN1QSRpvr5KR0REVC+YqBGZuT3nU7H2cLzU6vLNByPUWdz2mWeAggLgnnuAMWOUjoaIqN4wUSMyYzq9AW/9ekI6f6RzA7QKcoMqffEF0Lcv8P33cvN1IiKNYMFbIjO2aFesVI7D3dEGr97bHKoVEQFs2qR0FFQHjEalIyAybRxRIzJTSdkFmLVJLscxtV8L9ZXjEAVtDx9WOgoiIkUxUSMyUzM3nEJ2oQ5tgt0womMIVOfTT4EOHYD331c6EiIixTBRIzJDey+kYdWhOGm51jsPtYKlpcrWbUVFAf/7n1wzLShI6WiIiBTDRI3IzBTrDfjf2uPS+chODdAmxB2qUlgoF7QtKgIeeAAYO1bpiKiWcT8IUdUxUSMyM3P+PS9tIPBwtMFr96lwA4Ho5SnWpnl5AXPn8q86EWkaEzUiM3IhJRezN5+VzkXNNNVtINi8Gfj4Y/l83jwgIEDpiIiIFMXyHERmwmg04j+rj6FIZ8AdTb0xuJ3K1m5lZV2d5hQN1x96SOmIiEgF0pYsQdq8+dClpMCuRQv4//c/cIiMrPDa9OXLkbn2VxSelT8Q27eMgO9LL1V6fX3giBqRmVhx4DJ2nkuFvY0l3h/UWn0dCFxc5DZR7dqxlycR1YqsDRuQNPNDeE+ejIarVsK+eXNcHP8UdKmpFV6ft3cfXB/oj9CFPyBs6c+w8Q/AxSfHozgxEUphokZkBpKzC/H++pPS+Ut9m6GBlyNURySeTz0F7N8PODkpHQ0RqUDqDwvhPmwY3IcOgV2TJvCf/jYs7e2RsXJVhdcHffIxPB99FPbh4bBr1AgB770r7T7P3bULSmGiRmQG3lkXhcz8YrQMdMWTPRtCVc6fB679dGvJtyUiqlx2djaysrLKjkKxU7wCxqIiFJw4Aafu3coes7C0hFO3bsivYjFtQ34BjDodrNyUa8/Hd0QiE/fH8Sv47Ug8RKm0mUMiYW2lol/b3Fxg4ECgfXvg6FGloyEFGMEeUlQ9ERERcHNzKztmzJhR4XW69AxAr4eV2EF+DStvL2m9WlUkffoJrH194dS9O5TCzQREJiw1p1DaQCBM7NUYrYPd1NXkcdIk4MQJwN8f8PNTOiIiMgNRUVEIuqYQtp2dXZ18n5Q5c5G14XeELloIyzr6HlXBRI3IpHd5HkdqbhFa+Lvghb5NoSoLFgCLFslTnUuXMlEjoipxcXGBq6vrLa+z9nAHrKygv27jgD4lFdbe3jd9buq8+UidOxcN5s+XNiAoSUVzKETq8uuRePxx4gqsLS3w6fA2sLO2gmqIac7Jk+Xzd98FevVSOiIiUhkLW1vYt2yJ3F27yx4zio0Bu3fDoW3bSp+X+v33SPnmGzSYOwcOrVtBaRxRIzJBiVkFeHON3Cbq+bubomWgiqY8s7OBYcOAggKgXz/g9deVjojqmQVUVlqGTJbX42MR//o02LdqBYfI1khbuAiG/Hy4Dxks/Xv81Kmw9vWD78tTpPspc+ci5fMvEPjJJ7AJCoIuOVl63NLREZYK7UZXPFFbtCsG3209j+ScQoQHuGL6wJZoW0nvwjOJ2fjszzM4FpeJuIx8qTK76nbAkeaJKc/XVx5FVoEOkcFueKZ3Y6iKaLZ+5gwQHAwsXsxdnkRUZ1z794cuLR3JX3wOfXIK7MLDpZGy0qnP4vgEsRW07PqMn5fCWFyMuBdeKPd1RB02n+eeheYSNbGT7b11J/He4FZoF+KO+TsuYMy8Pfj7ld7wdr5x4V5+kV6qH9U/MgDvrotSJGaiurZoVyz+OZ0MW2tLfDqsDWzUtMtTEEVtY2KA114DbrFOhIjodnk+Nko6KhK6eFG5+03+3gxTo+hfgO+3X8DIziEY3jEETf1cpGrrDrZWWL7/UoXXtwlxxxv9wzGwTSBs1fbHi0jsZorPwvsb5MK2b9zfQvq9UB13d2D1aqDb1dpGRERUMcWyHdGv8HhcJno0ufqJ2tLSQrp/MDaj1r6PKIR3bWE8USiPyBTlFenw3M8Hpd+Nu1v4Ymz3MKjGqVPA11/LJTmIiMj0E7X0vCLoDcYbpjh9nO2k9Wq1RRTCu7YwniiUR2SKxHT+ueRc+LrY4aOHI9XTyzMjQ26wLnZ5socnEVG1qH7+cNq0acjMzCw7RKE8IlOz/mgCft57SWp3OWtEW3hVsEbTLOn1wKhR8uaBkBBg9GilIyIiMiuKbSbwcLSFlaUFUq4bPROjaWJUrbaIisXXVi0W059EpuRiah5eXyW3T3qmV+NyywHMmpjmfPFFYMMGwN5eXpfm66t0VGRiOBtOZKIjamJHW6sgN+yMvtpvy2AwYmd0KtqHVlyeg0htCor1mPjjAWQX6NCugTteuqcZVGP2bODLL+VzUYajQwelIyIiMjuKlucY37MhXl5xBK2D3dE2xA3ztsdIC6qHdQiR/n3KssPwc7PH1H4tpPtikfXZJHkzQLHeIBUFPRGfCSdba4R5K1OIjuh2W0RFJWTBy8kWX49qr55SHGL0bIpcQBIffww8/LDSERERmSVFE7UBbQKRlluEWZvOIDm7EOGBrlg4rjN8XOSpSlHU9toF1SIxe+Dz7WX35/x7Xjq6NPTEsqe51Z/My097L2LlwcuwtAC+eKQdAtwcoBqJiZAW3D39NPDyy0pHQ0RkthTvTCBKEFRWhuD65CvE0xExMx+op8iI6s7hSxmY/qu8seXV+1qgu1rWpZWaOBFo3Rro0kVO2Iiuwf8liMwoUSPSGrGBZtKPB1CkN+C+ln6Y2KsRVDOKJtpB+fjI93v0UDoiIiKzp5IFMUTms3lgwqL9iM8sQENvJ3w8rI066qWJWmn33QfceSdwqeLOIkREVH1M1Ijqudn6wYsZcLW3xvdjO8LV3gZmLy8PGDAAOHIESE8X7UCUjoiISDWYqBHVk6/+icaaw/FS/cCvR3VAYx9nmL3iYmDYMGD7dsDNDdi4EWjSROmoiIhUg4kaUT3YcCwBn/x5RjqfPrAlejZVweYBnQ547DG5oK2DA7B+PdCmjdJRERGpChM1ojp26GI6piw/LJ0/3j0Mj3UNhWqStOXLARsbYOVKbh4gIqoDTNSI6lB0Ug7G/bAPBcUG9G7ug/8+EA5VSEsDDhy4mqTdf7/SEZGZYgcpoptjeQ6iOpKQmY8x8/YgPa8YbULc8dWj7WGtls4Domfnli3AsWNAv35KR0NEpFoq+atBZFoy8oowdv5eqQxHIx8nLHi8E5zsrM1/44BIzkoFBTFJIyKqY0zUiGpZfpEe4xfux5nEHPi52mHRuM7wdLKFWcvPB4YMAe6+W57qJCKiemHmH/GJTK+g7fhF+7A/Nl2qlbZoXBcEezjCrGVnAwMHyqNp9vbyDk8iIqoXTNSIajFJe2rRfuyIToWTrRUWPNEJzf1dYNZSU+WNAvv2AS4uwG+/Ab16KR0VEZFmMFEjqgWFOj0m/ngA286mwFFK0jqjQ6gnzFpMDNC/P3DyJODlBfzxB9Cxo9JRERFpChM1ottUpDNg0o8HseV0MuxtLDH/8U7o3NDT/Busd+0q34pNA3/+CUREKB0VEZHmcDMB0W3IK9LhyYX7sPlUEuysLTF/bCd0beQFVZTfEK2hRKeBPXuYpBERKYQjakQ1lJlXjHEL9+FAbDocbKwwd0xHdG9ixq2hjEagoEDeLGBhAfzf/8m7PZ1V0JOUiMhMcUSNqAaSswsxYs4uKUkTuzt/HN/FvPt3FhYCTz0FPPCAXC9NsLJikkZEpDCOqBFV06W0PIyetwcxqXnwdrbD4ic7IzzAFWYrIQEYOhTYtQuwtAT+/Veul0ZUD4xiJJeIKsVEjagaxAjahEX7kZpbhCB3BywZ3wVh3k4wW7t3y4VsRbLm7g4sXcokjYjIhHDqk6iKfjsSj0fm7paStJaBrlj5THfzTdLEKMaXX8o10USS1rKlXCvtvvuUjoyIiK7BETWiKkzNfPVPND7584x0v2+4L2aPbGfevTunTgU+/lg+HzwYWLhQLmhLVA/EXhUiqhqOqBHdRG6hDs8vPVyWpD3ZsyG+G93RvJM04fHH5alOsbNT9O5kkkZEZJLM/K8NUd05n5wjdRsQzdWtLS3w1oAIjO4WBrOk0wHbtgF9+sj3RV000XnAzU3pyIiI6CY4okZUgY0nruChL3dISZqPix1+ntDVfJM00QKqRw+gb195Z2cpJmlERCaPI2pE1/Xs/PiP0/h++wXpfucwT3z5aDv4utrD7Oj18tTmf/4j10kTiZloCUVERGaDiRpRibOJ2dJ6tJMJWdL9cT0aYlr/FrCxMsOB56goYMIEYMcO+X6/fsD338t9O4mIyGwwUSPNE7s6F++OxfvrT6JQZ4Cnky0+GhqJvhF+MEsffgj897/yujSxSWDWLGDcOG61IyIyQ0zUCFrvMvDG6mPYdjZFun9nMx98MiwSvi5mONVZyttbTtIGDAC++AIIDVU6IqJKsS8B0c0xUSNN0huMWLDjAj798wzyi/Wws7bE6/e3wNhuYbC0NLORp9Ongbg44K675PtPPAE0anR1hycREZktJmqkOVHxWdIo2uFLGdL9Lg09MXNoJBqaW5eB5GRg+nTg22+BgAA5YXN0lPt1MkkjIlIFJmqkGem5Rfh002n8tOciDEbAxc4a0/qHY2SnEPMaRcvLk6c0P/gAyJI3PqBdO/lcJGpEJs4CZvT7RqQwJmqkejq9AUv2XMRnm84gM79YeuyB1gF488EI+LuZ0Vq0/Hx59ExsFigtsyEStE8/5QgaEZFKMVEj1TIYjPj9+BVpFO18cq70WAt/F7w1oCW6NfaC2TlxApgyRT4PC5OnPR97TJ7qJCIiVWKiRqost7HlTDI+2XgaJ+LlqUEPRxtMubc5HukUAmtzqYuWmgrs3Cnv3hQ6dgQmTgTatwfGjgVsbZWOkIiI6hgTNVJdgvb1P9HYF5MuPeZsZ43xdzSUmqm72NvALERHy7XPFiyQy2zExsqbBYRvvlE6OiIiqkdM1MjsFesNWHc0Ht9tPY9TV7Klx0S5jbHdwzCxV2OpgK1ZtHvauBH47jvgt99E1nl1DdqVK1cTNSIi0hQmamTWuzh/OXAZP+yMQVxGvvSYk60VHu3SAE/2bGQ+GwX27gWGDQMuXrz6WP/+wMsvy5sE2FGAiEizmKiR2U1vivpnP+6+iN+OxqNIZ5Ae93a2xRM9GuKxLqFwc7Qx/fIaly8DzZrJ95s0AZKSAE9Pee3ZU08B4eFKR0lERCaAiRqZhaTsAvx2JAErD1xGVEnTdKFloCse6xqKwe2CYG9jBZMl1ppt3gz8+COwejUQESGPpAkiQfvrL6BDB8DeTEYBiWpJ6Sw/EVWMiRqZrNxCHTaeuILVh+KwIzpFKlJbuv7swchAPNa1AdqGuMPCVKcGc3PldWdr1wLr1gFpaVf/LSUFyMwE3Nzk+z16KBYmERGZLiZqZFLScouw+WQi/oxKxLazySgolqc2hfYN3KWRM5GkeZjDBoEJE4CffirfLH3ECGDUKKBrV649IyKiW2KiRoqvOTudmI1tZ1Kw6WQi9seklY2cCWFejhjcLhgPtQ1EmCn24szIALZsATZtkqcvly6Vd2oKov7Z7t3AoEHAQw8B3bsD1vyVI+JnFKKq418NqncJmfnYfjZFms7cHp2KlJzCcv8u1p3dE+GHeyP8ER7gYlpTm+np8lqzHTvk48AB0QLh6r+LZK00URM7OcUIminFT0REZoWJGtV5jbNTCdk4eDFdOg7EpuNyulxKo5SDjRU6N/RE7+Y+UoIW7GEijcWzs4EjRwAPD6BlS/mx48flBOxazZsDffsC99wD9O599XErE97cQEREZoGJGtWaQp0eZxNzcDIhCycTsnEiPhNHL2civ1hf7jpLCyAy2B09m3ijZ1NvtGvgDjtrK2W3nV26BJw8CRw+DBw6BBw8KHcIEP82eTLw5ZdX2ziJ3ZldushTmXfcATRooFzsRESkakzUqNoKivWITc3DhZQcnE/JLUvOopNyoLt2gVkJV3trtGvggfYNPNAh1ANtQtyUaeckdmFeuACcOgW4ugL33nt1nVloaMXPCQoCnJ2v3ndwAPbvr594iYhI85io0Q30BqNUtyw+Qxz50iGmK2NSc3E+ORfxmfmV1j4SSVlEoCvCA+SjXYg7Gvs4w1IMo9UlEVBBgZxICWLd2LRpQEyMfIgELTn56vUiSStN1MTUZnCwnJBFRsprzETjc3Hr41O3cRMREZl6orZoV4zUpzE5p1D64z59YEupPlZl1h9NwKebTkvJQ0MvJ7x+fwv0aeFbrzGbo7wiHVJziqTF++I2NbcQKSX3xe2VTJGUFeBKVoGUrN2Mi701Gvk4o5G3k3RIiVmgKwLd7Gtv8X9xMZCfL49+lVq0SJ6mTEi48ejZU17ML1haAvPmAamp5b+mqFsm1pSJhOxaovG5eA4REalK2pIlSJs3H7qUFNi1aAH///4HDtf/DbhG1h9/IHn25yiOi4NtaCh8X3kZzr16QbOJ2m9H4vHeupN4b3ArafRl/o4LGDNvD/5+pTe8ne1uuP5AbBqeX3oIr93XHHeH+2Lt4XhMWLwf6567A839XaDG8hWilphY5yUdRTrkF129n1eoQ1ZBMbLyS2+LkV1w42MZ+cXIKyq/VuxmrCwt4O9qjyB3BwS42yPQ3QENS5IycSsand80IRPTiWKqUSzIz8mRb0vPxQjW/fdfvfa55+QWSqIgrDhEciVuxfXil0OUvyj16qvytRURydq1pk4FbGyAsLCrh3slHwCYpBERqU7Whg1Imvkh/N9+Gw5tIpG2cBEujn8KjX/fAGsvrxuuzzt4CHEvvwLfKS/BuXdvZK5bh0vPPoeGK3+BfWnbP60lat9vv4CRnUMwvGOIdP/9Qa3x96kkLN9/CZN6N7nh+vk7YtCrmQ+e7tVYuv/yvc2x7WwKFu6KwQeDW0MpVzILsOFADGwSE6DXGaDX6VGs10OnM0Kv00FvMCDT3hXpLh7STkhjQQF8Lp2HXm+AXq+DTm+EQbpej8IiPeId3HDOyVdKxmx1xegQd1KkbbAwGmFpNMICJbdGI664eOGUb0MpDmu9Dnef2wtbgwH+Bj2CDHpYlxxWBj3ivINwJrIbvJxt4etgheEbF8HJCtLhbAW4WItbIxwsjLAMbgNMnHR1alE0ChcjXGKK8fpDLKpfseLqCyKmEkWiVhFx7bWJ2vLllSdf11bzFwYPlkfaAgJuPPz9y18rkjoiMmliaUV2QbHSYVAts7W2hK+L8i3xUn9YCPdhw+A+dIh033/628jZuhUZK1fBe8JTN1yftngRnHv2hNeTT0r3fV94Abk7dyJ9yU8ImP42NJeoiYbax+MyMam3nHQJYi1TjybeOBibUeFzDsWm48k7GpV77M5mPvjzxJUKry8sLJSOUtlilKYOxGXkY8WPm/D7gucrveabLg9jYe/HpfPQ9Hh8O2dCpdcu6DAA0/s+LZ27FWTj56VvVHrttjsGYOW90+HqYANvfQGe/+SDSq81jhwJi9f/c7X/5Pjulf9QomDrpJJETYye/fOPeEErvvb6KUbRs1IkcC4uVw+xBkzctmlT/to33wT0ernnpfiEc+3t9SNg335bebxEZHbun71N6RCoDohOMqsm1U1rvOzsbGRlXe35bGdnJx3XMxYVoeDEiXIJmYWlJZy6dUO+2OFfgfzDR+D1+Nhyjzn36IlsUT9TIYomaul5RdJaqOunOH2c7XAuueLRGLGOzdu5fPsgH2fbG4qmlpoxYwamT5+OuiZi7hXujyJbexilhfMWUnJjFFNqIsmxsESn8EC8+WAEbK0s4JbkgfxVvvKUm4UFLCwsxXyjfG5piQF9WqHva32kRuOOWekw/h0uTzWWfr1rbu/o2xF3jCwpsipGsUTZCDHlJ6rgX3vY2MBClJW4ts7XxIkVXysOsZbrWvPny4+LJOz64/qESkxDimursl7t2Wdr4z8BEZkJGytLPNA6AH+dTFQ6FKrD/8Z1JSIiotz9t956C2+/feNoly49QxoEsLpuitPK2wuFYoNZBcQ6Nisv7xuuF48rRfGpz7o2bdo0TJkypex+XFzcDf+Ra0MDL0e8/uowQByV6FhyyMKAhyp/kyqXurr4A1FRVQvEyUmumF8VIon65htU2aOPVv1akfwREVXiq1HtlQ6BzFRUVBSCROmkEhWNpqmJoomah6OttGj9+tEwMWomRqgqIh4XOxTLX19U4caDioZErx0uJSIiIvPi4uIC12urAVTC2sNdmjnSX7c0R5+SCmtv74qf4+0NfWpKla+vD5ZKLzZsFeSGndFXXxSDwYid0aloH1rx7rx2oR7lrhe2n01G+1CPOo+XiIiIzIOFrS3sW7ZE7q7dZY8ZDQbk7t4Nh7ZtK3yOQ9s25a4XxGaCyq6vD4rXJBjfsyF+3ncJvxy4jOikbPxnzXGp3tewDvIu0CnLDuPDP06VXT+uRxi2nknG3H/PS5XwZ206g2NxmRjbLUzBn4KIiIhMjdfjY5GxYgUyVq9B4blzuPL2dBjy8+E+ZLD07/FTpyLp08/KrvccPQY527cjdf4CFJ4/j+QvvkT+iRPwGFWNpT9qW6M2oE0g0nKLpIQrObtQKpq6cFxn+LjYle2mvLZeV4dQT8we2Q6f/nkaH288jTBvR8wZ3VGVNdSIiIio5lz794cuLR3JX3wOfXIK7MLD0WDunLKpzOL4BGmzXynH9u0Q9MnHSP6/2UieNQu2YaEI+fILxWqoCRZGUVFVQy5fvoyQkBBcunQJwaLWFxEREZm8yxr9+6341CcRERERVYyJGhEREZGJYqJGREREZKKYqBERERGZKCZqRERERCaKiRoRERGRiWKiRkRERGSimKgRERERmSgmakREREQmSvEWUvXNYDBItwkJCUqHQkRERFWUUPJ3u/TvuFZoLlFLTEyUbjt37qx0KERERFSDv+MNGjSAVmiu16dOp8O2bdtw1113ISoqCi4ubOZeHdnZ2YiIiOBrV0183WqOr13N8bWrGb5upvnaGQwGKUlr164drK21M86kuURNyMrKgpubGzIzM+Hq6qp0OGaFr13N8HWrOb52NcfXrmb4utUcX7vax80ERERERCaKiRoRERGRidJkomZnZ4e33npLuqXq4WtXM3zdao6vXc3xtasZvm41x9eu9mlyjRoRERGROdDkiBoRERGROWCiRkRERGSimKgRERERmSgmakREREQmiolaicLCQrRt2xYWFhY4fPiw0uGYhYEDB0ptPOzt7REQEIDRo0cjPj5e6bBMXkxMDJ588kk0bNgQDg4OaNy4sbRLqqioSOnQTN7777+P7t27w9HREe7u7kqHY9K++uorhIWFSb+fXbp0wd69e5UOyeT9+++/GDBgAAIDA6W/BWvWrFE6JLMxY8YMdOrUSepG4Ovri0GDBuH06dNKh6UKTNRKvPbaa9IvJ1Vdnz59sHz5cumXceXKlTh37hwefvhhpcMyeadOnZJaoXz33Xc4ceIEZs2ahW+//RZvvPGG0qGZPJHMDhs2DM8884zSoZi0ZcuWYcqUKdIHgIMHD6JNmza47777kJSUpHRoJi03N1d6rUSSS9WzdetWTJ48Gbt378amTZtQXFyMe++9V3pN6TaJ8hxat2HDBmOLFi2MJ06cEKVKjIcOHVI6JLO0du1ao4WFhbGoqEjpUMzORx99ZGzYsKHSYZiNBQsWGN3c3JQOw2R17tzZOHny5LL7er3eGBgYaJwxY4aicZkT8bdg9erVSodhtpKSkqTXcOvWrUqHYvY0P6ImGrw+9dRTWLx4sTSdQjWTlpaGJUuWSNNSNjY2SodjdkRfPE9PT6XDIJWMOh44cAB9+/Yte8zS0lK6v2vXLkVjI229pwl8X7t9mk7UxIemxx9/HBMnTkTHjh2VDscsTZ06FU5OTvDy8sLFixexdu1apUMyO9HR0fjiiy/w9NNPKx0KqUBKSgr0ej38/PzKPS7uX7lyRbG4SDvE0o4XX3wRPXr0QKtWrZQOx+ypMlF7/fXXpYWgNzvEOiHxxzE7OxvTpk1TOmSze+1Kvfrqqzh06BD+/PNPWFlZYcyYMVICrEXVfe2EuLg49OvXT1p3JUZ2tagmrxsRmS6xVu348eNYunSp0qGogipbSCUnJyM1NfWm1zRq1AjDhw/Hb7/9Jv0hKCU+iYqEY9SoUVi4cCG0pqqvna2t7Q2PX758GSEhIdi5cye6desGranuayd2yPbu3Rtdu3bFDz/8IE1PaVFN/p8Tr5f4xJ6RkVEPEZrf1KdYxvHLL79IO+9KjR07Vnq9OOpdNeLvwurVq8u9hnRrzz77rPT/mNhBK3a20+2zhgr5+PhIx618/vnneO+998ruiz+cYmeU2DEltrNrUVVfu8qGu0tLnWhRdV47MZImds126NABCxYs0GySdrv/z9GNREIr/r/avHlzWZIhfjfFffFHlKguiDGf5557Tkput2zZwiStFqkyUasqUQPsWs7OztKtqGsVHBysUFTmYc+ePdi3bx969uwJDw8PqTTHm2++Kb12WhxNqw6RpImRtNDQUHzyySfSiFIpf39/RWMzdWIdpNi4Im7F6HdpzcMmTZqU/f4SpNIcYgRNrL3t3Lkz/u///k8qk/DEE08oHZpJy8nJkdaMlrpw4YL0/5hYEH/93wu6cbrzp59+kkbTRC210vWQbm5uUr1Iug1Kbzs1JRcuXGB5jio6evSosU+fPkZPT0+jnZ2dMSwszDhx4kTj5cuXlQ7NLEpLiP/PKjro5saOHVvh6/bPP/8oHZrJ+eKLL4wNGjQw2traSuU6du/erXRIJk/8f1TR/1/i/zu6ucre08T7Hd0eVa5RIyIiIlID7S6MISIiIjJxTNSIiIiITBQTNSIiIiITxUSNiIiIyEQxUSMiIiIyUUzUiIiIiEwUEzUiIiIiE8VEjYiIiMhEMVEjIpMVFhYmtT+qS6LBu2jALQ7R6L2q3n777bLn1XWMRKRdTNSISPNcXV2RkJCAd999t8rPeeWVV6TnsC8wEdUlTTdlJyISxKiYv79/tZ4jmsCLw8rKqs7iIiLiiBoR1bo5c+YgMDAQBoOh3OMPPfQQxo0bJ52fO3dOuu/n5yclPJ06dcJff/1V6deMiYmREqrDhw+XPZaRkSE9tmXLlrLHjh8/jvvvv1/6muJrjx49GikpKdWK/9SpU3B0dMRPP/1U9tjy5cvh4OCAqKioan0tIqLbwUSNiGrdsGHDkJqain/++afssbS0NPzxxx8YNWqUdD8nJwf9+/fH5s2bcejQIfTr1w8DBgzAxYsXa/x9ReJ21113oV27dti/f7/0/RITEzF8+PBqfZ0WLVrgk08+waRJk6R4Ll++jIkTJ+LDDz9EREREjeMjIqouTn0SUa3z8PCQRrXEiNTdd98tPfbLL7/A29sbffr0ke63adNGOkqJ9WGrV6/Gr7/+imeffbZG3/fLL7+UkrQPPvig7LH58+cjJCQEZ86cQbNmzar8tUSStmHDBjz22GOwtbWVRvyee+65GsVFRFRTHFEjojohRs5WrlyJwsJC6f6SJUswcuRIWFpalo2oiQX54eHhcHd3l6YqT548eVsjakeOHJFG8UrXj4lDjI6VTrVWl0jyjh49ioMHD5btDiUiqk8cUSOiOiGmMY1GI9avXy+NRm3btg2zZs0q+3eRpG3atEmaYmzSpIm0/uvhhx9GUVFRhV+vNMETX7NUcXFxuWtE8ie+r5iivF5AQECNEr/c3Fzpe4sdnjX5GkREt4OJGhHVCXt7ewwZMkQaSYuOjkbz5s3Rvn37sn/fsWMHHn/8cQwePLgsyRIbBirj4+Mj3YqESUxvCtduLBDE1xejeKL+mrX17b29iTV1Ir7//Oc/0vcUI4RiZE0klERE9YVTn0RUZ0RyI0bUxBRi6SaCUk2bNsWqVaukZEuMXD366KM37BK9lkiQunbtipkzZ0pTpFu3bsV///vfctdMnjxZSrAeeeQR7Nu3T5ru3LhxI5544gno9fpqxS42D4i1beJ7fPbZZ9LzxSggEVF9YqJGRHVG7MD09PTE6dOnpUTsWiL5EZsOunfvLk1X3nfffeVG3CoiEj6dTocOHTpIXQTee++9cv8uSoKIkTqRVN17771o3bq1dJ1YA1c6dVoVixYtkjYSLF68WBqZc3Jywo8//oi5c+fi999/r+arQERUcxbGaxd8EBFpjNgkIJI5UdqjJsQ0q3h+ddpPERFVFUfUiEjzMjMzpR2iU6dOrfJzRAkQ8Zzb2aVKRHQrHFEjIk3Lzs6WiuIKYopU1HqrCrEWThylGx3c3NzqNE4i0iYmakREREQmilOfRERERCaKiRoRERGRiWKiRkRERGSimKgRERERmSgmakREREQmiokaERERkYliokZERERkopioEREREcE0/T8GLLHwWPPVUQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "stochast.truncated = True\n", "stochast.minimum = -np.inf\n", "stochast.maximum = 0.5\n", "\n", "stochast.print()\n", "stochast.plot()" ] }, { "cell_type": "markdown", "id": "fc2ed957", "metadata": {}, "source": [ "Below, we truncate the distribution to the interval $[-0.5, 0.5]$:" ] }, { "cell_type": "code", "execution_count": 16, "id": "6335e47c", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Variable:\n", " distribution = normal (truncated)\n", "Definition:\n", " location = 0.0\n", " scale = 1.0\n", " minimum = -0.5\n", " maximum = 0.5\n", "Derived values:\n", " mean = 0.0\n", " deviation = 1.0\n", " variation = 0.0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAGwCAYAAAAZn0mrAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUcVJREFUeJzt3Qd4FOXaxvE7PZBKCj106R0FKYrYxYYoimIXK3JU1IOoHEFQQKzYwQIoKvqJHQs2EBGl9yK9hxRCKmm73/XOmpBAgklIMpvs/3ddY2Zm39k8GdbdZ9/q5XQ6nQIAAIDb8bY7AAAAABSNRA0AAMBNkagBAAC4KRI1AAAAN0WiBgAA4KZI1AAAANwUiRoAAICb8pWHycnJ0YoVK1SnTh15e5OnAgBQFTgcDsXGxqpLly7y9fWc9MVz/tJ/mCSte/fudocBAADK4K+//tJpp50mT+FxiZqpScv7h65Xr57d4QAAgBLYv3+/VdGS9znuKTwuUctr7jRJWsOGDe0OBwAAlIK3h3Vb8qy/FgAAoAohUQMAAHBTJGoAAABuikQNAADATZGoAQAAuCkSNQAAADdFogYAAOCmSNQAAADcFIkaAACAmyJRAwAAcFMkagAAoFpKX7JEu++6W3+fcaY2tG6jlB9//Ndr0v78S9sGDtTGDh215fwLlDTnM9mJRA0AAFRLjowMBbRupTr/G12i8ll79mj3XXcpqHsPNf38M0XceKP2jx6t1N8Wyi4etyg7gOrF4XAqM8ehzJxc66fD6ZSvt7f8fLzk6+Mtf7P58p30pKWlSfHxxT8eGSkFB7v209OluLjiy0ZESCEhrv0jR6TY2OLLhodLYWGu/cxM6cCB4suacqa8kZUl7d9ffNnQUKlWLdd+To60d2/xZc3fZf4+IzdX2rOn+LJBQVJUlGvf4ZB27y6+bM2aUnT00eOdO4svW6OGVLv20eNduySns+iyAQFS3bpHj00MJpai+PtL9eodPTZ/m/kbi+LnJ9Wvf/R43z4pO/v4coGBUp06cgfBZ55pbcYJ/oXzJX30kfwbNlCdR0ZaxwHNmytj+TIlzpih4DP6yA4kagDcUq7Dqf2HM7QrIV07E9O1MyFdsclHFJ+aqYTULCWmZSkxPUtZOcV8ABUQ6OetWjX9FV7TX7Vq+ik6JEANa9VQTK2aalirphpF1FSDWjXk4+1VKX9blfTNN9I11xT/+LvvSjff7Nr/5RfpkkuKL/vqq9I997j2Fy+W+vUrvuwzz0gPP+zaX7VK6tGj+LJPPCGNGePa//tvqX374sua5zTPnZecNG1afFkTq4nZSEiQmjQpvuxNN0nTp7v2MzJOXHbQIOnjj48en6hs//6uf4M8rVu7nr8offtKv/569Lhr1+KT7NNOk/766+hxnz7FJ4xt20rr1h09PvdcacOG48uZ8/PmqaKkpKQoOTk5/zggIMDaykP6ypWq2bNnoXNBvfsodsIE2YVEDYDt0rNytH5fstbtS3b93H9Ym2NTS5SEFeTr7SUvLyk7t3BNw5Fsh/YfPmJtJ0rmWtUJUeu6oWpdL0Tt6oepY8MwBfr5yGOZmhWff/5+89PUlBQnr5zh7V1+ZX0LfEyZf1w7ypqapILsKGtqvo4tW1yNWlFli3vuYxMcc3yyZY/9/eWsrUkYC3jiiSc0Ji9BP0m5cfHyjfynRvQfvlGRcqSmynHkiLxP9G9UQUjUAFS6w+nZWrozUX9tT9Sf2xO1du9h5TiO/9AxzZem1qtRZE01iQxSvbBARQUHKDLYX5FBAaoV5Kcgf18F+LmaOE1Tp+F0Oq0aOfOcmdkOHc7I1qH0LGtLSs+2aub2HMrQ7kPprp+J6VYyt2rPYWsr+PvbNwjTqY1r6dQmETq9aaTCah7z4VpdmRqY00+Xhg+Xhg2TrrzStZXERRcVX9tzLNMsVdKypvanpGXNh3lJyzZuXPKypvmxpGVNM2hJyxqlKZuYWPKyJ2p+PdamTSUvu2KF7LB+/Xo1aNAg/7i8atPcFYkagApnEidTW/bLxoP6edNBrdyddFxlQO2QACspalc/VG3rhapt/VCrWbIszZFeXqZ/mtlMTZmPlVyZZK84JqnbmZCmTQdStMFs+5O1aneSDqZkasWuJGub9tt2K5YuMeHq2zJaZ7WqbcXqXV2bS596Stq61dWkaZI1wE2EhIQo1PQxrAA+0VHKSSjcTJwTnyDv4GBbatMMEjUAFcIkP6bG7KvV+/TThljFJmcWerxZdJC6N4lQ96auzSRldjEJWLPoYGu7qEO9/OTS1LaZmr8lOw5Zf8uWg6lauvOQtT03b7PV1+2i9nXVv0M9ndYkovr0cdu+/WifLNOPyzRPAh6gZufOSp2/oNC5tEWLVKNzZ9tiIlEDUG5McmNqy75atV/frNlXKDmr4eejPqdE6ezWtdWvVW3VDbPn22lpauViImpa2xVdGlrn9hxK1/zNcZq/KU6/b4lXXEqmZv6x09pM0ta/fV0N6NJAnWPCreurrMcfd43mM53Czz/f7miAMnOkpSnLjJAtMP3GkQ0b5BMWJr/69XXwueeVczBW9SdNsh4PHzxYibM+UOzkyQq/8kqlLV6s5O++U8wbb8guXk7zzupB9uzZo5iYGO3evVsNG7refAGcHDMCc87yPfpoyW6r1ilPaKCvLmpfTxd1qKvTm0VWq475ZqDD71vj9c3q/fph3QElH8nJf+yU2sG65rQYXdGlgSKDq1j/meXLpW7dXPvLlrlGDAJV9PM77c+/tMuMxD1G2IABqj9xgvY9MkrZe/eq8XszC10TO3GisrZskW/duoq6+26FD7xCdiFRA1Am5q3jj20J+uDPXfphXayych35NWfnt6ujSzvW1xktoxRgOopVc1bStiVeX67ap2/X7rcGJuSNQj2vbR3d1KuJejSNqBq1bOedJ5nZ26+7Tpo1y+5oAHn65zeJGoBSJyVfrdqntxZutzrd5+nQIEyDu8fosk71FRLoISMji5B8JFtfrtynT5buLjSC1AyQuKV3E13aqb771iyaObI6dHBNG7Fx44nnFgMq2R4P/fwmUQNQIknpWZr15y7NWLTDGg2ZV3s2sGsDXdu9kTViE4WZRNb0X/tsxZ78WraoYH/d1LOJbuzVRGE13DChXb1aWrJEuu02uyMBCvHUz28SNQAndCgtS28t3Kbpv+9QWlZu/lQapjlvSI9G1mz/+Pd7+OGSXXrvj535k+6GBPjq5t5NdEvvpooI4h4C/2aPh35+25qo/bktQVMXbNOavYetb+hv3tBNF7QrsD5ZEf7YmqDx36zX37GpqhceqHv7tdCgU2NK/Ds99R8aKI8ErXXdEN1+RjOr+Y71M0svO9ehuWv269VftlgrLxg1/X10/emNdceZzazJfG1h1sU0I+NatLDn9wMlsMdDP79tfadNz85Vm3qhevLyE6zHVoCZPfzW6UvUs1mk5t7XR7f2bqpH5qyxhssDKB8pR7L13A+b1GfSz3r1l61Wkmb6V029oZu+ve8MXdmtIUlaGfn5eOvyzg303X1n6o3ru1oT5qZn5VpfWPs+84temLdZqZlHR49Wmrfektq0kUaPrvzfDcB951EzcymZraTe/3OnYiJq6PFLXOt8tagdoiU7EvX2wu3WTOFFyczMtLaCi7kCKLq258O/dumlH/9WQlqWdc4kaPefe4o1crFKjFisIsxqBhe2r2e1IPy6KU4v/LhZq/cc1ks//a33F+/Uf845xer3VykJcVqa9OSTUk6OVM812S8A91GlJrxdsTNJvVsUXiz1zJbRGvfV+mKvmTBhgsaOHVsJ0QFVk+n98MP6WE36dqO2xadZ55pFBem/F7ayEgkStIpj7m2/1rV1VqtozV1zQJO/36gdCel64st11hfQRy5qba18UKH/Bi++KMXGSs2aSUOHVtzvAVD9E7W41Mzj+nBEBwcoJTNHR7JzixzyPmrUKI0YMSL/eO/evWprFusFoI0HkvW/L9ZZyyMZkUH+Vg3a4O6NrGY6VA6TiF3csZ41/5yZNNjUau5KTNc9s5arV/NIjbmsnVrWCSn/X5yQ4Foiyhg3TvJnUAPgbqpUolYWAQEB1pYnOfnovE+AJ/dDe/HHvzV90Q5rTc4AX29rkMCdfZt59BxodjPJ8Q2nN9bALg305vytemPBNi3amqCLXvrNmtLj/vNOUWh5/vtMnGjeFKVOnaTBg8vveQF4ZqJmas/iUzOPq2Uzw9zddgJJwM2aOc3s+eO/2WCtU2mYpjXT77NBeA27w8M/ggJ8NeL8VtaI9nFfr7eapt/5fbu+XLVXj13cRgM6Nzj55tA9e6SXX3btT5jAwuuAm6pSiVqXxuH6dWPhEZ4L/45Xl8a1bIsJqCp2JqRp1Jw1Vg2N0SSyptWkdlYpBvSgcpkF4afeeKoWbI7TmK/WaVtcmh6YvUqfrdinpwa0tx4vs1WrTJODdPrp0oUXlmfYAMqRrV+h0jJztG7fYWvLm37D7O9NyrCOJ323USNmr8wvf32Pxla/jQlzN1gLP7/3xw59s2a/buvDMidAcUzTpumYfsGLC6wkLdDPWw+d31LfP3AmSVoVYQZNmSk9Hr6glTUS1CRu57+wQG/9tk05/6yxWmoXXyxt3eqamoMBI4DbsnXCWzN57bXTFh93/squDfXc1Z304MertOdQumbf2bPQNaYpwCRqdcMCNfxsJrwFirPlYIr++3+rtXxXknVs5iCceGUHNY4Msjs0lNG2uFQ9+tkaLd6WmL/G6jNXdbTmpASqsz0e+vnNElJANWRqWd5csM0aPZiV61BwgK8e7d9Gg0+LsebwQtVm3rY/Xrrb6muYciRH/j7eGnF+S2tAiM+//fuaJk8zHcd551GThiplj4d+ftN7FKhmdsSn6ao3/tDk7zdZSVq/VtH64YEzdV2PRiRp1YQZSHDNaY3004i+OrdNbevfeeK3G3XNm39oV0L6iS9+8EHpggukSZMqK1wAJ4FEDahOtSxLdqv/lN+0cneSQgJ99fzVnfTOzaepPiM6q6XaoYGaduOpVtOnqTVduvOQLnxpgbXCRJGNJfPmST/95Jov7dpr7QgZQHUe9Qmg+AXUzYjO79YdsI57NI3Q89d0ZsoND6ldu/rUGKv/4UOfrNKf2xOt18KP62M1eVAnRQT9M4mtw2FmAHft33OP1LixrXEDKBlq1IAqzkxRY0Z0miTNz8fLWnbog9tPJ0nzMGaqjg9vP12PX9zGGhn608aDuuilBVq8zTUdiz79VFq2TAoOlh591O5wAZQQNWpAFZ52wyzi/fLPf8u0cjWPDtJLg7uofYMwu0ODTUwfxKFnNFOfU6I0bNZybY1L03XTFuv+vk00/LHHZPVQfOghKTra7lABlBA1akAVdDDliG54+09N+cmVpF3bvZG+Hn4GSRosreuG6qvhfXRVt4ZyOKV9L74hr7//liMqWiqw9jEA90eNGlDFLNoar/s+WmktAVXT30dPX9FBA7o0sDssuJma/r56dlAn9W4Rqe93LtPWiAb6tPtl6nngiM4IqYAF3gFUCBI1oIpwOJx67dcten7eZquWpGWdYL02pJta1A62OzS4sSu6NFSnKSP0n/fO0Mb9yXrjnb/08AWtdVffZie/XiiACkfTJ1AFpBzJ1h3vLdOzP7iStEHdGuqLYX1I0lAizaKD9X/Dz9TAHk2s149Znu+eWcuVmpljd2gA/gU1akAVWDLo9plLrY7hZjTf+Mvb6+rTSr5sGjzYyy+7ft5xhwIDAjTpyo7qHFNLT3y5Vt+uPaDNsSl684ZTSfgBN0aNGuDGft4Yq8tf+d1K0uqGBurjO3uSpKFkEhOlxx+X/vMf6auvrFOmqdOsUGHWTzavJ/O6GvDq7/purWv+PQDuh0QNcENmVvlXfv5bt81YqpTMHJ3auJa+HN5bnWPC7Q4NVcXkyVJystSxozRwYKGHujaqZY0K7d40wmr+vOv9Zda6sB629DNQJZCoAW4mIytXwz5YbvVHM5+bQ3o0siawrR0SaHdoqCoOHJCmTHHtjxtnJlg7rkh0SIBmDe2hW3o3sY5f+HGzNZr4SHZuZUcL4AToowa4kYPJRzR05lKt3nPYWmXgycvbW3OkAaUyYYKUni517y5demmxxfx8vPXEpe3Usk6IRn++Vl+u2qddiemaemM3vhgAboIaNcBNbNifbPUXMklarZp+Vi0aSRpKbdcu6Y03XPtPPWU6pv3rJeZ1NvO27gqr4aeVu5M04JXftX5fcsXHCuBfkagBbuCXjQd11euLtO/wETWLDtLnw3rrtCYRdoeFqmj8eCkrS+rbVzrnnBJf1qt5lPW6axYVZL0Or3pjkX5YxyADwG4kaoDNZizaodtmLFFaVq56NovUZ3f3VuPIILvDQlV1993SxReXuDatoKZRQfrsnt7q0yJK6Vm5uvP9ZXrrt20MMgBsRKIG2OiZ7zbqiS/X5U9iO+PW7gqr6Wd3WKjKunSRvv5a6t27TJeb19+7t5xmDWIx+dn4bzZo0nebyj1MACVDogbYJC0zR2/M32rtP3xBKz1zVUdrQlugTMqx1ssMMhg/oL1GXdTaOp66YCurGAA24VMBsElOrtOqSTPuPJN1F3GSrr1WGjbMNTVHOTCvx9vPaGbtm9dpdo6jXJ4XQOmQqAFAVbd0qTR7tvT661JCgt3RAChHJGoAUNWZpaKMIUOkdu3sjgZAOSJRA4Cq7LffpO+/l3x9pTFj7I4GQDkjUQOAqjyAIK827dZbpebN7Y4IQDkjUQOAqmrePGnBAikgQBo92u5oAFQAEjUAqKomTjw6yW3DhnZHA6ACsCg7AFRVZqTn5MnSQw/ZHQmACkKiBgBVVXS09MwzdkcBoALR9AkAVc2hQ3ZHAKCSkKgBQFWSm+tax/Occ6Tt2+2OBkAFo+kTAKpav7QNG6T9+6WICLujAVDBqFEDgKoiJ0caO9a1bwYQhIXZHRGACkaiBgBVxYcfSps3u2rS/vMfu6MBUAlI1ACgqtWmPfywFBJid0QAKgGJGgBUBe+9J23dKkVFSffea3c0ACoJiRoAVAUffOD6OXKkFBxsdzQAKgmjPgGgKpg7V5o1Sxo0yO5IAFQiEjUAqAr8/KSbb7Y7CgCVjKZPAHBnZs60rCy7owBgExI1AHBXR45I558vtWolrV9vdzQAbECiBgDu6q23pD17pOxsqVkzu6MBYAMSNQBwRxkZ0oQJrv3HHpMCA+2OCIANSNQAwB1NnSrt2yc1aiTdeqvd0QCwCYkaALib9PSjtWmPPy4FBNgdEVBlJc6apS1nn6ONHTtp+9XXKGP16hOXnzFDWy+8SBs7ddbfZ/VT7IQJcmRmyi4kagDgbl5/XYqNlZo2ZUoO4CQkz52rgxMnKWrYMDWd86kCW7XSrqG3Kychocjyh7/6Wgefe94q3+ybb1Rv/Hglz/1Wcc+/ILuQqAGAu1mxwvVz9GjX/GkA8qWkpCg5OTl/yzxBbVfC9BkKHzRI4VcOVECLFqo7doy8AwOV9OmcIstnrFihGl27KuzSS+TfsIGC+/RW6MUXK2PNGtmFRA0A3M3770uLFkk33GB3JIDbadu2rcLCwvK3CXndBI7hzMrSkXXrFNSrZ/45L29vBfXsqYyVK4u8pkaXLtY1ec2jWbt3K3XBAgWfeabswsoEAOCOeh79cAFw1Pr169WgQYP844Bi+nDmHEqScnPlExlZ6LxPVKQyt28v8hpTk5Z76JB2DLlecjqlnByFD75GUXfdKbtQowYA7uLHH1190wAUKyQkRKGhoflbcYlaWaT9+Zfip05V3f+NVtNPP1WDl6codf4Cxb32muxCjRoAuIPDh6Wrr3atRmCaPTt3tjsioErzrRUu+fgo95iBA7nxCfKNiirymrgpUxR22WWqNWiQdRzYqqWcGRna/78nFHXXXVbTaWWjRg0A3MGUKdKhQ1KTJlKHDnZHA1R5Xv7+CmzXTml/LM4/53Q4lLZ4sWoU80XIJGVe3l6FT3r7/POgU3agRg0A3KE27fnnXftPPGHVAgA4eZE336R9j4xSYPv2qtGxgxJnzJQjI0PhA6+wHt83cqR8a9dR7QdHWMfB/fopcfp0BbRpoxqdOilr506rli2431nysun/SxI1ALDbyy9LSUlmOJt01VV2RwNUG6H9+ysn8ZDiXp6i3Lh4KwFrNG1qftNn9r79Zihofvmou++SvLwU99IU5cTGyiciQiH9zlL0/ffb9jfYnqjN/GOH3py/TXGpmWpTL1RjL2unzjHhxZZ/e+F2zVq8U3uTMhQR5K+L2tfTfy9spUA/voECqIKSk4/Wppl506hNA8pVxPVDrK0ojd+bWejYy9dX0fcOszZ3YWsfta9W7dP4rzfovnNP0TfD+6htvRDd+Pafik8tevK6L1bu1aTvNlrlfxzRV5Ou7KivV+/T5O83VXrsAFButWmmb1rr1tI/HZgBwC0StbcWbtfg7jG6+tQYnVInRE8N6KAa/j76eOnuIssv23lIpzaupcs7N1BMRE2d2TJal3Wqr1W7kyo9dgAoF2aUp5legNo0AO6UqGXlOLR272H1bnF0iKy3t5d1vHxn0YlXt8a1tGbvYa38JzHblZCuXzYdVL/WtYv9PWZpiYJLTZilJwDAbYwbJ23bJl1zjd2RAHBDtvVRO5SepVyHU1HBhSeqiw4O0Na4tCKvMTVpiWlZGvTGIteEwQ6nhvRopGH9WhT7e8zSEmPHji33+AGg3NSvb3cEANxUlZpH7Y+tCXr1l60ad3l7ff2fPnrj+m76ZeNBTfnp72KvGTVqlA4fPpy/maUnAMB2c+ZIS5faHQUAN2dbjVqtmv7y8fY6buCAGf1patWK8vy8TRrYtYEGd29kHbeuG6qM7ByNmrNG9/ZrYTWdHsssLVFweQnT/AkAtkpNle64QzIzpv/wg3TeeXZHBMBN2Vaj5u/rrfYNwrRoS3z+OYfDqUVbEtS1cdHTc2Rk55rpTQrx/ueEPfMFA0AZvPqqK0lr0ULq18/uaAC4MVvnURvap6ke/GSVOjQMV+eYML29cIfSs3I0qFuM9fiI2StVJyxQIy9sbR2f07qONY9au/ph6hITrh0JaXp+3mad06aOVTsHAFWiNu3ZZ137jz8u+do+nSUAN2brO8SlnepbgwNemLdZcSmZalM/VDNu7a7oEFdTpZnU1qtAFdrws1tYNWrP/bBJBw4fUWSQv5WkPXRBKxv/CgAohddfl+LjpebNpSFFT8IJAHls/yp3U68m1laU2Xf2LHTs6+Ot+89taW0AUOWkpUmTJ7v2H3uM2jQA1WvUJwBU+dq0uDipWTPp+uvtjgZAFUCiBgCVpXZtqUEDV22an5/d0QCoAqh3B4DKcuON0tVXs1QUgBIjUQOAyhQYaHcEAKoQEjUAqGizZrl+Dh5MbRqAUiFRA4CKlJEhPfSQdOCArEWKGUQAoBQYTAAAFWnqVFeS1qiRq38aAJQCiRoAVJQjR6RJk1z7jz4q+fvbHRGAKoZEDQAqyrRp0v79UkyMdMstdkcDoAoiUQOAiqpNmzjRtU9tGoAyIlEDgIrw9tvSvn1Sw4bUpgEoM0Z9AkBF6NBB6tNHuvZaKSDA7mgAVFEkagBQEc48U1qwwDUlBwCUEYkaAFQULy/XBgBlRB81AChP778vjR4tJSTYHQmAaoAaNQAoL9nZriRtxw4pKkq67z67IwJQxVGjBgDl5cMPXUladLR0++12RwOgGiBRA4DykJsrPf20a//BB6WaNe2OCEA1QKIGAOXh//5P2rRJqlVLuuceu6MBUE2QqAHAyXI4pPHjXfv33y+FhNgdEYBqgkQNAE7WV19Ja9e6ErThw+2OBkA1wqhPADhZHTtKQ4dK9eu7mj4BoJyQqAHAyWraVJo2ze4oAFRDNH0CAAC4KRI1ACirX3+Vrr5aWrXK7kgAVFMkagBQVuPGSZ98Ik2danckAKopEjUAKItFi6Sff5Z8faWRI+2OBkA1RaIGAGXx1FOunzfdJDVqZHc0AKopEjUAKK1ly6S5cyVvb+mRR+yOBkA1RqIGAGWtTbv2WqlFC7ujAVCNkagBQGmYFQg++0zy8pIefdTuaABUc0x4CwCl0aSJNHmytH271Lat3dEAqOZI1ACgNIKDpYcesjsKAB6Cpk8AAAA3RaIGACWxY4d02mmuCW6dTrujAeAhSNQAoCQmTZKWLnUtvm4GEgBAJSBRA4B/s3ev9M47rv3HH7c7GgAehEQNAP6NGeWZlSWdcYZ05pl2RwPAg5CoAcCJxMYeXXR99Gi7owHgYUjUAOBEXnhBysiQuneXzj3X7mgAeBgSNQAozqFD0quvHu2bxiACAJWMCW8BoDjh4dKHH0qffipdcond0QDwQCRqAFAcU4NmEjSSNAA2oekTAIricNgdAQCQqAHAcdLSpHbtpPHjpSNH7I4GgAcjUQOAY5npODZulKZPl3zpIQLAPiRqAFCQqUEzE9wao0aRqAFVXOKsWdpy9jna2LGTtl99jTJWrz5h+dzkZB148kltPuMMbezQUVsvuFCp8+fLLrwDAUBBZqmo/fulmBjphhvsjgbASUieO1cHJ05S3TFjVKNTRyXOmKldQ29X82/nyjcy8rjyzqws7br1NvlERqjhSy/Jt3YdZe/bK5/QUNmFRA0A8phloszi68bIkZK/v90RAThGSkqKkpOT848DAgKsrSgJ02cofNAghV850DquO3aMVTuW9OkcRd1x+3Hlk+bMUe7hw2ry4Qfy8vOzzvk3bCA70fQJAHnef1/atUuqW1e67Ta7owFQhLZt2yosLCx/mzBhQlHFrNqxI+vWKahXz/xzXt7eCurZUxkrVxZ5TcrPP6tG58468OQ4be7dR9suvVTxb7wpZ26u7EKNGgAYTufR2rSHH5YCA+2OCEAR1q9frwYNjtZyFVeblnMoScrNlc8xTZw+UZHK3L69yGuyd+9R+uI/FXrpJYp5801l79qpA2OflDMnR9H3DpMdSNQAIG9y2y++kF56SbrzTrujAVCMkJAQhVZUnzGHw0rs6j35pLx8fFSjfTtlxx5Uwjtvk6gBgO1at5Zef93uKACUA99a4ZKPj3ITEgqdz41PkG9UVNHXREdLfr5WkpYnoHkz5cbFW02pXjb0W6WPGgCYQQQAqhUvf38FtmuntD8W559zOhxKW7zY6odWlBpduyp75y6rXJ6sHTusBM6OJM0tatRm/rFDb87fprjUTLWpF6qxl7VT55jwYssfzsjWs99v0nfrDuhwerYa1Kqh/13SVv1a167UuAFUo75pvXpJbdq4+qjVr293RADKSeTNN2nfI6MU2L69anTsYE3P4cjIUPjAK6zH940caU3BUfvBEdZxrWsH69CsWYp96mnVun6IsnbuVPybUxVxw/W2/Q22Jmpfrdqn8V9v0Pgr2qtLTLje+X27bnz7T/380FmKCj6+c2BWjkM3vP2nIoP89fqQrqoTGqi9SRkKDXQNoQWAUvvmG2nZMmnTJlf/NADVRmj//spJPKS4l6dYzZcBbdqo0bSp+U2f2fv2m6Gg+eX96tVTzFvTFDtxopIuHyDfOnUUccMNirx9qGcmam8t3K7B3WN09akx1vFTAzro540H9fHS3brnrBbHlTfnk9Kz9endveTn47qxMRE1T/g7MjMzra3g/CsAkF+bZtbzNIYNkyIi7I4IQDmLuH6ItRWl8XszjztXs0sXNZ09W+7Ctj5qpnZs7d7D6t3iaIc+b28v63j5zqQir/lxQ6y6NgrX/75Yq1PHz9P5L8zXq79sUa7DWezvMfOrFJxvxcy/AgCWn36S/vxTqlFDGuFq+gAAd2JbonYoPctKsI5t4owODrD6qxVlV2K65q49YF337s3dNfzsUzTtt216+ee/i/09o0aN0uHDh/M3M/8KAFjGjXP9vOMOqTb9XAG4H9sHE5S2lSIqyF8TBnaUj7eXOjQMU2zyEb25YJvuP7dlkdccu7REwWUnAHiwBQtcmxnJZSa4BQA3ZFuiVqumv5VsxR9Te2Zq00ytWlGiQwLk5+NlXZenee1gxaVkWk2p/r7MNgKghF580fXz1lulArOcA4A7sS2zMUlV+wZhWrQlPv+cw+HUoi0J6tq46Ok5Tm1cSzvi061yebbHpal2SABJGoDSefdd6amnXIuvA4CbsjW7GdqnqT5cslv/t2yPthxM0WOfr1V6Vo4GdXONAh0xe6Umfbcxv/z1pze25lEb+9U6bYtL1c8bY/Xar1t0Y8/GNv4VAKqksDDp0UelJk3sjgQA3LOP2qWd6isxLUsvzNtsNV+2qR+qGbd2t5o4DTNHmpdZf+8f9cNrWI+P+3q9LnzpN9UNDdQtvZvqrr7NbfwrAFQpqalSUJBrbU8AqA6J2sVTfivVk5r3v7duPE11wwL/texNvZpYW1Fm39nzuHPdGtfS58N6lyoeAMh3yy3Szp3SK69I3bvbHQ0AnHyitn5/sm4/o5lq+h9dpPREIzNfn7/V6twPAG7FTM/z6aeuNyozdxoAnKTYCRNLfU3U3XfJJ7z45TLL1PR5x5nNilzWqShv/batpE8LAJVnwgRXknbFFVKHDnZHA6AaSJw501rk3cuvZMtZpi9fbq0jWq6J2m//7Wetr1lS80b0tdbhBAC3sWWL9MEHrv3HHrM7GgDVSMNXXpZvZGSJym7q2q1Uz12iRK1hrROvp3ks0+kfANzKxIlmDiDpooukbqV7owSA4tR7+ml5h4SopOqOHVvipO6kp+e44IUF2peUcTJPAQAVb9cuacYM1/7o0XZHA6AaCb9igLzNCiclFHbpJfKuWbNyErU9h9KVk1v8gugA4DaT2+bkSGefLfU8fjQ5AJS3/WPHKufQIc9a6xMAysTUopnBAywVBaCSJH/5lSLNEnW1atmXqJ3WNEKBfizdBMDNeXtLAwfaHQUAT+IsnxbHk0rUpt/CZJEA3FhKiuTjI5WiPwgAuJMSVYfNWx+r7NyST2D7y8aDOpKdezJxAUD5jPRs2lSaNcvuSAB4mFbLl8k/xrV2eYUnane+t1TJGdklftLhH67QweTMk4kLAE6O6cT78svSwYOutT0BoALkmvWDS1U+rfybPk0r60OfrJK/b8n6o2XmUJsGwGYmSTNNn+3bS5ddZnc0AKqpzd176JTfFpR4brQtffuq6eeflbi2rUSJ2pVdG6o0Lu/cQMGBDCgFYBOToL344tFVCMxgAgCoCE6nkj75vxLPjeY0UwWVQomyqWcHdSrVkwKArV5/3dX02bKlNGiQ3dEAqMb86tVT0ieflLi8b1SUvHxLXplFtReA6iU9XXruOdf+o4+6Rn0CQAVp8fNPqki0BwCoXn780TWAoEkT6brr7I4GAE4KNWoAqhczcGD1aley5udndzQAcFJI1ABUP2a5KACoBkrU9Nlp7A9KTMuy9h/+ZJVSM0s3YgEAKlx2trRrl91RAEDlJ2pmVYLUI67k7NPle5TJqgMA3I1ZfaB5c+mRR+yOBIAH2TN8eP6kt0mffy5Hlqtiq1KbPrs2qqU73luq9g3CrMlvx3y1XoHFTH47mak8AFS23Fzp6aclMz9RCSedBIDykPLrfNVJT5dPcLD2P/qYgs84Q97l+D5UokTthWs66+2F27UrMU1eJqgj2cr0YcAoADdh5jD6+28pIkK66y67owHgQQKaNlXc8y+oZo8e1uS3yd9+J+/gopetCx8woGISteiQAD1yUWtrv8+kn/XC1Z1VK8i/1L8MAMqdwyE99ZRr//77pZAQuyMC4EHqjhmj2EkTlTp/vuTlpbiXXrJ+HsfLq+IStYIWjjy71L8EACrMF19Ia9dKoaHS8OF2RwPAw9Ts2kVNZ8+29je0aavm331b4nU/yy1Re/f37SV+wlt6Nz2ZeACg5JxOafx4175J0sLD7Y4IgAdr8eM8+ZguGOWoRIma6Z9WkJmqIyM7V6GBrskkk49kq4afjyKD/UnUAFSeLVukzZslsxiyafYEgEp2ZNOmQse55j2pGIGtWlVMolawufOLlXv13h87NemqjmoeHWyd2xqXqlGfrtF1PRqVOgAAKLNTTpF27pSWLJGiouyOBoAH2j7gClefNFPDX1TftALarF9X8X3Unvths14b0jU/STPM/uhL2uruWcs0oEuDUgcBAGVmmhkuuMDuKAB4cHNnniMbNij2mcmKvPVW1ejS2TqXsWKlEt99V7UffkhlUepE7WDKEeU6zGxqheU6nYpPzSxTEABQasuWSV27/us3WACoSH4NjlZQ7bn/AdV97FEF9+1bqLnTr15dxb00RSHnnlvq5y/1ZGi9m0fp0c/WaO3ew/nn1uw5rMc/X6M+LWh6AFAJfv9dOvVU6ZxzXJPdAoAbyNy8WX4NGx533pzL3Lq1cmrUnrmqox78ZJUufWWh/LxdeV6Ow6EzW0Zr4pUdyxQEAJRK3rxpZskoHx+7owEAi3/zZkqYOlX1xo2Tl79rvllnVpZ1zjxWKYlaZHCApt/SXdviUrXlYKq8vLzUPDpIzQr0WQOACrN0qfTtt64EbdQou6MBgHz1xozR7rvv0d9n9VNAq5bWucxNm60uGjGvv6ZKSdTymMSsaZRriQSTrAFApdamXXed1Kxs31ABoCLU6NhRLeb9oMNffa2sbdusc6EXXaSwSy6Rt5lGqLIStdlLdllzq+2IT7eOm0TV1K29m2pwd6bnAFCB1qyRPv/cNYDg0UftjgYAjmMSslrXXK3yUupE7fkfNumthdt1U68m6tqolnVu+a5DGvf1eu1LytCI80s/mRsAlMjTT7t+DhoktXatPwwA7iL+zanyjYpU+JVXFjqf9OmnyklMVNTtt1f8qM/3/9ylCQM7aOSFrXVe2zrWZvafHthB7y3eWeoAAKBEjhyRVq507T/2mN3RAMBxkmbPln/T47tkBLRooaSPXOuBVniNWnauQx0bHr+eXocGYcopYn41ACgXgYGuxdd/+03qyAhzAO4nJz5evrWjjztv1v/MiYsr03OWukZtYJcGer+ImrMP/9qlAZ1ZlQBABTIjPc86y+4oAKBIvvXqKmP58uPOm3O+tWur0gYTfLxkt377O05dYlx91FbuTrL6pw3s2sDqq5bHLCsFACdtwQKpRw8pIMDuSACgWLUGDVLs0xPkzM5R0Ok9rHNpixfr4ORnFXHLLaqURG1TbIraNQi19ncmprkCC/KzNvNYHi8xZQeAcrBnj3Teea5F11eskMr4rRQAKlrEbbcpNylJB558Us7sbOucV0CAIofepqg776icRO2jO3qW6RcBQJlMnixlZUmnnEKSBsCtmXllaz/0kKLuvluZ27ZZSZp/kyby/meVgkqd8BYAKlxsrDR1qmv/8cftjgYASsQ7KEg1OnQon+cql2cBgIrw3HOuaTlM/zSzADsAeBgSNQDuKT5eeu2ftfFGj3atRgAAHoZEDYB7evFFKS1N6tJF6t/f7mgAwBYkagDc0z8LGlt906hNA+ChSNQAuKcPPnBNxzFggN2RAIBtGPUJwH117mx3BABgK2rUALiXX36R9u2zOwoA1UTirFnacvY52tixk7ZffY0yVq8u0XWHv/lGG1q30e5h98pOJGoA3Ed6ujR4sNS0qbR4sd3RAKjikufO1cGJkxQ1bJiazvlUga1aadfQ25WTkHDC67L27NXBZyarxqndZDcSNQDuY9o06eBBqX59qZv9b5AAqraE6TMUPmiQwq8cqIAWLVR37Bh5BwYq6dM5xV7jzM3VvocfVvTwe+XfMEZ2I1ED4B4yM6VnnnHtjxol+fnZHREAN5SSkqLk5OT8LdO8dxTBmZWlI+vWKajX0aUvvby9FdSzpzJWriz2+eNffU0+kREKv+oquQMSNQDu4d13XX3TGjaUbrrJ7mgAuKm2bdsqLCwsf5swYUKR5XIOJUm5ufKJjCx03icqUjlmQu0ipC9bpqRPP1W9cePkLtxi1OfMP3bozfnbFJeaqTb1QjX2snbqHBP+r9d9uWqf/vPhCp3Xto6m3XhqpcQKoAJkZ0sTJ7r2//tfKSDA7ogAuKn169erQYMG+ccB5fR+kZuapn3/Hal6456Ub61ache2J2pfrdqn8V9v0Pgr2qtLTLje+X27bnz7T/380FmKCi7+5u9OTNfT32xQ9yYRlRovgArw/vvSzp1SnTrS0KF2RwPAjYWEhCg0NPRfy/nWCpd8fJR7zMCB3PgE+UZFHVc+e/cuZe/dq91333P0pMNh/djQrr2afztX/o0ayeOaPt9auF2Du8fo6lNjdEqdED01oINq+Pvo46W7i70m1+HU/bNX6oHzTlFMRM1KjRdABTBvpDVqSA895PoJACfJy99fge3aKe2PoyPInQ6H0hYvVo0i5mj0b9ZMTb/8Qk0/m5O/BZ99tmr26GHt+9WtK4+rUcvKcWjt3sO656zm+ee8vb3Uu0WUlu9MKva6l376W5FB/rrmtEb6a/uhE/4O08mwYEdD0wkRgJsxCdqNN0pBQXZHAqAaibz5Ju17ZJQC27dXjY4dlDhjphwZGQofeIX1+L6RI+Vbu45qPzhC3gEBCmzZstD1PiEh1s9jz3tMonYoPcuqHTu2iTM6OEBb49KKvGbJjkR9vGS35t53Rol+h+lkOHbs2HKJF0AFql3b7ggAVDOh/fsrJ/GQ4l6eoty4eAW0aaNG06bmN31m79tvhoLKndneR600UjNz9MDslZpwZQdFBPmX6JpRo0ZpxIgR+cd79+61RowAcAO//Wb1IVGvXnZHAqCairh+iLUVpfF7M094bf2JRY8o9ZhErVZNf/l4eyk+tfAcKGb0p6lVO9bOhDTtOZShoTOW5p9zOJ3Wz+aPztXPD/ZV48jCTSdmNEjBESFmzhUAbsD8v/uf/0hmPqO33pJuu83uiADA7diaqPn7eqt9gzAt2hKvC9q5Ouk5HE4t2pKgG3s1Pq588+hgfX//mYXOPfvDJqVl5uiJS9upXhidkIEq4+uvXUlacLB0hau/CADAzZo+h/Zpqgc/WaUODcPVOSZMby/cofSsHA3q5lq2YcTslaoTFqiRF7ZWoJ+PWtV1dezLExromr382PMA3Lw2bfx41/6wYVIE0+wAgFsmapd2qq/EtCy9MG+z4lIy1aZ+qGbc2l3RIa7myr1JGfLy8rI7TADlad486a+/XFNxFOhDCgBws0TNuKlXE2sryuw7j67RVZTnru5UQVEBqLDatLzlWe68k9GeAHAC7j0mFUD1s2CBtHCh5O/vmj8NAODeNWoAPEhqqtSkiXTRRVKB9foAAMcjUQNQuS6+WDr/fCk93e5IAMDt0fQJoPL5+UlhYXZHAQBuj0QNQOVYvVp6910pO9vuSACgyiBRA1A5xoyRbr2VAQQAUAokagAq3po10mefSWZOxLvusjsaAKgySNQAVLynn3b9vOoqqU0bu6MBgCqDRA1Axdq0SZo927X/2GN2RwMAVQqJGoCKr00zqxFcdpnUiZVEAKA0SNQAVJxt26RZs1z7jz9udzQAUOUw4S2AinPkiNS3r2vetNNOszsaAKhySNQAVJy2baWffmIVAgAoI5o+AVS8mjXtjgAAqiQSNQDlb/9+6ZFHpIMH7Y4EAKo0EjUA5e+ZZ6RJk6QhQ+yOBACqNBI1AOXrwAHpjTdc+w8/bHc0AFClkagBKF/PPusa7Xn66dJ559kdDQBUaSRqAMqP6ZP22muu/f/9z7W2JwCgzEjUAJRvbVpGhmvOtAsvtDsaAKjySNQAlI+4OOnVV1371KYBQLlgwlsA5efmm6WVK6WLL7Y7EgCoFkjUAJSP6GhXjVpuLrVpAFBOaPoEUL58fOyOAACqDRI1ACfn0CFp8GBp2TK7IwGAaoemTwAn58UXpdmzpQ0bXP3TaPYEgHJDjRqAsktKkl56ybU/ejRJGgCUMxI1AGU3ZYp0+LDUrp00cKDd0QBAtUOiBqBskpOlF144WpvmzdsJAJQ33lkBlM3LL7uaPtu0ka66yu5oAKBaIlEDUHopKdLzz7v2H3+cKTkAoIKQqAEoPT8/acwYqV8/6Zpr7I4GAKotEjUApRcYKA0fLv38M7VpAFCBSNQAAADcFIkagJJLT5fOOkv64APXmp4AgArFygQASu6NN6T586Vdu6RBg2j2BIAKRo0agJLJyJCeeca1/9hjrgEFAIAKRaIGoGSmTZNiY6XGjaUbbrA7GgDwCCRqAP7dkSPSpEmu/Ucflfz97Y4IADwCiRqAf/f229K+fVJMjHTzzXZHAwAeg0QNwIllZUkTJ7r2R42iNg0AKhGJGoATM4MG3nlHGjhQuvVWu6MBAI/C9BwATszLSzrvPNcGAKhU1KgBKJ7DYXcEAODRSNQAFD/Ss0MH6YknpLQ0u6MBAI9Eogag+HnT1q+X3n1X8qWXBADYgUQNQNGrEEyYcHTetIAAuyMCAI9EogbgeFOnSvv3S40aMdITAGxEogbg+Nq0vHnTzJqezJsGALYhUQNQ2BtvSAcOuNb0ZBUCALAViRqAo3JypOefd+0//ji1aQBgM4ZyATjKjO6cP1967TXpppvsjgYATlrirFlKfPsd5cTHK6B1a9V9/DHV6NixyLKHPv5Yh7/4Upl//20dB7Zrq9oPPFBs+cpAjRqAwpo1k5591rV0FABUYclz5+rgxEmKGjZMTed8qsBWrbRr6O3KSUgosnz6X0sUenF/NZ4xXU0++lB+detp121DlR0bK7uQqAFwOXzY7ggAoFwlTJ+h8EGDFH7lQAW0aKG6Y8fIOzBQSZ/OKbJ8g2cnK+K66xTYpo0CmjVTvfHjrBVa0v74Qx7d9Dnzjx16c/42xaVmqk29UI29rJ06x4QXWfbDv3ZpzvI92nQgxTru0DBMD1/QutjyAErArDzQqpXUt6+r2TMy0u6IAKBIKSkpSk5Ozj8OCAiwtmM5s7J0ZN06Rd1xe/45L29vBfXsqYyVK1USjowjcubkyCcsTB5bo/bVqn0a//UG3XfuKfpmeB+1rReiG9/+U/GpmUWWX7wtQZd1qq8P7zhdc+7prXphNXTD23/qwOEjlR47UG28+qpkqvaXLZNsfEMCgH/Ttm1bhYWF5W8T8ibnPkbOoSQpN1c+x3zx9ImKtPqrlcTB556Vb+3aCurVSx5bo/bWwu0a3D1GV58aYx0/NaCDft54UB8v3a17zmpxXPmXBncpdDzpyo76bu0B/b4lXld2a3hc+czMTGsrmIkDKCA1VZo82bU/ejTLRQFwa+vXr1eDBg3yj4uqTSsP8VOnKXnut2o8c4a8bVydxdYatawch9buPazeLaKOBuTtZR0v35lUoufIyM5Vdq5D4TWL7vhsMu2CmbfJxAEU8Morkvl2ecop0pAhdkcDACcUEhKi0NDQ/K24RM23Vrjk46PcYwYO5MYnyDfqaN5RlIS331HCtGlq9NZb1gAEO9maqB1Kz1Kuw6mo4MI3OTo4wOqvVhITv92gOqGBhZK9gkaNGqXDhw/nbyYTB/APU8NMbRqAasjL31+B7dop7Y/F+eecZmDA4sWq0blzsdclvPWW4l9/XY2mTVWNDu1ltyr9rvzar1v01ar9+uiO0xXo51NkmWM7GRbsgAh4PFOblpgotWwpXXut3dEAQLmKvPkm7XtklALbt1eNjh2UOGOmHBkZCh94hfX4vpEj5Vu7jmo/OMI6jp82TfFTXlb9Z5+VX4MGyomLs85716wp76Agz0vUatX0l4+313EDB0xtmqlVO5GpC7bq9V+3atbQHtZIUQCl5HBIM2e69qlNA1ANhfbvr5zEQ4p7eYpy4+IV0KaNVVOW1/SZvW+/GQqaXz7pw4/kzM7W3vvuK/Q8Zh626OH3yg62vjP7+3qrfYMwLdoSrwva1bXOORxOLdqSoBt7NS72ujfmb9WrP2/RjNu6q2NDpuUAysTbW1qyxJWsUZsGoJqKuH6ItRWl8Xv/fFn9R4uff5K7sf0r9NA+TfXgJ6vUoWG4OseE6e2FO5SelaNB3VyjQEfMXqk6YYEaeWFr69jUor0wb7NeGtxZDWvV0MEU17QcQf6+Cgqw/c8BqpbgYOmee+yOAgBQDNszm0s71VdiWpaVfMWlZKpN/VDNuLW7okNcTZ97kzLk5eWVX/79xTuVlevQ3bOWF3qe+845RQ+c17LS4weqpM2bpRYtXLVqAAC3ZXuiZtzUq4m1FWX2nT0LHf/+yNmVFBVQTSUlST16SE2aSF9/LRWYjwgA4F74Og14mhdecCVr2dlSXVffUACAeyJRAzyJmdjWJGrG2LHWZJAAAPdFogZ4EjO5rZnktksX6QrXPEIAAPdFogZ4igMHpJdfdu0/+SQDCQCgCuCdGvAUEydKGRmugQQXX2x3NACAEiBRAzxlFQIzua0xbpxUYMobAID7covpOQBUMNPMuXCh9Ouv0lln2R0NAKCESNQAT2Fq0fr1szsKAEAp0PQJVHdffeUa6QkAqHJI1IDqbNMmacAAqXlz1xxqAIAqhUQNqM7MpLZmIMHpp0tRUXZHAwAoJRI1oLpas0b66KOj86YBAKocEjWgunriCcnplAYNkjp3tjsaAEAZkKgB1dGyZdJnn7lGeo4ZY3c0AIAyIlEDqqP//c/1c8gQqW1bu6MBAJQRiRpQ3WRlSbVqSf7+ruZPAECVRaIGVDcmQXv/fWnnTqlFC7ujAQCcBBI1oLqqW9fuCAAAJ4lEDaguzAhPMw3Hli12RwIAKCckakB18f33rj5pXbqwZBQAVBMkakB1qU0bPdq1f8cdUkiI3REBAMoBiRpQHZg505YulYKCpJEj7Y4GAFBOSNSAqi43V3r8cdf+Aw9ItWvbHREAoJyQqAFV3XvvSRs2SBER0kMP2R0NAKAckagBVVlm5tFJbR95RAoLszsiAEA5IlEDqjKHQxo6VGrTRrr3XrujAQCUMxI1oCqrUcM12nPtWtc+AKBaIVEDqgNv/lcGgOqId3egKkpMlM45xzXJrZlDDQBQLfnaHQCAMnjmGennn6WEBOm88yQvL7sjAgBUAGrUgKpm/35pyhTX/lNP0ewJANUY7/BAVTNunJSRIfXqJfXvb3c0AIAKRKIGVCVbt0rTprn2J0ygyRMAqjkSNaAqMZPb5uRIF14onXmm3dEAACoYiRpQVZhloj744GjfNABAtceoT6CqaNVKmj1bWrpU6trV7mgAAJWARA2oKszozkGDXBsAwCPQ9Am4OzOhbXq63VEAAGxAoga4ux9+kJo2ld54w+5IAACVjEQNcGcOh/Too9LBg9LmzXZHAwCoZCRqgDv75BNp+XIpOFgaNcruaAAAlYxEDXBXWVmu2jTjv/+VoqPtjggAUMlI1AB3NXWqtG2bVKeO9MADdkcDALABiRrgjlJSpCefdO2PGeNq+gQAeBwSNcAdff+9FBcntWwp3Xab3dEAAGzChLeAO7rqKtcgAlOz5udndzQAAJuQqAHuqksXuyMAANiMpk/AnezaJW3dancUAAA3QaIGuJOHH5Zat5amTbM7EgCAG6DpE3AXS5ZIH38seXlJPXrYHQ0AwA1Qowa4y8LrI0e69m+8UerY0e6IAABugEQNcANeZjqOX36RAgKOzp8GAPB4JGqAzbycDnk/+s86nvfeKzVqZHdIAAA34RZ91Gb+sUNvzt+muNRMtakXqrGXtVPnmPBiy3+zer+em7dJew5lqGlkkB65qLX6ta5dqTED5WXAul/ltXq1FBZ2dG1PAEC5SJw1S4lvv6Oc+HgFtG6tuo8/phon6F6S/N13intpirL37pV/48aq/dCDCu7bVx5bo/bVqn0a//UG3XfuKfpmeB+1rReiG9/+U/GpmUWWX7YzUf/5aIWuOTVGc//TR+e3q6M73luqTQdSKj12oDwEZR+R0ywRNWqUFBFhdzgAUG0kz52rgxMnKWrYMDWd86kCW7XSrqG3Kychocjy6ctXaO+DDyn8qivV9LM5Cj73HO2+d7iObN4sj61Re2vhdg3uHqOrT42xjp8a0EE/bzyoj5fu1j1ntTiu/Du/71DfltG6s29z6/jB81vpt7/jNeOPHXr6ig6yS2ZOruISUuQTe6DYMo6QEDnDa7kOsrPlc2B/8WWDg+Ws9c+Hdm6ufPbtLbass2ZNOSKj/rnQIZ+9e4ovW6OGHFHR/xw45bNnd/FlAwPliD5aU+mze1fxZQMC5Khd52jZPXskp6Posn5+ctStd7Ts3r2SI7fosr5+ctQ7WtZ73z555eYUXdbHV4769Y+WPbBfXtnZRQfs5a3chg2Plo09IK+srGLKeim3YczRsgdj5ZVZ9BcJIzfmaNOld3ycvDIyiiyXmplj/Ru836W/xkwfLd/wsGKfE7DbvsMZSssq+v894Fj+vt6qHRJodxhKmD5D4YMGKfzKgdZx3bFjlDp/vpI+naOoO24/rnziezMV3KePIv9Zuq/2ffcpbdEiHZr1geqNHSOPS9Sychxau/ew7jnLlXQZ3t5e6t0iSst3JhV5zYqdh3TbGc0KnTuzZbR+WFd0gpSZmWlteVLMkjwVYN2+ZI0a+4G+f+feYsu83uMqTTrrZmu/0aH9WjD1+BdJnuldL9GY8+6y9qNTD2nJqzcUW3Z2h/M0sv991n5QZrrWvXh1sWW/an2Ghl/uGl3o7cjVtsmXF1v2x+anaehVT+Qfb3r2CgXkFp34/N64o4YMfjr/eMVL16rWkaLv9Yp6rXTFjc/lHy967WbVT4kvsuzGqMa68LZX849/mnaXmicWnYjuDK+rvne+dfRvnX6fOsQWPXlsXFC4et77fv7xx7P+q+571hdZNtW/hto/8En+8YyP/6e+25cXWTbXy1vN//tl/vHrnz2tizYvUnECHpyjTF9/qXZtycf2Cm6gWBdPWWh3CKhCujYK15x7elfIc6ekpCg5OTn/OCAgwNqO5czK0pF16wolZF7e3grq2VMZK1cW+dwZK1cp8uabCp0L7t1HKT/9JLvYmqgdSs9SrsOpqODCNzg6OEBb49KKvMb0Y4sK9j+mvH+xTaUTJkzQ2LFjVdG8JPn5eOuI+dAtjq+PAnxdH8Z+vicu6/T1zS/r7+tV4rIBuSd+XkeBst4O5wnL5vr65Zc1TELhNHN8FVXWp3DZLF//Yp87269w2Wxfv2LL5viWvGz2cWWLj8H8LQXLmr+1uLJZxzzvico6vLxKXDbvW+e5HerJlyQNbsh8cb6kYz3NWx9rdyioYsznYUVp27ZtoeMnnnhCY8YcX9uVcyjJ1SIVGVnovE9UpDK3by/yuU0/Np+8FqoC5c15j236rGijRo3SiBEj8o/37t173D9yeejSqJa+nnq3ZLZimEcKPfrqrcWWveWfLd+LQ4otO/ifLd/k4pvlTP1ZoTq0p4sve4GpRSt4YnxqsWXPPK5s8S/q7seV3Vds2fbHld1WbNkWx5W9qNiyDUtRNrAUZVXKsmtO+Chgv1eu62p3CEAh69evV4MGDfKPi6pNq05sTdRq1fSXj7fXcbVhptbM1KoVxZyPTy3clyguNeu4WrniqkQLVpcCAICqJSQkRKGhof9azrdWuOTjo9xjBg7kxifINyqq6GuiopSbEF/i8pXB1vYW0+zTvkGYFm05elMcDqcWbUlQ18ZFT8/RpXGtQuWNhX/HqWvjfzrpAwAAj+fl76/Adu2U9sfi/HNOh0NpixerRufORV5To3OnQuUNM5iguPKVwfaOMUP7NNWHS3br/5bt0ZaDKXrs87VKz8rRoG6uUXYjZq/UpO825pe/tXcTzd8cp2kLtmnLwVS9MG+z1uw9rJt6NrHxrwAAAO4m8uablPTJJ0r67HNlbt2qA2PGypGRofCBV1iP7xs5Ugefez6/fMQNNyp14UIlvPOuMrdtU9zLryhj3TrVGnKd5/ZRu7RTfSWmZVkJV1xKptrUD9WMW7srOsTVXLk3KUNeBTqwd2scoZcGd9FzP2zS5O83qUlUTU294VS1qhti418BAADcTWj//spJPKS4l6coNy5eAW3aqNG0qflNmdn79lvTNeWp2bWLGjw7WXEvvqS4F16Qf5PGinnlZQW2bGnb3+DldJrVoD3Hnj17FBMTo927d6thgXm0AACA+9rjoZ/ftjd9AgAAoGgkagAAAG6KRA0AAMBNkagBAAC4KRI1AAAAN0WiBgAA4KZI1AAAANwUiRoAAICbIlEDAABwU7YvIVXZHA6H9XP//v12hwIAAEpo/z+f23mf457C4xK12NhY62f37t3tDgUAAJThc7xRo0byFB631mdOTo5WrFihOnXqyNublt/SSElJUdu2bbV+/XqFhITYHU61wD0tf9zT8sX9LH/c07JxOBxWktalSxf5+npOPZPHJWoou+TkZIWFhenw4cMKDQ21O5xqgXta/rin5Yv7Wf64pygNqpQAAADcFIkaAACAmyJRQ4kFBAToiSeesH6ifHBPyx/3tHxxP8sf9xSlQR81AAAAN0WNGgAAgJsiUQMAAHBTJGoAAABuikQNAADATZGo4YSeeuop9erVSzVr1lR4eHiJrjHjU/73v/+pXr16qlGjhs4991z9/fffFR5rVZGYmKghQ4ZYE12ae3rbbbcpNTX1hNecddZZ8vLyKrTddddd8kSvvvqqmjRposDAQPXo0UN//fXXCct/8sknat26tVW+Q4cOmjt3bqXFWh3v6fTp0497LZrr4LJgwQJdeumlql+/vnVvPv/883+95tdff1XXrl2tUaAtWrSw7jGQh0QNJ5SVlaVBgwbp7rvvLvE1zzzzjKZMmaI33nhDf/75p4KCgnTBBRfoyJEjFRprVWGStHXr1mnevHn6+uuvrTf2O+6441+vu/32261FifM2c589zezZszVixAhraoPly5erU6dO1mvr4MGDRZZftGiRrr32WisZNkvHDRgwwNrWrl1b6bFXl3tqmC8ZBV+LO3furNSY3VlaWpp1D03yWxLbt2/XxRdfrH79+mnlypW6//77NXToUH3//fcVHiuqCDM9B/Bv3n33XWdYWNi/lnM4HM66des6J0+enH8uKSnJGRAQ4Pzwww+dnm79+vVmOhznkiVL8s99++23Ti8vL+fevXuLva5v377O++67z+npunfv7hw2bFj+cW5urrN+/frOCRMmFFn+6quvdl588cWFzvXo0cN55513Vnis1fWelvS9ANbUV87PPvvshGX++9//Otu1a1fo3DXXXOO84IILKjg6VBXUqKFcmW+HBw4csJo785g17Uxzyh9//CFPZ+6Bae489dRT88+Ze+Xt7W3VPp7IrFmzFBUVpfbt22vUqFFKT0+Xp9XuLlu2rNBry9w3c1zca8ucL1jeMLVFvBbLfk8N01TfuHFjxcTE6PLLL7dqiFE2vEbxbzxn+XlUCpOkGXXq1Cl03hznPebJzD2oXbt2oXO+vr6KiIg44f257rrrrA9G0+9l9erVGjlypDZt2qQ5c+bIU8THxys3N7fI19bGjRuLvMbcU16L5XtPW7VqpXfeeUcdO3a0FhV/9tlnrX6sJllr2LBhJUVefRT3GjULt2dkZFj9fOHZqFHzQI888shxnYGP3Yp7k4Y999T0YTPfsk1neNPHbebMmfrss8+0devWcv07gH/Ts2dP3XjjjercubP69u1rfVmIjo7Wm2++aXdoQLVEjZoHevDBB3XzzTefsEyzZs3K9Nx169a1fsbGxlqjPvOYY/PG7un31NyfYztp5+TkWCNB8+5dSZimZGPLli1q3ry5PIFp9vXx8bFeSwWZ4+LunTlfmvKepiz39Fh+fn7q0qWL9VpE6RX3GjUDNqhNg0Gi5oHMt1+zVYSmTZtabzw//fRTfmJmqvBN/6vSjBytrvfU1EYkJSVZ/YK6detmnfv555/lcDjyk6+SMKPDjILJcHXn7+9v3TPz2jIjNw1z38zxvffeW+z9No+bkXR5zGhbcx5lu6fHMk2na9asUf/+/Ss42urJvBaPnTKG1ygKsXs0A9zbzp07nStWrHCOHTvWGRwcbO2bLSUlJb9Mq1atnHPmzMk/njhxojM8PNz5xRdfOFevXu28/PLLnU2bNnVmZGTY9Fe4lwsvvNDZpUsX559//ulcuHCh85RTTnFee+21+Y/v2bPHuqfmcWPLli3OJ5980rl06VLn9u3brfvarFkz55lnnun0NB999JE1gnj69OnWCNo77rjDeq0dOHDAevyGG25wPvLII/nlf//9d6evr6/z2WefdW7YsMH5xBNPOP38/Jxr1qyx8a+o2vfUvBd8//33zq1btzqXLVvmHDx4sDMwMNC5bt06G/8K92HeG/PeJ81H7PPPP2/tm/dSw9xLc0/zbNu2zVmzZk3nww8/bL1GX331VaePj4/zu+++s/GvgDshUcMJ3XTTTdabzbHbL7/8kl/GHJsh+wWn6Bg9erSzTp061gfAOeec49y0aZNNf4H7SUhIsBIzk/iGhoY6b7nllkKJr0nGCt7jXbt2WUlZRESEdT9btGhhvakfPnzY6YlefvllZ6NGjZz+/v7W1BKLFy8uNI2Jec0W9PHHHztbtmxplTfTIHzzzTc2RF197un999+fX9b8P96/f3/n8uXLbYrc/Zj/b4t6z8y7h+anuafHXtO5c2frnpovYQXfTwEv85/CdWwAAABwB4z6BAAAcFMkagAAAG6KRA0AAMBNkagBAAC4KRI1AAAAN0WiBgAA4KZI1AAAANwUiRoAAICbIlED4LaaNGmiF198sUJ/x/Tp0+Xl5WVtBdcE/TdjxozJv66iYwTguUjUAHi80NBQ7d+/X+PGjSvxNQ899JB1TcOGDSs0NgCezdfuAADAbqZWrG7duqW6Jjg42Np8fHwqLC4AoEYNQLmbOnWq6tevL4fDUej85ZdfrltvvdXa37p1q3Vcp04dK+E57bTT9OOPPxb7nDt27LASqpUrV+afS0pKss79+uuv+efWrl2riy66yHpO89w33HCD4uPjSxX/xo0bVbNmTX3wwQf55z7++GPVqFFD69evL9VzAcDJIFEDUO4GDRqkhIQE/fLLL/nnEhMT9d1332nIkCHWcWpqqvr376+ffvpJK1as0IUXXqhLL71Uu3btKvPvNYnb2WefrS5dumjp0qXW74uNjdXVV19dqudp3bq1nn32Wd1zzz1WPHv27NFdd92lSZMmqW3btmWODwBKi6ZPAOWuVq1aVq2WqZE655xzrHP/93//p6ioKPXr18867tSpk7XlMf3DPvvsM3355Ze69957y/R7X3nlFStJe/rpp/PPvfPOO4qJidHmzZvVsmXLEj+XSdLmzp2r66+/Xv7+/laN3/Dhw8sUFwCUFTVqACqEqTn79NNPlZmZaR3PmjVLgwcPlre3d36NmumQ36ZNG4WHh1tNlRs2bDipGrVVq1ZZtXh5/cfMZmrH8ppaS8skeatXr9by5cvzR4cCQGWiRg1AhTDNmE6nU998841VG/Xbb7/phRdeyH/cJGnz5s2zmhhbtGhh9f+66qqrlJWVVeTz5SV45jnzZGdnFypjkj/ze00T5bHq1atXpsQvLS3N+t1mhGdZngMATgaJGoAKERgYqIEDB1o1aVu2bFGrVq3UtWvX/Md///133XzzzbriiivykywzYKA40dHR1k+TMJnmTaPgwALDPL+pxTPzr/n6ntzbm+lTZ+J77LHHrN9paghNzZpJKAGgstD0CaDCmOTG1KiZJsS8QQR5TjnlFM2ZM8dKtkzN1XXXXXfcKNGCTIJ0+umna+LEiVYT6fz58/X4448XKjNs2DArwbr22mu1ZMkSq7nz+++/1y233KLc3NxSxW4GD5i+beZ3PP/889b1phYQACoTiRqACmNGYEZERGjTpk1WIlaQSX7MoINevXpZzZUXXHBBoRq3opiELycnR926dbNWERg/fnyhx82UIKamziRV559/vjp06GCVM33g8ppOS2LmzJnWQIL33nvPqpkLCgrS+++/r2nTpunbb78t5V0AgLLzchbs8AEAHsYMEjDJnJnaoyxMM6u5vjTLTwFASVGjBsDjHT582BohOnLkyBJfY6YAMdeczChVAPg31KgB8GgpKSnWpLiGaSI1c72VhOkLZ7a8gQ5hYWEVGicAz0SiBgAA4KZo+gQAAHBTJGoAAABuikQNAADATZGoAQAAuCkSNQAAADdFogYAAOCmSNQAAADcFIkaAACA3NP/A0/sT85qVFC0AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "stochast.truncated = True\n", "stochast.minimum = -0.5\n", "stochast.maximum = 0.5\n", "\n", "stochast.print()\n", "stochast.plot()" ] }, { "cell_type": "markdown", "id": "0838270e", "metadata": {}, "source": [ "### Inverted distribution function\n", "\n", "Let's consider a log-normal distribution function with a [location](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.location)of 1.0, a [scale](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.scale) of 0.5 and a [shift](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.shift) of 0.0:" ] }, { "cell_type": "code", "execution_count": 17, "id": "140b8c01", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Variable:\n", " distribution = log_normal\n", "Definition:\n", " location = 1.0\n", " scale = 0.5\n", " shift = 0.0\n", "Derived values:\n", " mean = 3.080216848918031\n", " deviation = 1.6415718456238662\n", " variation = 0.5329403500277882\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAGwCAYAAADCJOOJAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAdWtJREFUeJzt3Qd4FNXaB/B/eu89JECoSei9C0hRmiIK8tlBsCF2LyJ6BRsoilfRe5WigiICUhQBBUFAeq+hhQBJIL33stnvOWeSTQIJJCGb2fL/PXfuzu7OzpzEsPvuKe9rodVqtSAiIiIio2SpdgOIiIiIqO4YzBEREREZMQZzREREREaMwRwRERGREWMwR0RERGTEGMwRERERGTEGc0RERERGzFrtBhii4uJiHD16FH5+frC0ZLxLRERkDEpKSpCQkIBOnTrB2tp8Qhzz+UlrQQRy3bt3V7sZREREVAcHDhxAt27dYC4YzFVB9MiV/TEEBASo3RwiIiKqgbi4ONkZU/Y5bi4YzFWhbGhVBHJBQUFqN4eIiIhqwdLMpkiZ109LREREZGIYzBEREREZMQZzREREREaMwRwRERGREWMwR0RERGTEGMwRERERGTEGc0RERERGjMEcERERkRFjMEdERERkxBjMERERkVnKPXgQMc88iwv97sCZ0DBk/fXXLV+Ts/8AosaMwdl27RE59C6kr1kLtTGYIyIiIrNUkpcHu9DW8Pv32zU6vjA2FjHPPAOn7j0Qsm4tPB97DHFvv43sf3ZBTazNSkRERCYlKysLmZmZuvt2dnZyu57zHXfITbhag/Om//wzbIMawe+Nacp5mzdH3pHDSF2yBM79+kIt7JkjMjJarRbJ2QVIyiqQ+0REBk+jAXJzgbQ0ID4eKCrS6+XCw8Ph5uam22bPnl0v5809dgyOvXpVesypT1/kHTsGNbFnjshIxGfk46u/I7HhZBxScwrlY15OthjQ2hdP92+GVn4uajeRiIyNCK5SUoDsbGUTAVdeHpCfr9w++CDg4KAc++uvwM6d5c9dv61cCfj7K8fOmgV8/jlQUKBsIpir6NQpoE0bvf1YERERaNSoke5+Vb1ydaFJSoa1l3elx6y9vVCSnY2S/HxY2ttDDQzmiIzA6sOxmLHuJPKLSuR9Cwvl8ZScQqw+Eos1R2PxZJ8QvH53a9hZW6nbWCLSj8JCICOj6u3xx8vfGBYtAv75pzxAq7jl5ACRkYCzs3Lsq68C331X/TWHDAHKgqJt24Avvqj+WNGOsmBO9LyJQLEqop3iZ9EjFxcXuLq6wlwwmCMycJ//dQGf/XVe7ndp4oEXB7VEj2aesIAFjkan4fs9l7HpVDwW7bqEw9Fp+O6JbnB3tFW72UR0KydPApcuKT1jYktOVgKg9HQx6QvYsKE8QBs3Dli1qvpziecdHZX9XbuApUurP1YEdWXBnAh4XFyU+05OyjlET1zZZlXhy+GgQaKLq/LzoieqbD8goPzYqVOBhx9WnhevqbhZW5f/XEbGyscbxSnJlR4rTk6BpbOzar1yAoM5IgP2w97LukBu6p0t8PLgVrC0LH8T7NHMS25bzyTglZXHcTQ6HeO+2Yufn+oFTycGdER6J+atVgxMNm9WhhDFvLDExPIgTdyKXrHY2PLj33oL+O236s8thjPLhjjLbgUReLm5lW/u7kpPV1kwN3asMoQpjivbRKBWtu/lVX6u//xH2WrinnuUrSb8/JTNxDh27IjsHTsrPZazZw8cOnaEmhjMERmow1dS8c5vp+X+K0Na4YVBLas9dlCYH1Y90wuPLt6P8wnZmLTkIJZN6gkHWw65Et02MWQpAjQRiIkgLSFBuRWb6EETPWllAdpXX908QBNz0kRgJYSHA3FxSnDl7a3cenoqwZkI0iwrrFGcNw/47DOlJ030bN3MiBHKRrdUkpODwujoSqlH8s+cgZWbG2wCA5H46TwUJyYg8KOP5PPu48cjddlPSJg7F+7334+cffuQ+ccfCP76a6iJwRyRAcouKMbLK46jRAvc2zFQ9srdilgA8eOTPXD///bgSHQ6Zqw9iXkPqvttkchgiV6vy5eVYU7xYS4CtZgYZRO9aEePlgdoc+cC69dXfy4R0JXNzxowQAnWxNwxX9/yIK3stuJQXG1WWFbsTaN6k3fqNKLFfMNSiXOUoM1t9GgEzpmN4qQkFF2L0z1vGxQkA7eEOXOQtvQHWPv7I+C991RNSyJYaJnb4AaxsbEIDg5GTEwMgoKC1G4OmaH3fo/A4l2X0MjdAZte6gdXe5sav3bvxRQ8vGifDAQ/GdsBD3Th3zCZIfHRlpQEREUBFy8qQdobb5Q/P3KkMietOqmpgIeHsv/xx8CePcpCADEvTARqFbfAwMq9aKSaWDP9/GbPHJGBiUrKxpI9l+X+B/e1rVUgJ/Rq7iWHZT/ZfB5vrzuFTo3d0dyndLIzkSlbvhzYuBE4cwY4d06Z6F/RU08pw5hCs2bK/DFx27gxEBxceSubfyb8618N+3MQ1RKDOSIDM2fTWRSXaHFnqK/MIVcXzw5ogb1RKdgdmYLpa07i58k9Ky2cIDI6ItXF2bPA8ePKKlARsIn7hw6VD3Hu3g38+GP5a8QwqeidEQGb2CqmwxBDpyIPmpGuqiSqiMEckQE5E5eJzREJ8vPlzeGhdT6PlaUF5oxpj6Gf7cSBS6lYeSgG47s3rte2EjWIxYuBL78UWWCrzk0meuC6dVP2R49WhkJDQ5VNBHDVJYutpySyRIaAwRyRAREVHoQR7QLQwvf2KjoEezri1aGt8P6GM/hw4xkMCfeDlzM/wMjAiMUDhw8DBw6Ub2IuW7t25c+XlUoS+dDatwc6dFBSb4iALSys/FyDBysbkZlhMEdkIKJTcmWpLmHKwFuvXq2JJ3o3xZojVxERl4nPt17Au/e2rZfzEt2WgweB//5XCdzEcOn16/DEUGpZMCfymjVtqgRw4pbDokQ3YDBHZCCW7b8iP9PuaOWDsID6KUNjbWWJt0aG4aGF+7FsfzQe69UULXy5GIIaiBgWFb1uIk+bqB7QpYvyuEim+/335ceJBQjdu5dvZccJZfPdiKhaDOaIDEB+kQYrDsXI/cd6NqnXc/du7o3BYX7460wCZm88g8VPlM4vIqpvxcVKr9uWLcDffwP79ysF2IUZM8qDtB49lOoHInAT893K6nkSUZ0wmCMyABtPxiE9t0jmlRsYWrcVrDczfXgo/j6XiK1nE2U9106NS/NnEdUXkXy3Uyel2HpFIlluv35AxXJH4rH33mvwJhKZKmY5JDIAYl6b8GC3YLkStb6JPHNjOjWS+2LuHFGdFRQAf/4JTJkCTJ9e/niTJoCNjZJo94EHAFHeSKxAFUOqa9YojxGRXrBnjkhliZn52HMxWe7fVxpw6cPzd7bAmqNXsf1cEnvnqHZEoXiRjFfUHBWBXFkyXlH54MMPlUUJogKCGFYVQZ0VawITNST2zBGp7Lfj12Tprc6N3WU6EX1p4uWkCxbZO0c19sgjgJ8fIOpXrl6tBHKipJWopvDNN5VXooqFCgzkiBocgzkiAwjmhNF67JUr8/zAFnIYV/TOnYhN1/v1yAh74BYtUqotlBG9byUlSmqQt99WFjiIovQikBP1TVmTlEh1/FdIpHId1hOxGTLAEomC9a2ptxPu6RAo9xf+c0nv1yMjkJsL/PADcNddyqrSyZOBrVvLn3/5ZeDyZSVx77vvAl27MoAjMjD8F0mkoj9Ox8vbPi28G6w6w6R+IboVtLFpuQ1yTTIwYmhU1DEVgZsI4B57DNi8GdBogM6dKw+diiFVMQ+OiAwWF0AQqWjrmUR5OzTcr8Gu2SbQDX1aeGF3ZAq+230Zb48Mb7Brk4EQFRb69q08103MiXvoIaBF/VQfIaKGw545IpUkZxfgSHSa3B8UVv+55W5mcj8lo/7PB6KRkVdhfhSZHtHLtmcPsGRJ+WNi/lvPnkoAt307cOEC8O9/M5AjMlLsmSNSyd9nE+XnbNtGrghwc2jQa/dv5YPWfi44l5CFFQej8dQdzRv0+tRAc+GWLwe+/FKZ7+bsDNx3H+DqqqQSEQEe65wSmQT2zBGpPMQ6KLThhljLWFhYYEKfpnL/x33RKBG5Ucg0JCQopbOCgoBJk5RAzt4eGDdOCfDKMJAjMhkM5ohUUFCswc4LSXJf1E1Vwz0dA+Fib43o1FxdW8jIrVqlLFYQiXzT0oCQEGDuXCWVyOLFrIFKZKIYzBGp4PDlNOQWauDrYieHWdXgaGuNB7oEyf0f911RpQ1UDyrmhBPz4MSKVHErSmiJuXCvvQZ4eanZQiLSMwZzRCrYXVq+q28LbznkqZZHeiopJ7aeTURMKtOUGBUxfDp6tDJ8WiY4GDh9WpkPJ+bHsRoDkVlgMEekgl2RKfK2dwtvVdvR3MdZpikRCzGWH4hWtS1UQ6dOKUXrO3UCfv0VWL8euFKhZ7VVK86HIzIzDOaIGphIBXKytJSWCKTU9mhp79yKgzFyLh8ZqKgoJQ9c+/ZKjVQRsI0frwR3TOpLZNYMIjXJ0r2X8c2OKCRlFyAswBWz7mmDjsHuVR77x6k4fPX3RVxOyUGxRivLE03uF4IxnZW5P4JWq8VnW85j+cEYZOYVoWtTD7w/uh1CvJ0a8Kciqtq+qBSIxaPNfJwaPCVJVcQCDD9XOyRkFuCviESMaK//smJUS6K81rBh5fPj7r8fmDkTaNtW7ZYRkQFQvWdu/fFreP/3M3hxcEtsmNoX4QEueGzxfplQtSpuDraYMrAF1j7XG3+81A9juwTh9V9OYMf58tV4X++Iwnd7LuOD0W2xbkofONhY47Fv9yO/iL0OpL7dkcp8uT7N1R1iLWNtZalbCLHyUIzazaGq9OoF+PkBQ4YAR44Av/zCQI6IDCeYW7TrEsZ3D8a4rsFo6eeCD0a3g4OtVbUfKr2ae+Hutv5o4euCJl5OmNg3BKH+Ljh0OVXXK/ft7kuYemcLDG3jL3v65j3YQfY6bI5IaOCfjugmwZzK8+UqGtslWN6KFCXX0vPUbg5t2qTMixMrUwVHR+DQIaV+qpgrR0RkKMFcYXEJTl3NqPShZmlpIe8fuaLMKboZEbiJD8aopBx0D/GUj8Wk5iEpq6DSOV3tbeSw7ZErSumk6xUUFCAzM1O3ZWVl1cvPR3Q90eN8MSlH7vdspvzNGgIxXaFHiKdcCLHmSKzazTFfMTHKEOrw4cq8uGXLyp8TPXNERIYWzKXlFkJTooW3s12lx32c7eT8uepk5hch/N9/oOWMTZjw/UE5x65fSx/5XFJ2vu4cNT3n7Nmz4ebmptvCw1l4nPTj0GXlC0UrP2e4O9rCkIjecWHloVhWhGhohYXAxx8DoaFKfjiRUuTVV5X0IkREhj7MWhfOttbY+EI//Pp8H7w+tDXe2xCBvReVVA91MX36dGRkZOi2iIiIem0vUZnDV5TpAF2bGk6vXJlh7fzhbKdUhDhQOm2BGsC+fcrQ6bRpSrmtfv2Ao0eBTz4BXFzUbh0RGQFVgzkPR1tYWVrcsNhB9KBd37NWkRiKFcNCbQLdMPmOZhjeNgD/3R4pn/Nxttedo6bntLOzg6urq25z4Rso6cnB0p65bk09YGhERYhRHZSVrFwI0UDEuPbUqYD4AunjAyxZAuzYAbRrp3bLiMiIqBrM2Vpbom0jN+wpnRAuiOGdPZEp6Nyk6tQkVSnRauX8OyHY0wE+LnbyHGWy8otwLCYdnZsY3gcomY+8Qo2cIyp0bWJ4PXPC2NKh1o0n4+S/G9JjECeIXHGLFgFPPAGcPQs89hgT/hKR8Q2zTuobIvPB/XI4FpGJWZix7hRyC4t1q+teWXEMH/1xVnf8V39H4p8LSYhOyZXHL9wZhbVHr+K+To3k86I00sQ+IZi/7QK2RCTgbHwmXll5XObRGhrOCcSkHvGForhEK/8WgzzUzy9XlU7B7mjh64z8ohJsOBGndnNMT14e8NJLwLvvlj/WoQPw3XeAp2EG+ERk+FRPGjyqQyBScwplkl+xCjUs0BVLJnaXvWvC1fS8SrUrRe/G2+tOIS4jH/Y2Vmju44TPHuwoz1Pmmf7NkFdYjOlrTsrFEmJIa8mE7vJ4IkOYL6dmPdabEe0a07kRPv7jHNYdu4rx3Rur3STTcfIk8H//p9ROtbYGJkwAGvP3S0S3z0Ir8ntQJbGxsQgODkZMTAyCgsorSxDdjie+O4Dt55LwzqhwTOgTAkMlvkD1mbNN7u95404EuhtmL6LREG+xX30FvPaayIOkpBgRPXGiogMR1atYM/38Vn2YlcgciO9Mx2OU3ImdGxv23M1G7g4y55zw2/FrajfHuCUmAqNGKYscRCA3YgRw4gQDOSKqVwzmiBpAbFoe0nKLYGNlgdAAw18tXTYHdd3Rq2o3xXiJ4E2U4dqwQSyZB+bPB9avB3x91W4ZEZkYBnNEDeB4rNIrF+rvCjtrw5+7OaxdAGytLHE2Pgtn4jLVbo5xEgHc668riYAPHgSef54rVYlILxjMETWAE7FKSpL2QW4wBm4ONrgzVOlBYu9cLWRnAxculN9/+mngyBHmjSMivWIwR9QAyubLdQiqef5EtY0uHWr99dg1lveqichIoEcP4K67gLTSOtCiJ86BC0iISL8YzBHpmQiEypIFtw82jp45YWCoD1ztrRGfmY99l+peLs8siKoNIpATlRzy84HoaLVbRERmhMEckZ5FJWcjp1ADextLtPBxhrEQc/tGtFfyN3Ko9SYWLwYGDwZSU4Fu3YBDh5REwEREDYTBHJGeHY9ReuXaBrrB2sq4/smN7qgEc5tOxiO/SKN2cwyLRgO8+iowaRJQXAw8+KDSQxdYnsCciKghGNcnC5EROlG6krW9Ec2XK9OtqSf8Xe2RVVCMneeT1G6OYfn3v4F585T9mTOB5cs5P46IVMFgjkjPjpeuZO1gRPPlylhaWmBE+wC5/ztrtVb28stAx47AihXAO+8w7QgRqYbBHJEeFWtKEFGap61dI+ML5oSRpcHcX2cSZG1ks5aVVb7v7a3Mjxs3Ts0WERExmCPSp6jkHBQWl8DJ1gpNvZxgjDoGuyPIwwG5hRr8fS4RZkusVG3TBvjmm/LHrAw/ATQRmT4Gc0R6VFY9ITTAVQ5ZGiMLi4pDrWZaq1VUcOjbF4iJAb78EigsVLtFREQ6DOaI9KhsiDXU3/Drsd7MqNIUJdvOJiKnoBhmZc8eYNAgJRFwz57A9u2Ara3arSIi0mEwR6RHZ+KUOVZhAa4wZm0CXdHEyxH5RSXYetaMhlpFqpGhQ5W5cv37A1u2AF5eareKiKgSBnNEenS2tGfO2IM5MdRathDi9+NmMtT611/AsGFATo6SFHjjRsDZeJI+E5H5YDBHpCcp2QVIzCqQGSuMfZhVGFk61Lr9fBKy8otg8vbvB/LygLvvBn77DXB0VLtFRERVYjBHpOch1iaejnCys4axEwFpcx8nuTp3S0QCTN6bbwI//ACsW8dkwERk0BjMEel5JauxD7FWHmoNNO0EwqdOKb1xguhSfeQRwM5O7VYREd0UgzkiPTG1YE4Y1UGZN/fPhSRk5JrYUOuxY0C/fsDw4ZWTAxMRGTgGc0R6TktiSsFcC18XOdxapNHiz9PxMBlnzyqrVtPTgaIiUcdM7RYREdUY37GI9EDMK7uYlC33wwKMf/FDRSPaKb1zG0+ZyFDrlSvKatWkJKBzZ2DDBsDJOKt1EJF5YjBHpAcikBO9V6721mjkblqT54eVBnO7I5ORkWfkQ62pqcpq1atXgfBw4M8/ATfjrKFLRHWXumwZIu8chLPtO+DSuAeRd+LEzY9fsgQX7x6Gsx064sKAgUiYPRslBQVQC4M5Ij04n6DMuWrl5yIXDpiSFr7OaOnrLIPVrWeMeFVrfj5w773KEGtQkBLIeXur3SoiamCZGzcicc5H8J4yBSFrVsO+dWtET5qM4pSUKo/PWP87Ej+dJ49vtmEDAt5/H5kbNyFp3mdQC4M5Ij24kKAMsbb0M60h1ut75zadMuJ5cxcuAKdPKz1xmzYpAR0RmZ2U75fAfexYuN8/BnYtWsB/1kxY2tsjffWaKo/PO3oUDp07w23USNgGNYJz3z5wHTECeSdPQi0M5oj04EJiWc+caVYMGNbWX97uOJ+EbGOt1dquHbB7t5IQuG1btVtDRPUoKysLmZmZuq2gmiFQbWEh8k+fhlPvXrrHLCwt4dSrF/LECvcqOHTqJF9TNhRbGBOD7J074XzHHVALgzkiffbM+Zpmz5xY0RrirSQQ/tvYarVWTDsSFgao+AZMRPoRHh4ONzc33TZ79uwqjytOSwc0GlhdV3PZytsLxcnJVb5G9Mj5TJ2Kyw8/gjNt2+HikKFw7N4N3s88DbUwmCOqZwXFGlxOyZH7LU20Z07MA7y7tHdukzGtahX1VUNCgM2b1W4JEelRREQEMjIydNv06dPr7dw5+w8gecEC+P/7bYSsXo1G879A9o6dSPrvf6EWBnNE9exScg5KtJArWX1dTLd6wPC2yry5v88mIa9QA4N35gzwf/8HiEnNq1er3Roi0iMXFxe4urrqNrtqKrlYe7gDVlbQXLfYQZOcAutqFkQlffEF3O65Bx5jx8K+dSu4DhkC35dfQsqChdCWlEANDOaI6tn5CosfTG0la0VtG7kiyMMBeUUa7DifaPgpSEaNAjIzlSoP8+er3SIiMgAWtrawb9MGOXv36R4TAVnOvn1w6Nixytdo8/JgYXnde7ulVemTWqiBwRxRPYssTUsi0neYMhGoli2E2HjSgFe1iooO48YBFy8CTZsqvXK2tmq3iogMhNcTjyN91Sqkr12HgosXET9zFkry8uA+5j75/LVp02QqkjLOAwcibfnPyNiwAYWxscjevVv21jkPHAALq9KgroFZq3JVIhN2ITFbl4/N1N3dNgAL/7mEbWcTkV+kgb2NOm9kN/Xaa8DWrUpVh19/BXx81G4RERkQ1+HDUZyahqT5X0CTlAy7sDA0XrhAN8xadC1OLHHVHe/97DPi2yySPv8CxQkJsPL0hMvAAfB56SXVfgYGc0R6CuZEwmBT1ynYHf6u9ojPzMeuC8kYHO4Hg7J+PfDFF8r+jz8C7dur3SIiMkCejzwst6o0+WFppfsW1tbweX6K3AwFh1mJ6pFI1XE52bRXslZkaVlxVasBDrUOGQI89RTw1lvA6NFqt4aISC/YM0dUj0RKkuISLZztrGWPlTkQ8+a+33MZWyLiUVjcDrbWBvQd0d4e+OYb1SYlExE1BAN61yUynWTBYr6cKa9krahrU094O9siM78Ye6OqrmXYoETgtny5TASqYyb/LYjIPDGYI9JDGS9TX8lakZWlBe5qUzrUetIAEgj/5z/AQw8pw6rskSMiM8BgjqgeRSUp8+Wam1EwJwwrTSC8OSIBxRp1kmZKBw8C//qXsn/33eyRIyKzwGCOqJ6rPwiibqk56dHMEx6ONkjNKcSBS6nqNEIkBBYVHoqLgbFjgeeeU6cdREQNjMEcUT3RarWISlLmzDX3Ma9gzsbKEkNK05JsVKtW65QpSmLgJk2ABQvYK0dEZsMgVrMu3XsZ3+yIQlJ2AcICXDHrnjboGOxe5bHLD0RjzZFYnItX5ia1C3LD63eFVjr+1ZXHsfpIbKXX3dHKB0sndtfzT0LmLCmrADmFGogqL8GejjA3w9oFYOWhWPx5OgGz7mkr59I1mB9+UPLIWVoCy5YB7lW/fxARmSLVg7n1x6/h/d/P4P372soEpN/uvoTHFu/HttcGwNv5xsK4+6JScE+HQHS+xwN21lb4esdFPLp4P7a83B/+buWpIPq38sHcseUJQu1UKrFB5iOqdIhVBHLib9Pc9GnuDRd7axnUHr6Shu4hng1z4dxc4JVXlP2ZM4E+fRrmukREBkL1YdZFuy5hfPdgjOsaLAuTfzC6HRxsrbDyUEyVx38+vhMe7dUUbQLdZPqHj+5vLxes7Y5MrnScyHXl62Kv29wcbaptQ0FBATIzM3VbVpbS60dUl8UP5jZfruK/ucFhylDrpoYcanV0BP76C3jySeDNNxvuukREBsJS7Wz5p65moE8L7/IGWVrI+0eupNfoHHlFGhRpSuB+XbAmevC6vLcFd36yHTPWnkRaTmG155g9ezbc3Nx0W3h4+G38VGSuLiVnm3UwV5ZAWPjjVDxKShowLUiHDsCiRQB74InIDKkazKXlFkJTor1hONXH2U7On6uJOZvOwM/VvlJA2L+1D+aN64hlk3tg2rBQ7L+Uiie+OyCvVZXp06cjIyNDt0VERNzmT0bmvJK1mY95pSW5fm6qo60V4jLycTy2Zl/I6uzECeDIEf1eg4jICKg+zHo7/rs9EuuPx+GbR7vA3qb8G7mYUydW1oX6u8pkpt8+3g3HYzNkb11V7Ozs4OrqqttcXEy/QDrpb5i1mRn3zIl/hwNDfXW9c3qTn68kBu7RA/jlF/1dh4jICKgazHk42soVb8nX9cKJXjnRO3czC3ZexP+2X8QPT3aXK2BvprGXIzydbGXdTCJ9EEP90am5MPdhVmF4aQLhTafiZboWvXjnHeD0acDTE+jfXz/XICIyEpZqT5hu28gNeyosXhDzbPZEpqBzk+pTC4gVrPO3RmLJxO5oH3TrFARxGXlySFcshCDSh9i0PBSXaOFgYwV/V/P+OxvQ2gd21pYyuI2Iy6z/C+zZA8ydq+wvXAj4+NT/NYiIjIjqw6yT+oZg+cEY/HI4FpGJWZix7hRyC4sxtkuwfP6VFcfw0R9ndceL3rh5m8/j4wfaI8jDAYlZ+XLLKSiWz4vbDzeewZHoNMSk5spVrpOXHkJTLyfc0ap8Xh1RfSpLFtzU20ku4jFnTnbWMjWQsOlkfP2nIXn8caXmqri95576PT8RkRFSPc/cqA6BsgTQZ1vOy/xUYYGussfNx0UZZr2angeLCpncf9x3BYWaEjy7rPLE5xcHtcTLQ1rJYdszcZlYfTgWmflFsjdOBHGvDGltlrm/qIEXP5j5EGuZ4e0CZJ1WkaLktbta19+JZ80CIiOBRo2Azz+vv/MSERkx1YM54fHeTeVWlRVP96p0f/cbd95yAvYPT/ao1/YR1TRhcDMzK+NVnTvDfGFjZYGLSTm4kJAlc0jeNjFH7tNPlf2vvwbc3G7/nEREJkD1YVYiUxpmNffFD2Vc7W3QtzRd0Mb6GmoNDQU++0xJDjxyZP2ck4jIBDCYI6rHYVYGc+WG6Va11lM1CJEQeOpUJTkwERHpMJgjuk1i0U1CppJep5m3+SYMvp7I9SjmsJ6Nz8Ll0mC3TuLilIUPRERUJQZzRPXUKydyGd6sBrC58XCyRa9mXrqcc3UiVq0+8gjQrh1w4ED9NpCIyEQwmCO6TVdSlF6jpl6OajfF4NxdWqu1zkOtP/0EbNsGXLsGeCmBIRERVcZgjug2XUlVeuaaeHG+3PVEOT2RWehEbAZi02o5VJqRAbz2mrL/9ttA8+Z6aSMRkbFjMEd0m64kK0FKY0/2zF1P5Ivs1tSzbrVaRcmu+HigVSvg1Vf100AiIhPAYI6o3nrmGMxVZZhuqLUWwdzx48D8+cq+uLW7ea1mIiJzxmCO6DZFl86Z4zDrzefNHb6ShoTM/Fu/oKQEmDJFuX3gAWDoUP03kojIiDGYI7oNBcUaxJUGKOyZq1qAmwM6NXaX+3+erkHvXHY24OEBODkpSYKJiOimGMwR3YaY1DyZPcPJ1gpeTrZqN8fwh1prUg3C1RVYvx44eRIICtJ/44iIjByDOaLbEF06X66xlxMsxLJNumk1iP2XUpCSrSRYvqWQEP02iojIRDCYI6qHHHNNuJL1poI9HdG2kStKtMDmiISqD7pwAXjmGSChmueJiKhKDOaI6iOY43y5WtRqrWao9fXXgW++URY/EBFRjTGYI7oN0amlOeYYzNV43tyeyGRk5BZVflJUefj1V8DKCnj3XXUaSERkpBjMEd2GKymlOeY8mZbkVpr5OKO1nwuKS7TYcqbCUKpGA7z8srL/7LNAeLhqbSQiMkYM5ojqqKREi5i0PLnPYdba5Zz7o2Kt1u++A06cANzdgZkz1WscEZGRYjBHVEfxmfkoLC6BtaUFAtzs1W6OURjWTgnmdl5IRlZ+EZCZCcyYUV6+y8tL3QYSERkhBnNEt7n4QazUtLbiP6WaEMOszbydZBC87Wwi8J//AImJQMuWwHPPqd08IiKjZK12A4iMPscc05LUmMjFJ4Za/7v9Iv44FY97RQCXng706wfYMukyEVFdsDuBqI6YluT2UpRsP5eEPFcPYN484L771G4WEZHRYjBHVEdXytKSsGeuVkTy4GbOlsgrLMaO84lqN4eIyOgxmCO63bQkXkxLUtuh1i/++hLLVszAkU271W4OEZHR45w5ojqK5jBr3Rw9irY7Nsrdzy4koKBYAztrK7VbRURktNgzR1QHGXlFyMwvlvtBHg5qN8e4TJ8ub/7scCcOeTbFrgvJareIiMioMZgjqoPYNKVXztvZFo627OCuMVG2688/ARsbnH3udfnQxpPV1GolIqIaYTBHVAcxqUrlh0YeHGKtMa0WePNNZf+ZZ9BjcDe5+9eZBBRpStRtGxGREWMwR3QbPXPBHGKtuU2bgP37AQcHWfWhW1NP2bMphqz3XkxRu3VEREaLwRxRHcSW1mQNYs9czX37rXI7ZQrg5wcrSwsMbaOU99p0ikOtRER1xWCOqA5iSnPMBXuyZ67Gli8HFi0CXlfmygnD2irB3ObT8dCUaFVsHBGR8WIwR3QbPXPB7JmrORsb4MknAV9f3UM9m3nB3dEGKTmF2H+JQ61ERHXBYI6olrRaLWJK58wxLUkNXLkCFBZW+ZSNlSWGhvvJ/Q0n4hq4YUREpoHBHFEtpeUWIbdQI/cbMZi79QpWUXe1dWvgwIEqDxnZPlDe/nEqHsVc1UpEVGsM5ojqOF/Oz9WOlQtu5ddfZcUHJCcDzZtXeUjv5l7wdLKVQ617ozjUSkRUWwzmiGqpbIiV8+VuoaQEeOcdZf+FFwAvryoPs7ayxN2lCyF+P86hViKi2mIwR1TXxQ+eDOZu6rffgBMnABcX4NVXb3royPYB8vaP0/EoLOZQKxFRbTCYI6rjMCsXP9xirtyHHyr7zz8PeHre9PAeIV7wcbGTCYR3R7JWKxFRbTCYI6olpiWpga1bgYMHlWoPL710y8NFAuHhpUOt609ca4AGEhGZDgZzRLXEtCQ18Oefyu3kyZXyyt3MyA7KqtYtpxOQX6SsFiYioluzhgFYuvcyvtkRhaTsAoQFuGLWPW3QMdi9ymOXH4jGmiOxOBefJe+3C3LD63eFVjpe5AH7bMt5LD8Yg8y8InRt6oH3R7dDiLdTg/1MZJpKSrScM1cTc+cC998PBAfX+CVdGnvA39Ue8Zn52Hk+SVfqi4hI31KXLUPq4m9RnJwMu9BQ+L81Aw7t21d7vCYzE0n/+Q8yt2xBSXoGbAID4ffmdDj37w+z7Jlbf/wa3v/9DF4c3BIbpvZFeIALHlu8H8nZBVUevy8qBfd0CMTyp3pizXN9EODmgEcX70d8Rr7umK93ROG7PZfxwei2WDelDxxsrPHYt/v5bZ9um/i7FBP0xbBggJu92s0xbD17Ao0a1fhwS0sLjChdCPE7EwgTUQPJ3LgRiXM+gveUKQhZsxr2rVsjetJkFKdUnSpJW1iI6IlPovDqVQR9/jmabdoE//fehbWfkgDdLIO5RbsuYXz3YIzrGoyWfi74YHQ7ONhaYeWhmCqP/3x8JzzaqynaBLqhha8zPrq/vZxrXTZpWvTKfbv7Eqbe2UJ+sxc9ffMe7ICEzAJsjkho4J+OTHWIVfQgiZQadJ2YGCAxsc4vL1vV+teZBOSVJmYmIqqtrKwsZGZm6raCgqo7iISU75fAfexYuN8/BnYtWsB/1kxY2tsjffWaKo9PX7MGmowMBH/5JRw7d4ZtUCM4de8O+9BQqEXVTyPRw3Hqagb6tPAub5Clhbx/5Ep6jc6RV6RBkaZE1ncUYlLzkJRVUOmcrvY2chj2yJW0Ks8h/iNX/I8u/giIqiL+voRgT86Xq9K0aUDTpsCSJXV6ufh3KuYiigobf5+re1BIROYtPDwcbm5uum327NnV9rLlnz4Np969dI9ZWFrCqVcv5B07VuVrsrZtg0PHjoh/9z2c79MXUaNGIfnrb6DVaMwzmEvLLYSmRAtvZ7tKj/s428n5czUxZ9MZ+Lna64K3pOx83Tlqek7xH7nif3TxR0BUlVjd4gfOl7tBZCSwYgWQlwfcZK7JzVhYVBxq5apWIqqbiIgIZGRk6Lbp06dXeVxxWjqg0cDquqTmVt5ecv5cVYpiYpH155/QlmgQ/M038H72WaR+9x2S//c11GLU40T/3R6J9cfj8M2jXWBvU/eySuI/csX/6OKPgOimPXMM5qpe9CCqPgwbBnTqVOfTjCqt1brtbCJyCorrsYFEZC5cXFzg6uqq2+zsKnfw3JaSEhn8Bbz7LhzatoHr8OHweuYZpK34GWYZzHk42sqJ5NcvdhA9aNf3rF1vwc6L+N/2i/jhye5yXlwZH2dlUnpSLc4p/iNX/I8u/giIqhKbzrQkVUpIKB9areYbcE21CXRFUy9H5BeVyLlzRET6Yu3hDlhZQXPdYgdNcgqsvb2rfo2PD2ybNoGFVXknkl3zZtAkJcthW7ML5mytLdG2kRv2VMj4LlI/7IlMQecmVacmEb7ecRHzt0ZiycTuaB9U+Tgxl0lkkhfnKJOVX4RjMeno3MRDTz8Jmd+cOfbMVfLVV2LyKdCjB9C3722dSgy1jiztneOqViLSJwtbW9i3aYOcvft0j2lLSpCzb5+cF1cVh86dUXQlWh5XpvDyZRnkifOZ5TDrpL4hMh/cL4djEZmYhRnrTiG3sBhjuyj5qV5ZcQwf/XFWd7zojZu3+Tw+fqC97B1JzMqXW9lwjPggmNgnBPO3XcCWiAScjc/EKyuPw8/VDkPD1Vs2TMZPzO+8ls4FEDfIzQX++19lX9RgtbC47VOO7KDMm9txLkmW+CIi0hevJx5H+qpVSF+7DgUXLyJ+5iyU5OXBfcx98vlr06Yh8dN5uuM9/m+8XM2a8MGHKLh0CVnbtyP5mwXwePgh800aPKpDIFJzCmWSX7EKNSzQVfa4id414Wp6ngzQyvy47woKNSV4dtmRSud5cVBLvDykldx/pn8z5BUWY/qak8jML0K3ph5YMqH7bc2rI0rIzEdxiRY2VhbwdWGOOZ39+0UeACAkBLhPefO7Xa39XNDS1xkXErPx5+l4mbqIiEgfXIcPR3FqGpLmfyGHSu3CwtB44QLdMGvRtTixxFV3vE1AAIIXLUTCnDlIv3e0zC/n+eij8Jo8SbWfwUIrErNRJbGxsQgODkZMTAyCgoLUbg4ZiIOXUzH2671o7OmInf8aqHZzDEtcHHDpEtC7d72d8sttF/DJ5vPo08ILyyb1rLfzEpHpijXTz2/Vh1mJjMXV0jJege7slbtBQEC9BnLCvR2V6hF7LqbIXlEiIqoagzmiGhJD/kIjdy5+0Dl/Xm+nFotMujTxkBVeRNk/IiKqGoM5oloHc+yZ082Va90aGDlSyS+nB6M7Kqta1x27qpfzExGZAgZzRDVUtpK1EXPMKT79VLkVk4Qt9fNWMqJ9IKwtLXDqaqZc7U5ERDdiMEdUyzlzHGaFsthh9erydCR64ulkizta+cj9dUc51EpEVBUGc0Q1IBZ9lw2zcgFEaZJgMbQ6ZAjQrp1eL3Vv6VDrr8evyv8ORERUGYM5ohoQiWtzCzVyP9DdzIdZc3KAxYuV/Rdf1PvlhoT7wdHWSlbfOBKdpvfrEREZGwZzRDUQWzrE6u1sy+TTP/4IpKcDzZsDw4bp/XKOtta4q42/3OdQKxFRHStAjPjiH9SGKNiw6LFu8HfjcBSZ2OIHc++VE1asUG6ff15vCx+qGmpde/QqNpyMw79HhcPGit9DiYhqFcxFxGVicr9mcqjjVsSUlv/tuIjCYv2kKiBSNS0JV7ICmzYBK1cC99zTYJfs28Jb9oomZxfinwtJuDOUdZaJyDgkzJ5T69d4P/sMrNzd678261N3NIO3s1Iv9VYW/RNV4wYQGVPPXKAbgznY2QGPPtqgl7S2ssTI9oH4fs9lOdTKYI6IjEXq0qVw6NgRFjY2NTo+98gReDzycP0Hc//8ayC8nGxrfNItr/SHnyuHWMl0sGeudOGDvT1gpc6cQTHUKoK5LREJyCkohpNdjb+LEhGpKujL+bD28qrRsec6d6n1+Ws08STIwxEWYiJcDYnVflaWNT+eyHjqsppxMDdzJtCqFbB2rSqX7xjsjqZejsgr0mBzRLwqbSAiqq2ADz+EpYtLjY/3nzWrxoFfmduaRXzXZzt1w09Epuxqer55L4AQvXKLFgFRUUANhwrqm/hCeW/HRnJ/zRGW9yIi4+B+32hY2tZ8dNNt1EhYOjo2XDAXm5aLYg2TeJJpyy/SIDm7QO4Hmesw67JlSjqSZs0aJB1JdcZ0VoK53ZHJiM9QAmwiImMUN2sWitPqJ3cm1/cT3UJcadAgVnO7OajTK6UqsUT9iy/K05GoNGdOaOLlhO5NPVGiBdYcjVWtHUREtyvzt/Uoyc6G6sFctxBP2NswHiRzqcnqUKu5oyZjxw7g9GnAyQmYMEHt1uCBLkHy9pfDsSzvRUTGqx7fv24rEvt+Qnf4ctUqmbir6bnmvfjh66+V24cfBmqxVF5fhrcPgIONFaKScnAsJl3t5hARqa5GwZxIBVCkqXkS4L/PJsp5RkQmtfjBHOfLJSUBa9Yo+888A0PgbGeNu9v663rniIiMUesjh2EbHNxwwdzTPxxCZl5RjU86dflRJGYqE8aJTGmY1ex4ewNbtwJvvQV06gRDUTbUuv74NX5xJCKDpqnlvDhNdk6tr1GjrJtiVPe1Vcdha12zUdmCYr65kukw67qsYo5gv37KZkB6NfNCoJs9rmXk468zCbI6BBGRITrfvQda/rOzxrnjIvv3R8i6tbXqtatRMHd/Z+VbcE2JXFDO9szOTqaB1R8Mj6WlBcZ0DsKXf0fKoVYGc0RksLRapK/6pca547TFxbW+RI0irk/Gdqj1iYlMQUmJFnEZZlr94bHHADc34PXXgcaNYWju76IEczvPJyEhM58lBInIINkEBCB91aoaH2/t7Q0L69p1iLH7jOgmkrILUKTRyvJ0fi52MBsxMUqi4JISYMoUGKIQbyd0beKBQ1fSsO7oVTzdv7naTSIiukGLbVuhb0wSR3QTsaWLH/xd7WFtZUb/XETpLhHIDRgAhIbCUIneOYE554jInJnRpxNR7Znl4oeiImDhQmX/2WdhyEa0D4CdtSUuJGbjRGyG2s0hIlIFgzmimzDLxQ+//w7ExQG+vsDo0TBkrvY2upxzqw7HqN0cIiLDDeY6zNqM1JxCuf/6quPILqj9SgsiY+6ZC3S3N7+KD08+CdjawtCN66os3//16DXkFTItEhGZnxoFc6L6Q3a+EsCtPhKLAibpJLNLGFyzJeVGLyoK2LxZyS83eTKMgcg5F+zpgKyCYmw4Gad2c4iIKomdOlWXODh93TqUFCqdY/WpRqtZOzf2wFM/HELbRm4ygfDM9RGwryaB8FymMSETHGY1m545Bwdg2jRlmDUkBMaSc258t8aY++c5/HwgWlcdgojIEGRt3wG/3FxYOTsj7s0ZcO7XD5Y1TCBcr8HcZw92xOJdlxCdmgML0bD8IhSY08o+grkHc0HmMmcuIACYMwfGRgRw87acl2lKIhOz0MLXRe0mERFJdiEhSJr3GRx79JAJhDM3/QFLZydUxb2O85RrFMz5uNjhjWFKeoK+H23DZ+M6wsPJ8OfSEN2OzPwiZJVOLzC7hMFGRiQMHtjaV5b2+vlADN4aGa52k4iIJP+ZM5Hw0Rxk79ghp7Akff65MpXlehYW+g3mKto17c46XYjIWBc/eDjawNHWDPJrz50LtGsHDBkCWFnB2Pxf92AZzIl5va/f3Rp21sb3MxCR6XHs3AkhK1bI/TNh4Wj+x6Ya12mtqRp9Qn23+1KNTzihj3HMsyGq8eIHcxhijY8Hpk8HNBrg9Gkg3Ph6tvq38pHJneMz87ElIoH1WonI4LT4awusPD3r/bw1CubEfLmKRJqSvCKNzPFUNhzlYGMFL2dbBnNkeosf3MwgmFu6VAnkevUyykBOEBU6xnYNwvxtkXKolcEcERmC/HPnKt3XnD9f7bH2rVvrL5irOLT667Gr+GHvFXz0QHs093GWj11Mysb01SfxUA/DK8ZNVFdmkzBYlMFavLg8t5wREznnvvw7ErsikxGdkovGXmaSUoaIDNal0fcpc+TEe21Vc+UqCIs4Xadr1Hoi0Kebz+O/D3fWBXKC2H97ZDieXXYYozs1qlNDiAw3x5yJB3O7dgHim6KzM/DggzBmwZ6O6NvCG/9cSMbKQzF47a66fcslIqrPodUy+WfOIOHjufCaOBEOnTrKx/KOHkPqd9/B9/XX6nyNWgdziVn50JTcWNBao9UiObugzg0hMjRmU5d10SLlVgRyIqAzciLnXFkw99LglnL4lYhILTaNyju5Yl96Gf4z3oRz//6VhlZtAvyR9PkXcBk8uE7XqPW7XJ/m3nhz7Umculpe1PpkbAbeWndSfiMmMhVmMcyakQGsWqXsT5oEUzAk3A/ezrZIzCqQq1uJiAxFwfnzsAm6MbG5eKzg4sU6n7fWwdzHD7SXeedGfbkLrWZsktu9X+2Ct7Md5tzfvs4NITIkhcUlMhgw+Rxz0dFA8+ZAmzaASGhpAmytLfFgN6Ve6w/7rqjdHCIiHdvmzZCyYAG0FUp6iX3xmHiuwYZZvZzt8P2E7ohKykZkYjYsLCzQ3McJzSrMoauNpXsv45sdUUjKLkBYgCtm3dMGHYPdqzz2fEIW5m0+j5NXM2SviZin92TfyqtnP9tyHp9vvVDpsWY+Ttj26oA6tY/MU3xGvpyram9jCS9TTpAt8sqdOAGkpNxyYq4x+b/ujfG/7RexOzJFvk+18DX+4WMiMn4BM2ci5tnncGHAQNi1biUfKzh3Xr7/Bv/vv3U+b50zoYrgLcRbKUchArq6WH/8Gt7//Qzev68tOgW749vdl/DY4v3Y9toA2dN3vbxCjVydNrx9AN77PaLa87byc8aPk8p7GawtOWeGaic2PVfXK1fXv2+jIX4+b9OaIhHk4Yg7Q/3kMOuy/Vfwzqg2ajeJiAgO7dujxZbNyFj/OwqjouRjrsOGwW3kSFg6OjZsMLfiYLTMPXc5WfnAa+rtiIl9QjC+e+1SkyzadQnjuwfLdALCB6PbYdvZRDlx+bkBLW44vkOwu9yEjzadrfa8VpaW8HWpeWH0goICuZXJysqq1c9Bpudaer7pL344eFDJKedUdY1AY/doryYymPvlcCxev6u1eVTxICKDJ4I2jwfH1e85a/uCeZvPYdb6CAwK88NXD3eWm9gXPWXiudrMSRKLKPpUWDRhaWkh7x+5ko7bcTk5B90/+Av9Pt6GF38+qpvIXp3Zs2fDzc1Nt4UbadJUqv+0JCabMFjM1xg2DPD3B06dginq18IbTbwcZX3dX49dU7s5RERI/mYB0levvuFx8VjywoUNF8z9uD8as8e0w7S7Q+WqMbGJ/Q/HtKvVZOO03EKZ4uT64VQfZzs5f66uOjZ2xydjO2DJxO54f3Q7xKTmYtzXe5FdoBRMr8r06dORkZGh2yIiqh/CJTNLS2KqK1k3bFDmybm4AGFhMEXiy+EjPZrIfZHoXCsmQRIRqSh9xQrYhty40MGuRQuk/6zUb22QYK5IU4L2QTcuUGjXyA3FVeSfa2gDW/tiRPsAuZhC1Gr8bkJ3ZOYVYcOJ6r+Z29nZwdXVVbe5iA84MmvXMkw8x9ySJcrto48CVqZbkF6U97KztkREXCaORKep3RwiMnPFycmw9vW54XFRr7U4KanhgrkxnRrhxyp64JYfiMbojjWv/uDhaAsrS4sbEg2LXjnRO1df3BxsEOLjhMspyvw+oloNs5piMCfeMETPnPD44zBl7o62uKdDoK53johITdYB/sg7cuSGx8Vj1r6+dT9vXV608mAM/rmQhE7BHvL+sZh0OSw1pnOjSqtMReqQm+WCatvIDXsik3FXG3/5WEmJFnsiU/BYb2VopD7kFBTjSkou7utUfwEimTYxHKdLGGyKwdxPPwHFxUDXrsoCCBMnFkKsOhyLjSfj8dbIgipXyhMRNQSPsWOR8OFsaIuK4dRTybqRs28fEud+As8JExoumDuXkIU2jVzl/pXUHKVxTjZyE8+VscCt0zlM6huCV1cdR7sgd3QMdsPiXZeRW1iMsV2U1a2vrDgGPzd7OSevbNHEhcQs3XBvQmY+Tl/LgJOtNZqWpkn5YIOyOEN8CIvSY59tuSB7AMu+nRPdSkpOIQqKS2TGDn+3mq+KNroh1ieegDkQ00I6BLnheGwGVhyMwZSBN66UJyJqCJ5PPglNejri330X2qIi+ZiFnR28Jj0J76efarhg7ueneqG+jOoQiNScQpnoNymrAGGBrnLhgqgwIYjekYo5vkTwNuKLXbr7C3ZGya1HiCdWPK20Ky4jHy8sP4r03CJ4Otmia1MPrH2ut0x2TFSbxQ++LnayB9mkiLxGR48CNjbA+PEwF4/2aorjq47Lodan7mgGG9ZrJSIViJjG97XX4P3ssyiIipKBnG3TprC0vb3k9KonXnq8d1O5VaUsQCsT7OmIy3NG3PR8Xz7UuV7bR+YbzJnkfLlmzYBLl4D9+wEvL5iLUR0CMGfTWcRn5mPjyTjcW4v5vURE9c3SyQkOogJPfZ2v3s5EZCJi00x4vpzQtCnw4IMwJ3bWVni0pzIX99tdl5imhIhMCoM5InOp/lBSAnP2cM/GcthczJ1jmhIiMiUM5ojMZZj1kUeAkSOVOXNmSKxiHd1RWQj17a7LajeHiKjeMJgjuo5JpiVJTQVECRmRX67CoiJzM6FPiLzddCoOsWnMPUlEpoHBHJE59MytWKHUY23fHujYEeZKVIbp3dwLoljNUiYRJiITwWCOqIL8Io3MM2dydVm//96scsvdzJN9Q3RVa0RScSKi1GXLEHnnIJxt3wGXxj2IvBMnavS6jA0bcCY0DDFTnoeaGMwRVTHE6mxnDVd71TP31I+zZ4EDB5QarA89BHMn6jeHeDshK78YvxyOVbs5RKSyzI0bkTjnI3hPmYKQNath37o1oidNRnFKyk1fVxh7FYkfz4VD1y5QG4M5oiqHWO0rJaw2iYoPw4YBfn4wd5aWFpjQR8lt+d3uS7KMIBGZr5Tvl8B97Fi43z8Gdi1awH/WTFja2yN99ZpqX6PVaHDt9dfhM/V52AYpVavUxGCOqIpgzmQWP2g0wA8/KPuPP652awzG/Z2DZM/r5ZRcbI5IULs5RFTPsrKykJmZqdsKCgqqPE5bWIj806fh1Lu8SIGFpSWcevVC3rFj1Z4/+av/wsrLE+4PPABDwGCOqIKraSa2+KG4GHjzTWDoUGDUKLVbYzCc7KzxaC8lifDXOy4yiTCRiQkPD4ebm5tumz17dpXHFaelyy+9VtdVxLHy9kJxcnKVr8k9fBjpq1cj4L33YChMZFIQUf24Wpow2GSCOTs74LnnlI0qeaJ3CBb+cwnHYtKx/1IqejYzn/JmRKYuIiICjRqVl+2zE++F9UCTnYNr/5qGgPfehbWHBwwFgzmiKoZZg0xpJStVycfFDmO7BGHZ/mjZO8dgjsh0uLi4wNXV9ZbHWXu4y8VhmusWO2iSU2Dt7X3D8UUx0Si6ehUxzz53Q3WdM23aovmmjbBt3BgNjcOsRFWsZjWJnrlt24Cvv1YSBlOVnrqjGSwtgO3nknAmLlPt5hBRA7OwtYV9mzbI2btP95i2pAQ5+/bBoYqcnLbNmiHkt18RsnaNbnO+80449ugh9238/aEGBnNEpcSqxrgMEwrm/vMf4NlngU8/VbslBquJlxOGtQuQ+6J3jojMj9cTjyN91Sqkr12HgosXET9zFkry8uA+5j75/LVp05D46Ty5b2lnB/tWrSptVi4usHRykvsiOFQDh1mJSiVlF6BIo4WVpQX8XOpnfoVqxMTdTZuU/YcfVrs1Bu3Z/s2x4UQcfj8Rh9eGtkawp6PaTSKiBuQ6fDiKU9OQNP8LaJKSYRcWhsYLF+iGWYuuxYklrjBkDOaIrhti9Xe1h7WVYf/DvaVVq5SVrJ06iWVdarfGoLVt5Ia+LbyxKzIZi/6Jwqx726rdJCJqYJ6PPCy3qjT5YelNXxs4p+qVsg3JyD+xiPSTMNjo/fijcvvII2q3xCg807+5vF1xKAYp2VXnoyIiMlQM5oiuyzFn9AmDo6KAPXtEqQNg/Hi1W2MU+rTwQvsgN+QXlWDRrktqN4eIqFYYzBHd0DNn5MHcsmXK7aBBQGCg2q0xCqJ029Q7W8r9pXsuIy2nUO0mERHVGIM5IlNLGBwfL/MmcYi1dgaH+SIswBU5hRp8u5u9c0RkPBjMEV23AKKRsScM/uor4No1wEBqBhpT79yLg1rI/e93X0ZGbpHaTSIiqhEGc0TXDbMa/Zw5wdcXcGSKjdoaGu6P1n4uyCooxnd72DtHRMaBwRwRgOyCYmTkFRn3MKtIRRIdrXYrjJqlpQWmlvbOfbvrEjLz2TtHRIaPwRxRhV45NwcbONsZafrFv/4CmjQBxo5VuyVGbVjbALTwdUZmfrFcDEFEZOgYzBGZSk3WslWsKtUGNBWiAsjUO5XeOZGmRPTaEhEZMgZzRKYwXy47G1izRtln+a7bNrJ9IJp5OyE9twjfMe8cERk4BnNElRIGG2n1h19/BXJzgebNgR491G6NSfTOvTSkldxfsDMK6bnMO0dEhovBHJEpJAyuWL7LwkLt1piEke0CEOqvrGz9ZmeU2s0hIqoWgzkiGczlG2+OuYQEYMsWZZ9DrPW6svW1oa3l/ne7LyExS/kbISIyNAzmiIx9AcSKFYBGA3TvDrRUSlJR/RgU5ouOwe6yZutX2yLVbg4RUZUYzJHZK9aUID6ztGfOGIO5CROApUuBGTPUbolJVoX4111K79xPB6IRm5ardpOIiG7AYI7MXkJWATQlWthYWcDH2Q5Gx8UFePRR4J571G6JSerdwhu9m3uhSKPF539dULs5REQ3YDBHZq9s8UOAm4OcJ0V0vddKe+dWH4lFZGKW2s0hIqqEwRyZvfKVrEaWlkSrBe69F/jkEyCLAYY+dW7sgcFhfijRAnM2nVO7OURElTCYI7MXm2akix/27QN++w2YNQuwslK7NSbvjWGtZf65v84kYF9UitrNISLSYTBHZq8smAv2cIRR5pYbMwZwNLK2G6EWvi74v+7Bcv/DjWdQIrrpiIgMAIM5MntlKxSDjCnHXGGhkpJEYG65BvPS4FZwtrPGidgMrD9xTe3mEBFJDObI7JWV8goypp65P/8EUlIAf39g0CC1W2M2vJ3t8OyA5nL/4z/OIb9Io3aTiIgYzJF5E0NlZcOsRtUzt2yZcjt+POfLNbCJfUIQ4GYvE00v2XNZ7eYQEcFa7QYs3XsZ3+yIQlJ2AcICXDHrnjYy43pVzidkYd7m8zh5NUO+kb49MhxP9g25rXOSeRN/I4WaEjmxXXxAG4XMTODXX5V9DrE2OAdbK1nm69VVx/Hl35EY2zUYnk62ajeLiMyYqj1z649fw/u/n8GLg1tiw9S+CA9wwWOL9yM5u6DK4/MKNWjs5Yhpw0Lh42JXL+ck81Y2X04EctZWRtJRnZEBjBoFdOgAdOmidmvM0n2dGqFNoCuy8ovx6WamKiEidan66bVo1yWM7x6McV2D0dLPBR+Mbie/9a48FFPl8R2C3fHm8DDc0yEQttV88Nb2nGTejHKINTgYWLkSOHxY1JtSuzVmSSSX/vfIcF2Zr1NXM9RuEhGZMdWCucLiEvkG2KeFd3ljLC3k/SNX0hv0nAUFBcjMzNRtWUzAaobBnBEtfijDuXKq6tHMS36xFLmbZ/52GlqxQ0RkTsFcWm6hrIcpVodVJGpjinlMDXnO2bNnw83NTbeFhyvfuMn0xaQaWVqSPXuAM2fUbgWVmj48FA42Vjh0JQ3rjl1VuzlEZKaMZJKQfk2fPh0ZGRm6LSIiQu0mUQMxup65F18ExJeNn35SuyVUWs/3+TtbyP3ZG88iu6BY7SYRkRlSLZjzcLSVKwivX5ggetBET1pDntPOzg6urq66zcXFpU7XJ+NjVAmDz50DDh1ShleHDFG7NVRqUr8QNPVyRGJWAeZvvaB2c4jIDKkWzNlaW6JtIzfsiUyulPNrT2QKOjdxN5hzkukSfxsixY0Q7OloPLnl7roL8PFRuzVUys7aCv8epUzN+Hb3JUQmZqvdJCIyM6oOs07qG4LlB2Pwy+FYRCZmYca6U8gtLMbYLkr9w1dWHMNHf5yttMDh9LUMuRVpSpCQmS/3Lyfn1PicRGVET0qRRgtrSwv4VZPqxmCIyfVlwRxzyxmcO0P9cGeor/x7emvdSS6GICLzSRo8qkMgUnMK8dmW80jKKkBYoCuWTOyuyyEnek0sKqReEMHbiC926e4v2Bkltx4hnljxdK8anZOoTExZjjl3I8gxt28fEBUFODkB996rdmuoCiI5+Z6LydgXlSq/TIpkwkREZlEB4vHeTeVWlbIArYwYCrs8Z8RtnZPohvly7kY0xHrffUpARwZHvD+9PLgVZm86iw82npE9dV51nP9LRFQbBt4dQaQ/salGkjBYDNlt2aLsc4jVoE3sGyJLCKbnFuGDDUwhQ0QNg8EcmS2jSUsiphqcOAGsWwcMHqx2a+gmbKwsMXtMO/mfbM3Rq9hdYTEWEZG+MJgjsxWbrgyzBnsaeM+cYGenzJWzVn1mBN1Cx2B3PNazidyfsfYk8os0ajeJiEwcgzkyWzGpRtAzp9Eow6xkVF67qzX8Xe1xOSUX//mLueeISL8YzJFZEmXfrqUbwZy55cuBli2B//5X7ZZQLbjY2+C90W3l/oKdF3E0Ok3tJhGRCWMwR2ZJpLkpLinNMedqD4NexXrxIpCYqHZLqJaGhPthdMdAlGiB11Yd53ArEekNgzky68UPge4OsgScQUpI4CpWIzfznjYyx+XFpByZ+5KISB8YzJFZ55gz6MUPK1Yoc+a6d1eGWsnouDvaYvZ97eT+gn+icPgKh1uJqP4xmCPzXvxgyAmDWb7LJAwO98OYTo3kOpbXOdxKRHrAYI7MumeukaEufrhwAThwALCyAh58UO3W0G16Z1Qb+LrYISo5B3M2ldebJiKqDwzmyCxdSVWCuSZejobdKzdkCODnp3Zr6Da5Odrgo/vby/3v91zG9nNc0EJE9YfBHJml6JSyOXMGGszdfTcwcSIwaZLaLaF6MjDUF4/3UpIJv7bqBJKzC9RuEhGZCAZzZHbEnKX4zHy538RQg7mePYHFi4H771e7JVSPpg8PQ2s/FxnIiflzWiaEJqJ6wGCOzHa+nLOdNTydbNVuDpkRexsrfP5/HWFrbYm/zyVh6d4rajeJiEwAgzkyO1dKh1gbezrCQlRENyQFBcCrrwIHD7KMl4kK9XfFm8NC5f4HG8/gXHyW2k0iIiPHYI7MNpgzyMUP69cD8+YB990HlJSo3RrSk8d7N8XA1j4oLC7Bc8sOI6egWO0mEZERYzBHZie6dCVrY0MM5pYuVW4ffVRJS0ImSfQIzx3bAX6uSnWIN9ac5Pw5IqozBnNkdq6k5OiGWQ2KqL+6aZOy/9hjareG9Mzb2Q5fPdRZlpNbf/waftzH+XNEVDcM5shse+aaeDrBoPz8M1BcDHTrBoSFqd0aagBdm3rijbuV+XPv/h6B4zHpajeJiIwQgzkyKyUlWsSk5RnmnLmyIVb2ypmVSf1CMDTcD0UaLZ5bdgTpuYVqN4mIjAyDOTIrIr+cmHRubWmBADd7GIzTp4HDhwFra2D8eLVbQyrMnxNfLq6m5+GFn49BU8L5c0RUcwzmyCxXsgZ5OMDayoD+/KOjgcBAYMQIwNtb7dZQA3NzsMF/H+4MextL7DyfhI/+YP1WIqo5A/o0I9K/6NTSxQ9eBjZfbtgwJaBbuFDtlpBK2gS64ZOxHeT+gp1RWHMkVu0mEZGRYDBHZpow2AEGR6Qi8fFRuxWkopHtA/H8wBZyX6QrOcYFEUQNInXZMkTeOQhn23fApXEPIu/EiWqPTVu5EpcffgTnuveQ25UJE256fENgMEdmxSBXsp48qaxiJQLwypBWGBzmJ+d2PrX0EBJK6wgTkX5kbtyIxDkfwXvKFISsWQ371q0RPWkyilNSqjw+98BBuI4YjiZLvkfTn5fDxj8A0U9OQlFCAtTCYI7MisElDM7KAnr2BBo3BmI5rEaApaUFPnuwA1r5OSMxqwCTlhxCbiGDfaLayMrKQmZmpm4rEKUSq5Hy/RK4jx0L9/vHwK5FC/jPmglLe3ukr15T5fGNPpkLz4cegn1YGOyaNUPA++/Jij05e/dCLQzmyGyIDPuXk3MMKy3JL78AubmAiwvQqJHarSED4WJvg4WPdYWnky1OXs3A1J+OoljD8m5ENRUeHg43NzfdNnv27CqP0xYWIv/0aTj17qV7zMLSEk69eiHv2LEaXaskLx/a4mJYublBLQzmyGyk5BQiM78YFhZAU0NZALF4sXI7YYLIUaF2a8iANPFywqLHu8LO2hJbzyZi5vrTLPlFVEMRERHIyMjQbdOnT6/yuOK0dECjgZWXV6XHrby9UJycXKNrJX76Cax9feHUuzfUwmCOzMal0l65QDcH2NsYQN3Tc+eA3bvFuBoTBVOVOjf2wOfjO8k4/8d90fhmZ5TaTSIyCi4uLnB1ddVtdnZ2erlO8oKFyNy4CUFfzoelnq5REwzmyGxcSlKCuWY+BtIr9+23yu3w4UqOOaIq3N3WH/8eGS7352w6i1+PXVW7SUQmw9rDXWYS0Fy32EGTnALrW+T8TFn8LVIWLkTjRYvkogk1MZgjs3ExOVveNvM2gGCuqAhYskTZf/JJtVtDBm5CnxA82TdE7r+68jj+PpuodpOITIKFrS3s27RBzt59use0YjHDvn1w6Nix2telLFqE5P/9D40XLoBDu7ZQG4M5MrueuRBDCOa2bwfEMnZfX6XqA9EtzBgehns6BKK4RItnfjyM/VFVp00gotrxeuJxpK9ahfS161Bw8SLiZ85CSV4e3MfcJ5+/Nm0aEj+dpzs+eeFCJH3+BQI++AA2jRqhOClJbiU5ymeMGqxVuzJRAyubM9fMx1ntpgCDBwOHDilVH2xs1G4NGUnKkk/HdUB2QTG2nU3Ek0sOYfnknmgXpN4KOiJT4Dp8OIpT05A0/wtokpJhFxYme9zKhlmLrsWJJa6649OX/wxtURGuvvhipfOIPHU+U5+HGiy0XB51g9jYWAQHByMmJgZBQUFqN4fqgShcHvb2HyjUlOCffw1EsKeBpCYhqqX8Ig0e//YA9l9KlalLVj7dEy18XdRuFpFBiDXTz28Os5JZuJqWJwM5W2tLBLqrXMqL35/oNoiV2CJlSbtGbkjNKcRDC/fjYpIyH5SIzBODOTILUaWLH0K8nGBlaaFuINe1KzBxIhAXp147yOiTCi+Z2B2t/VxklYjxC/YhMpEBHZG5YjBHZiHKUBY/iLxyR44AK1cCzgYwd4+Mlhhi/WlyD4T6uyBJF9Blqd0sIlIBgzkyq8UPIWrnmCur+PDgg0oJL6Lb4OVsh58m90RYgCuSs5WA7kICAzoic8NgjsxrJauaPXPp6cCKFcq+GGYlqq8eukk9EC4DukIZ0EVcy1S7WUTUgBjMkVmIKp0grmr1h6VLgbw8oG1bQMUafmR6PEqHXNs2cpU1iB9csBcHLqWq3SwiMqc8c0v3XsY3O6KQlF0ghwtm3dMGHYPdqz1+w4k4fLrlHGLT8uSE9jeGhWJgqK/ueZEhffWR2EqvuaOVD5ZO7K7Xn4MMU16hBtcy8uV+iLezegsfvv5a2X/2Wchim0T1yN3RFssm9cTkJYdw4HIqHl28H1891BmDw/3UbhoRmXrP3Prj1/D+72fw4uCW2DC1L8IDXPDY4v1y/kdVDl9JxQs/H8WDXYOx8YW+GNrGD0/9cAjn4ivPE+nfygcHZgzSbfPHd2qgn4gMTVnaBndHGzkkpYqdO4EzZwAnJ+CRR9RpA5k8NwcbLH2yOwaH+aKguARP/3gYqw7FqN0sIjL1YG7RrksY3z0Y47oGo6WfCz4Y3Q4OtlZYWc0b0Le7L8tA7en+zWWizFeHtkabQDcs2Xu50nEin5ivi71uc3OsPst+QUEBMjMzdVtWFicQm5KylA0tfVVcPRoaCrz7LvDKK4Crq3rtILPIQ/f1I11wf+cgmSz79V9O4OsdF8H88ESmS9VgrrC4BKeuZqBPC+/yBllayPtHrqRX+ZqjV9IqHV82hHrkSlqlx/ZFpaDLe1tw5yfbMWPtSaTlFFbbjtmzZ8PNzU23hYeH3/bPRobjfOnqPvFlQTV+fsDbbysBHZGeWVtZYu4D7TG5X4i8P2fTWby59iSKNCVqN42ITC2YS8stlN8cvZ3tKj3u42wn589VRTzu7Vx5qMzH2bbSsGz/1j6YN64jlk3ugWnDQmXZmye+OyCvVZXp06cjIyNDt0VERNTLz0eG4XyC0jPXSs2eOaIGJr4YzxgRjrdHhsspmssPxMj3wYzcIrWbRkSmNsyqD/d0CMSQcD+E+rvirjb++PbxbjgemyF766piZ2cHV1dX3ebC/F8m5UJpItVWavTMaTTAY48Ba9YAxcUNf30ye0/2DcHCR7vC0dYKuyNTMOZ/u3ElRUnVQ0SmQdVgzsPRVpZWun6xg+h9E71zVRGPi1xKlY8vvKF3r6LGXo5y4vtlvoGZ5UrW6NRc9YZZ//wT+OEH4MkngSL2iJA6xIrWVc/0QoCbPS4m5WD0V7ux52Ky2s0iIlMI5sQihbaN3LAnsvxNpaREiz2RKejcpOrUJJ2aeFQ6Xth1IQmdm3hUe524jDw5pCsWQpD5rWQV8749HG1uGJ5vEPPnK7cTJgAODg1/faJSYqHYr1P6oF0jN6TlFuGRRfuxYCcXRhCZAtWHWSf1DcHygzH45XCsrCs4Y90p5BYWY2yXYPn8KyuO4aM/zuqOn9inKXacT8LCnVFyleJnW87j5NUMPN6rqXw+p6AYH248gyPRaYhJzcXuyGRMXnoITb2ccEerygsnyLwWP1g0dG63s2eBP/5Qcso9/3zDXpuoCr6u9lj5dC+M6dQIYgrxhxvPYspPR5BdwCkARMZM9aTBozoEIjWnUAZlolh0WKArlkzsDh8XZdj0anpepQ/hLk088fn4Tvh08znM/fMcmno7YsGjXdHaXxlCE8O2Z+IysfpwLDLzi2RvnAjiXhnSGnbWVqr9nKTy4gc/FRY/fPGFcnvPPUCzZg1/faIqiNRPn47rIEc53l1/GhtPxst/JyKdSQsuEiIyShZa9rHfIDY2FsHBwYiJiUFQUJDazaHbMGnJQfx1JhHv3tsGj5X23jaItDRA/O3k5gLbtgEDBzbctYlq6PCVNDy37DASMgvkAglRfeeBLkEN34tNVE9izfTzW/VhVqKG6Jlr6dvAix8WLVICufbtgQEDGvbaRDXUpYkHfp/aD72beyG3UCMTDL/w8zE5qkFExoPBHJmsrPwi3UrWsmH4Bq340K0b8MILrMNKBk1MafnhyR54/a7WcpqKKLE4/PN/5LxjIjIODObIZJ0trdcr0jE0eE3WUaOA/fuVVaxEBk4EcVMGtpDpS4I8HBCbloexX+/FvM3nZKUeIjJsDObIZJ2+miFv2wSqVAtV9MhZ8p8YGY/OjT2w8cV+MvG6qJjzxbZI3PPlLll2kYgMFz9pyGSdvpYpb8MDGjCY27sXmDsXyFSuTWRsXO1t8MX/dcJXD3WWPdqih/ver3azl47IgDGYI5MVEVcazAW6NdxF33sP+Ne/gLffbrhrEunBiPYB2PzyHRjezr9SLx3n0hEZHgZzZJJED0JZwuAGG2Y9fhzYtEkZWhULH4iMnCiT+N+Hu1Tqpbv/f3swfc1JpOdWLqtIROphMEcm6UJiFoo0WrjaW8sJ3Q3i44+V27FjgebNG+aaRA3US7fl5Ttwf+cgWR5v+YFoDPp0h6zcw1SlROpjMEcmKaJsvlyga8MkQI2KAn7+WdmfNk3/1yNqYF7OdrJyxIqnesqKKik5hXht1XE8+M0+LpAgUhmDOTLpxQ+iuHiD+OQToKQEGDoU6NSpYa5JpIIezbyw4YV+mD4sFA42VjhwORWjvtyFV1ceR3xGvtrNIzJLDObIJJ2+1oBpSWJigMWLlf033tD/9YhUZmNliaf7N8fWV/tjdMdAOfS6+kgsBnzyt1z1mlNQrHYTicwKgzkyOUWaEpwsHfZpH+Su/wuKT7L771fqr7J0F5mRQHcH/Gd8J6yb0gfdmnogv6hErnod8Ml2fL/7EvKLNGo3kcgsMJgjk3MuPkt+qIjFD828nfR/wcaNgZ9+Av78k6W7yCx1DHbHyqd74etHOqOJlyOSsgowc30EBn6yHT/uu8L8dER6xmCOTM7RmHR52yHYHZaWDRhc2dg03LWIDIxYaHR3W7HqtT/eH90W/q72iMvIx1vrTuHOT7dj5cEY2WtORPWPwRyZnKOlSU07NfbQ/wrWJ54AIiP1ex0iI2JrbYlHejbB9tcHYOaocPi42Mlar/9afQID5irDr7mFnFNHVJ8YzJHJOVbaM9cpWM/z5USVhyVLmCCYqAr2NlZ4ok8Idr4+EG+NCIO3sy2upufJ4dc+c7bhsy3nkZrDxMNE9YHBHJkUkZU+KilHN8yqNwcPKvPkxBy5Dz7Q33WIjJyDrRUm9WuGXdPuxHuj26KxpyPScovw+dYL6D1nK/796ylEJmar3Uwio2atdgOI6tOBS6nytpmPkyw/pLfVq6+9puw/+ijzyhHVsKfu0Z5N8FD3xth0Kg5f77iIU1czsXTvFbn1aeGFx3o1xaBQX1hbsZ+BqDYYzJFJ2V8azPUI8dLfRX79Fdi5E7C3B95/X3/XITJBVpYWGNk+ECPaBWDPxRR8t/sytp1NwO7IFLkFutnj4Z5N8GC3YFkblohujcEcmZT9l1Lkbc9mnvq5QFER8K9/KfuvvAIEB+vnOkRmsPq1TwtvucWk5mLZ/misOBiNaxn5mPvnOTmn7s5QX4ztGowBrX1komIiqhqDOTIZmflFupqsPZvpqWfum2+ACxcAHx/WYCWqJ8GejnhjWCheGtwSv5+Iww97L+N4bAY2RyTITSyeuK9TIxnYtfJzUbu5RAaHwRyZjEOXU1GiBZp6OcLP1V4/F5k4EUhIAFq3BlwboFQYkZnNq3ugS5DcRPLvVYdisO7YVSRnF2LhP5fkJkr0iWHake0DZBBIRAzmyITsulA2xKrH+XKOjsB77+nv/EQktfZ3wVsjwzFtWCi2n0uSgd22s4k4fS1Tbh/9cVauWB/VPgDD2wXI0mJE5orBHJmM7ecT5W3/Vj71f/Jz54DmzQFr/pMhakhirtyQcD+5ibx0f5yKx+8nrmFfVAqOx6TL7f0NZ9C5sTuGhPtjcJgvWvg6yzl5ROaCn0xkEqJTcmV+OWtLC/Rp6V2/J09JAQYMUBY7rF0LNGpUv+cnohoR6YYe6tFYbolZ+UpgdzwOB6+k4kh0utxEj53IZTc4zE8Gdt1CPLl4gkwegzkyqV65Lk084GpfzzVSn38eiI8HPDwALz0O4RJRjfm62Mu8dGKLz8jHljMJ+CsiAXsvpiA6NRff7r4kNxd7a9zR0gd9W3qjbwtvzrMjk8RgjkzC32eVYG5Aa9/6PfGqVcDPPwNWVkrpLpFbjogMir+bvUxILLacgmL8cyEZf51JkO8LKTmF2HAyTm5CEy9HmQ6lXwtv9GruBXdHPSUXJ2pADObI6GXkFWFXZLLcHxRWj8FcVBQwebKy/8YbQLdu9XduItILJztr3N3WX26aEq2s1fzPhSTsjkzG0eh0XEnJxZWUaPy0P1pW4wvzd0X3EE90ayo2D/jqayU8kR4xmCOjt/l0PIo0WrTyc66/HFT5+cC4cUBGBtCrF/DOO/VzXiJq0GoTYuqF2F4a3ArZBcXYH5Uie+5EcHchMRsRcZly+37PZV3PXVlgJ17XzNsZlpZcTEGGjcEcGb31J5Thk1HtA+vvpCJ4O3xYmSO3YgVgU8/z8IiowTnbWWNQmJ/chITMfBy8nIqDl1Jx8HIazsRnlvbc5eKXw7G617Rr5Ib2wW7oEOSO9kFuaOTuwNWyZFAYzJFRS8kukN+whZEd6jGYe+45YONGYO5cluwiMlEiubiSgDhQV0Xm8JU0GdwdupyGE1fTZW/e3qgUuZURFSnaB7kjPMAVoQEuCPV3RYi3k+wJJFIDgzkyaisOxch5MR2C3OSbab1p0gQ4coQ9ckRmRKyEH9jaV25CsaZEDsWeiE3HsZgMeSsqU4iKFCKBsdjK2FlbykTHoXJTgrzWfi7wcrZT8Scic8FgjoyWCOKW7YuW+4/0bHL7J/znHyAmBnjoIeU+Azkis2ZtZYmwAFe5PVi6/im/SCPn2J2ISce5hCycicuSAV5ekQYnYkXAl1HpHO6ONmju44xm3k5o7lt+K3LhMf8d1RcGc2S0RNqBq+l58s1y1O0Ose7cCQwfDuTlAd7ewNCh9dVMIjKx+rGdG3vIreIXS5Hb7mxcJs7EZ5XeZiImNQ/pucrQrdgqEgnOG3s5yuBO5L5rXLqJ/WAPRzjYWqnw05GxYjBHRkmr1WL+tgty/8GuwfINts42bwbuuw/IzVWCuH796q+hRGTyxFw5Mc1DbMPaBegezyvU4FJyDi4mZcsKNeK2bF/05IlbsVXF29kOjT0ddAFekIcDAtzEZi/z6rnUd3J0MmoM5sgobY5IwPHYDDjaWmHyHc3qfqKvvgJefBHQaJRAbt06wIEFu4no9onetfBAV7lVVFKiRXxmvgzkLqXkIDY1V/bslW1Z+cVIzi6QmyhRVhWxylYEdTK4cy29LQ32fFzs5OblZCuHisn0MZgjoyPmrIj6i8LEPiHyG2ytZWcDL70ELF6s3H/sMWDBAsCOk5WJSL9E3rpAdwe5iTJj18vILUJMmhLYxZQGeGJKiShbFpeRLxOli1W2kYnZcquOyJ7i4WgrV9+K90nd5qLcl0Gfsx08nGzh7mAjvxwz5YpxYjBHRmfelvPyG614M6pzr9yff5YHcrNnA9OmKe98REQqc3O0gZujG9o2cqvy+dzCYhnYlQV3opcvLqM82EvMKkBqTqGcyyduxXY+ofqgr4ytlaWcg6xstvAQtw62cHeykUGhCPjKHnd1sJF1b13sbOBsb820LCpjMEdGZeuZBCz8J0ruzxnTDm4OtZg3kpMDOJWmLxkzBnj5ZWDUKGDgQD21loio/jnaWqOZWCHr41ztMWIoNy23UKZREcO1SVnKsG2SGL7NUh4r29JyilCoKZGbCATFVltOtlZyHp8M8OSmBHmupfsuduWPi5JrYphYVNsQ8wHJRIK5pXsv45sdUfKPTCwBn3VPG3QMdq/2+A0n4vDplnOITctDiJcT3hgWioGhvpUmx3+25TyWH4xBZl4Rujb1wPuj29VvHjJqcH9FJOD55Ueg1QIP9WiMweFKFvebEgfv3QvMn68sdDhzBvD1VXrh5s1riGYTEakylCty3ImtNW5e5lB8ZooFGWm5RUjLKZQrcNPzCuX99JzS29xCpOcVyQBRPJ+VX4TM/GIUFpfIc+QUauQWn1nzNj59RzNMHx4GQ5C6bBlSF3+L4uRk2IWGwv+tGXBo377a4zP/+ANJn3+BoqtXYdukCXxfexXO/fvDbIO59cev4f3fz+D9+9qiU7A7vt19CY8t3o9trw2oci7U4SupeOHno/jXXa1lUfVfj13DUz8cwu9T+8mEjcLXO6Lw3Z7L+HRsBxn1f7r5PB77dj+2vNz/9lY9kipEVvb5Wy9g8a5LKNECg0J9ZcBfrbQ04MABYMsWYM0a4NKl8udEaa6pUxuk3URExkDMkxO9fWITpcpqo6BYIxdsiC1b3ipBnrgV8/qU50TwV4ys0vs5Bcom5gwagsyNG5E45yP4z5wJhw7tkbpkKaInTUbzTRthLUo6Xif3yFFcffU1+L7yMpwHDEDG778j5vmpCFn9C+xbtVLlZ7DQipBcRfd+tVtm73/33ra6ruFec7bi8d5N8dyAFjccP+WnI3K597dPlGZwBDD6q91ytdCH97WT3zC6f7gVk/uF4Kk7muuCga7v/4VPxnbAPTXIRxYbG4vg4GDExMQgKCio3n5W0Y6shBRYpqfJDiPpul9/iY8vShyUbmeLrExYJSdDC63uOK2IZkoV+/lD6+xcfmy8UqNUOW35cWJX4+ePEldl/oVFdiasr14tvWDpcVp5FeW8/v4o8fCUr7PIyYbtlcuV2iCPLd0t9g9AsZePct7cHNhePF/+w1R4SVl7xSbl5sL+3NkK1xYHlv6MWiDRyQMX7D1lbqZ/Tsaieaxy3iHhfpjcrxmsNcVK0Ca2sDCgZ8/yfHHXfzsSq1PHjwdeeAHo2LEG/6WIiMgYxdbh8/vSuAfh0LYt/P/9tryvLSlB5ICB8HjkEXg/NfnGa7z8MrS5eQj+5uvyczz4IOxDwxAwaybMrmdOdM+eupqB5wYoQVdZ13CfFt44cqXq5dhHr6ThyX6VJ73f0coHm0/Hy32RpFHMDRDnqFiiRQzbHrmSVmUwV1BQILcyWVlZ0Icf911B4vtzMXPrgmqPeXzsLOxo1kXujzu+GR//8UW1xz49+k382bq33B8VsQPz18+t9tiXR7yCtW3vlPuDL+zHojXvVXvsjKHPYVmn4XK/9+Vj+GnFW9Ue+97AJ7G4+31yv9PVs1j742vVHvtp34cxv8//yf3QxEv447vqe8i29ngAHw14Qu43TkvEmh9fr/ZYuSq1LJhr104ZQm3eHOjdG7j3XuCuu8rnyhERkcnLyspCZmb5mK+dnZ3crqctLET+6dOVgjYLS0s49eqFvGPHqjx33rHj8Hri8UqPOffpi6ytW6EWVYM5MfYuVttcP5wqlkpfrCaRophXJ5ZZVz7eVk7iVJ7P153j+nOK11Zl9uzZmDVrFvRNZPy2sLFGnnV527SlC4C0sIDYtZZd3cpQsJWtDbJty7qhLSodL9jaKZNKxVNWDnbIsK88GVZbYXWmjYOdXCwgHrJ1tEOqo1vpGSu3QV7XyVHmJxIcnByQ7Ox53XnL961cnOXydsHJ1REJrhWX2VvI/5V1zlm4ucp8SIJbgRPi3P1uaKtyrAXs/bxlL1zbQDfc6dQY2q3Nde1VfpnWgIeHsrVuXf64uJ+cDHhWbjMREZmP8PDwSvffeecdzJx5Y69ZcVq6zDNqdd1wqpW3FwoqTtGp+JrkZFh5ed9wvHjcbOfMGYLp06fjlVde0d2/evXqDX8I9UEO+97xlchUW+0xpckySt0N4JNqj51f6d5dop+s2mM/Lt0UQ4EfZlR77Lulm2IIsLj8d3O9N0s3xWDgq2erPVacpdKZPptQ7bHimUrPRkaixhjIERGZtYiICDRq1Eh3v6peOVOiajAn8taI3DRlvWplRA/a9T1rZcTjYql15eMLdb17Ps72unP4lvYCld0PD6ichbu67teKXbNERERkXFxcXODqWvVnfkXWHu6AlRU0KSmVHtckp8Ba1Omu6jXe3tCkJNf4+Iagap0PW2tLmRRxT2T5L0UsgNgTmYLOTapOTdKpiUel44VdF5LQuYlS9DjY00EO+4lzlBEraY7FpOuOISIiIrKwtYV9mzbI2btP95hYAJGzbx8cqlkw59CxQ6XjhZw9e6o9viGoXrRtUt8QmQ/ul8OxiEzMwox1p2R267FdguXzr6w4pivdJEzs0xQ7zidh4c4oWcZE5JM7eTUDj/dqqltiLUo8iSLsWyIScDY+E6+sPA4/VzsMrUleMiIiIjIbXk88jvRVq5C+dh0KLl5E/MxZKMnLg/sYZXHftWnTkPhpeV5Sz0cfQ/auXUj59jsUREUhaf6XyDt9Gh4PP2S+c+ZGdQiUpUZEUCZWoYYFumLJxO66SfWiHl3FWnFdmnji8/Gd8Onmc5j75zk09XbEgke76nLMCc/0b4a8wmJMX3NSpgPp1tQDSyZ0Z445IiIiqsR1+HAUp6Yhaf4X0CQlwy4sDI0XLtANmxZdixNLXHXHO3buhEafzEXSfz5H0mefwbZpEwR/OV+1HHMGkWfOEOkrzxwRERHpT6yZfn6rPsxKRERERHXHYI6IiIjIiDGYIyIiIjJiDOaIiIiIjBiDOSIiIiIjxmCOiIiIyIgxmCMiIiIyYgzmiIiIiIwYgzkiIiIiI6Z6OS9DVFJSIm/j4uLUbgoRERHVUFzp53bZ57i5YDBXhYSEBHnbvXt3tZtCREREdfgcb9y4McwFa7NWobi4GEePHoWfnx8sLZWR6KysLISHhyMiIgIuLi5qN9Ho8PdXd/zd3R7+/m4Pf391x99dw//+SkpKZCDXqVMnWFubT38Vg7kayszMhJubGzIyMuDq6qp2c4wOf391x9/d7eHv7/bw91d3/N3dHv7+ao4LIIiIiIiMGIM5IiIiIiPGYK6G7Ozs8M4778hbqj3+/uqOv7vbw9/f7eHvr+74u7s9/P3VHOfMERERERkx9swRERERGTEGc0RERERGjMEcERERkRFjMEdERERkxBjM1dLly5fx5JNPIiQkBA4ODmjevLlcbVNYWKh20wzWV199haZNm8Le3h49evTAgQMH1G6SUZg9eza6desmM5/7+vpi9OjROHfunNrNMkpz5syBhYUFXnrpJbWbYjSuXr2KRx55BF5eXvK9rl27djh06JDazTIKGo0Gb7/9dqXPiffeew9cb1i1nTt3YtSoUQgMDJT/TtetW1fpefF7+/e//42AgAD5+xw8eDAuXLigWnsNEYO5Wjp79qwsF/LNN9/g9OnT+Oyzz/D111/jzTffVLtpBmnFihV45ZVXZMB75MgRdOjQAXfddRcSExPVbprB27FjB6ZMmYJ9+/Zhy5YtKCoqwtChQ5GTk6N204zKwYMH5b/X9u3bq90Uo5GWloY+ffrAxsYGmzZtkuWUPv30U3h4eKjdNKPw0Ucf4X//+x++/PJLnDlzRt7/+OOPMX/+fLWbZpDEe5r4bBBf/KsifndffPGF/Kzdv38/nJyc5OdIfn5+g7fVYInUJHR7Pv74Y21ISIjazTBI3bt3106ZMkV3X6PRaAMDA7WzZ89WtV3GKDExUXyt1+7YsUPtphiNrKwsbcuWLbVbtmzR9u/fX/viiy+q3SSjMG3aNG3fvn3VbobRGjFihHbixImVHhszZoz24YcfVq1NxkK8x61du1Z3v6SkROvv76+dO3eu7rH09HStnZ2ddvny5Sq10vCwZ64eiLpxnp6eajfD4Iih58OHD8su8TKWlpby/t69e1Vtm7H+nQn8W6s50bM5YsSISn+DdGu//fYbunbtirFjx8ohflG0fOHChWo3y2j07t0bW7duxfnz5+X948ePY9euXRg2bJjaTTM6ly5dQnx8fKV/w6Jeq5iyw8+RctYV9qkOIiMjZdf5J598onZTDE5ycrKcO+Ln51fpcXFfDFdTzYmhfTHfSwx9tW3bVu3mGIWff/5ZDu2LYVaqnaioKDlMKKZIiCkk4nf4wgsvwNbWFo8//rjazTN4b7zxhiwSHxoaCisrK/k++MEHH+Dhhx9Wu2lGRwRyQlWfI2XPEefMVfrHJyZe3my7PgARE4Tvvvtu+e118uTJqrWdzKOH6dSpUzJAoVuLiYnBiy++iGXLlsmFN1T7Lw+dO3fGhx9+KHvlnnrqKfkeJ+Ys0a2tXLlS/u399NNP8gvFkiVL5Bd+cUukD+yZK/Xqq6/iiSeeuOkxzZo10+1fu3YNAwcOlN3pCxYsaIAWGh9vb2/5rTQhIaHS4+K+v7+/au0yNs8//zx+//13ueIrKChI7eYYBTG8LxbZiICkjOgdEb9DMSm9oKBA/m1S1cSqwfDw8EqPhYWFYfXq1aq1yZi8/vrrsoNg/Pjx8r5YCXzlyhW5Qp09m7VT9lkhPjfE32UZcb9jx44qtsywMJgr5ePjI7eaED1yIpDr0qULvvvuOzkPjG4khmTE70jMHRFpNcq+8Yv7IkChmxNzgadOnYq1a9di+/btMs0B1cygQYNw8uTJSo9NmDBBDntNmzaNgdwtiOH869PgiPlfTZo0Ua1NxiQ3N/eGzwXxNyfe/6h2xPueCOjE50ZZ8CaGsMWq1meffVbt5hkMBnO1JAK5AQMGyDc10W2elJSke469TTcSc27EN1Exmbp79+74z3/+I5ehiw9WuvXQqhim+fXXX2WuubL5IWLyr8i1RNUTv6/r5xaKdAYiZxrnHN7ayy+/LEcdxDDruHHjZG5IMQLBUYiaETnTxBy5xo0bo02bNjh69CjmzZuHiRMnqt00g5SdnS3nn1dc9HDs2DG52Ev8DsV84ffffx8tW7aUwZ3I4Sdy0pV1EhBTk9Tad999J5dOV7VR1ebPn69t3Lix1tbWVqYq2bdvn9pNMgrV/Z2Jv0GqPaYmqZ3169dr27ZtK1NAhIaGahcsWKB2k4xGZmam/FsT73v29vbaZs2aaWfMmKEtKChQu2kG6e+//67yve7xxx/XpSd5++23tX5+fvLvcdCgQdpz586p3WyDYiH+T+2AkoiIiIjqhpO9iIiIiIwYgzkiIiIiI8ZgjoiIiMiIMZgjIiIiMmIM5oiIiIiMGIM5IiIiIiPGYI6IiIjIiDGYIyIiIjJiDOaIyKg1bdpUlonTp++//x4WFhZyE6WFamrmzJm61+m7jURkvhjMERHVgKurK+Li4vDee+/V+DWvvfaafE1QUJBe20ZE5s1a7QYQERkD0bvm7+9fq9c4OzvLzcrKSm/tIiJizxwRqWLBggUIDAxESUlJpcfvvfdeTJw4Ue5fvHhR3vfz85NBUbdu3fDXX39Ve87Lly/LoOvYsWO6x9LT0+Vj27dv1z126tQpDBs2TJ5TnPvRRx9FcnJyrdp/9uxZODo64qefftI9tnLlSjg4OCAiIqJW5yIiuh0M5ohIFWPHjkVKSgr+/vtv3WOpqan4448/8PDDD8v72dnZGD58OLZu3YqjR4/i7rvvxqhRoxAdHV3n64rg7s4770SnTp1w6NAheb2EhASMGzeuVucJDQ3FJ598gueee062JzY2Fs888ww++ugjhIeH17l9RES1xWFWIlKFh4eH7B0TPVuDBg2Sj/3yyy/w9vbGwIED5f0OHTrIrYyYr7Z27Vr89ttveP755+t03S+//FIGch9++KHusW+//RbBwcE4f/48WrVqVeNziUBu48aNeOSRR2Brayt7DqdOnVqndhER1RV75ohINaIHbvXq1SgoKJD3ly1bhvHjx8PS0lLXMycWEYSFhcHd3V0Oi545c+a2euaOHz8uewPL5rOJTfSylQ3r1pYIBE+cOIEjR47oVr0SETUk9swRkWrEkKlWq8WGDRtkr9Y///yDzz77TPe8COS2bNkihzNbtGgh56M98MADKCwsrPJ8ZUGgOGeZoqKiSseIAFFcVwyHXi8gIKBOwWFOTo68tli5WpdzEBHdDgZzRKQae3t7jBkzRvbIRUZGonXr1ujcubPu+d27d+OJJ57AfffdpwvExCKH6vj4+MhbEVSJoVSh4mIIQZxf9AaK/HTW1rf3Fijm+In2zZgxQ15T9DSKHjoRdBIRNRQOsxKRqkQAJHrmxHBl2cKHMi1btsSaNWtkQCZ6wB566KEbVr9WJIKonj17Ys6cOXI4dseOHXjrrbcqHTNlyhQZhP3f//0fDh48KIdW//zzT0yYMAEajaZWbRcLHsRcO3GNefPmydeL3kQioobEYI6IVCVWlnp6euLcuXMyWKtIBEhioUTv3r3l0Ohdd91VqeeuKiIoLC4uRpcuXWS1hvfff7/S8yIdiujxE4HX0KFD0a5dO3mcmJNXNkxbE0uXLpWLH3744QfZw+fk5IQff/wRCxcuxKZNm2r5WyAiqjsLbcXJJUREdAOxsEEEfCKtSV2IIV3x+tqUAiMiqin2zBER1UBGRoZc+Tpt2rQav0akPxGvuZ3Vt0REt8KeOSKiW8jKypKJhQUxHCty4dWEmJsntrLFGW5ubnptJxGZJwZzREREREaMw6xERERERozBHBEREZERYzBHREREZMQYzBEREREZMQZzREREREaMwRwRERGREWMwR0RERGTEGMwRERERwXj9P4yAi52SXhP2AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "stochast = Stochast()\n", "stochast.distribution = DistributionType.log_normal\n", "stochast.location = 1.0\n", "stochast.scale = 0.5\n", "stochast.shift = 0.0\n", "\n", "stochast.print()\n", "stochast.plot()" ] }, { "cell_type": "markdown", "id": "6d8b4f5b", "metadata": {}, "source": [ "We want to invert this distribution function with respect to the [shift](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.shift) value. This is done by setting the [inverted](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.inverted) attribute:" ] }, { "cell_type": "code", "execution_count": 18, "id": "bb086e39", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Variable:\n", " distribution = log_normal (inverted)\n", "Definition:\n", " location = 1.0\n", " scale = 0.5\n", " shift = 0.0\n", "Derived values:\n", " mean = -3.080216848918031\n", " deviation = 1.6415718456238662\n", " variation = 0.5329403500277882\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAGwCAYAAADCJOOJAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAcjFJREFUeJzt3Qd4VFXaB/B/es+k95CEnkDoRZqIIoIVUbAgKNhF3V10RdZvd0FR7KziWhCl2VAprjSlCEgTpEPoEEiBkN7rTL7nnJuZJJBAEpLcezP/3/PcnTuTm8lJFmfeOee872tTXl5eDiIiIiLSJVu1B0BEREREDcdgjoiIiEjHGMwRERER6RiDOSIiIiIdYzBHREREpGMM5oiIiIh0jMEcERERkY7Zqz0ALSorK8PevXsRGBgIW1vGu0RERHpgMpmQkpKC7t27w97eekIc6/lN60EEcn369FF7GERERNQAO3fuRO/evWEtGMzVQMzImf8xBAcHqz0cIiIiqoPz58/LyRjz+7i1YDBXA/PSqgjkwsLC1B4OERER1YOtlW2Rsq7floiIiKiFYTBHREREpGMM5oiIiIh0jMEcERERkY4xmCMiIiLSMQZzRERERDrGYI6IiIhIxxjMEREREekYgzkiIiIiHWMwR0RERKRjDOaIiIjIKhXs2oWEp57GiUHX40jHaOSuW3fV78n/YydOjxqFo7FdcHLYLchaugxqYzBHREREVslUWAinjh0Q+K9/1un6ksREJDz1FNz69EXU8mXwGT8e5//5T+T9vgVqslf1pxMRkW4UlhiRXVgKg4sDXBztYLVMJiA/HygpUe77+lZ+LTUVKCoCyssv/z4bGyA8vPJ+SopybW0iIirPL14ECgtrv7ZVK+X5hbQ0ZXy1EWMwN6JPTwfy8mq/NjQUsK8IFTIygNzc2q8NCQEcHJTzzEwgJ6f2a4ODAUdHqM39+uvlISTV4fqs776DY1goAl+eIu87tWmDwj27kbFgAdwHDYRaGMwREVGtSspMWLzrHH7ck4T9CVnyMVsboGu4F8b3i8BdXUNhKx5oSYGaCHD8/Ssfe+ABYM8eJZgRQVLVoEoEMElVwoC77gK2b6/5uQ0GIEv5G0rjxgFr19Z8rQigSksr7z/xBPDTT7WPu7i4Mjj6y1+Ab76p/VoRaHl5KedTpwKff177tYmJSkAnvPoq8MEHtV977BjQvr1y/u67wBtv1H7t3r1At25oKrm5ucipEkw6OTnJ41oV7NsH1379qj3mNmAgUmbOhJoYzBERUY32nsvE5O/340xa5SyPna0NjKZy7D2XJY/vdibg47E94Ot+7W+UqhGzY//7H7BiBfDLL4C3N3D0aOXXT58Gjh+vPfirSgRU4hCzZOaZMjNn58uvvfQxM/NsWF2uvZSYHVPj2qq/rxh/Xa9tAjExMdXu//vf/8a0adOu+XmNqWmw9/Wr9pi9ny9MeXkwFRXBtq5/y0ZmU15e01ywdUtMTER4eDgSEhIQFham9nCIiJrdj7sT8Y+lB1FiNMHP3RFP39AWt3cJRoCHEy7kFGHJ7kR8svEU8kuMCPVywXdPXIdwH1foigjSZs0Cvvqq+oyZi4syC2d+Y968WQna/PwANzflcHdXAiyxXGlesiTNvH/HxcUh1DyjWMeZOZEAEfbRbHgMHVrrNaduGQ7DqFHwe/IJy2N5mzYh4cmn0GHfXtWCOc7MERFRNd/8cQ7/WHZQng/vFIS3R3eBp7ND5XYngwuevbEdhncOxmMLdiE+vQAPz9uJJU/1h7eb+vug6uTtt4FXXgHKyir3kd1/PzBiBDBgQPX9XBV7qkg/PDw84Onp2ejPa+fvh7L0tGqPlaWlw9bdXbVATuDHCSIislgXl4JXliuB3IQBkfjkoR7VArmq2ga447sn+iHE4IzTqfn46+J90M1iT+fOSiB3yy3K0uqZM0qAN2SIJjbmkza5duuGgu07qj2Wv20bXJpw/19dMJgjIiLpeEou/vLdXpmI+WDfVvjX7TGwucrepiCDM+ZN6AMne1tsOp6KRTvOQpOSk4FNmyrvixm43buBNWuAYcMAOyvOzrVipvx8FB05Ig9z6RFxXir+vYgk4vfeR/IUJXNV8Lr/fnlNyjvvoPj0aWR88w1y1qyBz8MPQ00M5oiICAUlZXhy0W65B+661j6YfmenqwZyZh2CPPDyiI7yfOaqo7iQfYVyG2oQe9569ADuvBM4cUJ5TPxu4jGyaoWHDuPM3aPkIVx88y15nvrhbHm/LDUVpcnnLdc7hoUh/NNPkb9tO87cNRIZ8+Yj+LXXVC1LInDPHBER4c3VR2XWarDBGR+P7QkHu/p91n+4XyRWHDiP3Wcz8fYvR/H+GHWXnSxEiQ4xayKWVGNjmaxA1bj17YPoo8qsXE1C3pxZ4/e0XrYUWsJ/1UREVm7LiTQs3K4sj759bxf4NCCJQdSaE8uywtI9STiUlA3Vffwx8NBDSiB3331K/bc2bdQeFVGjYzBHRGTFikqNmLrsgDwfd10EBrWrUiy3nkQh4ZHdQuT57A0Vy5lqmT0bmDRJ6cTw7LPKDJ0oKULUAjGYIyKyYnM2n0ZCRiGCPJ0t+96uxbM3tpXb0X45nCITKlSxejXw/PPKuSg/8uGHXF6lFo3/uomIrFRiZgE+3nhSnv/jtmi4OV37Nuq2AR6yNp3w6aZTUMUNNwB33KG0tXrttSbvNkCkNgZzRERW6t1fjqGo1IS+UT64o0twoz3vk4OVfWkiISIjv6IZfXMSHRyWLgXef5+BHFkFBnNERFbo6IUc/LRfqaX1zzrUk6uPrmEGxIYaUFJmwg9/JqBZ5OYCc+Yoe+TMvUG5tEpWgv/SiYis0Hu/Hpdxz22xwegcamjU5xaB4UPXtZLnX/1xFiZTE3eFEL/IhAnAk09W7pUjsiIM5oiIrMyec5lYG5cCWxtg8rD2TfIz7uwaCg8ne5lcsSs+A03q88+BJUsABwdg7Nim/VlEGsRgjojIysxae1ze3tszDG383ZvkZ7g42mFErJIIsXxfEprM8ePA3/6mnM+cCVx3XdP9LCKNYjBHRGRFDiZm4/cTabCztcFzN7Zr0p81snuoJRFC1LNrdKWlykxcQQFw002VQR2RlWEwR0RkRczlQu7sGoJwH9cm/VnXRfnK9mC5RWXYeOxi4/+Ad98F/vwT8PYG5s9nwgNZLf7LJyKyEvFp+Vh9SGka/uTg1k3+80SLr9srSp6IIsKNKiMDmDFDOf/Pf4CwsMZ9fiIdYTBHRGQlPv/9NERi6ZAO/ugY5NksP/OWigLC64+koNRoarwn9vEB1q9XWnaNG9d4z0ukQwzmiIisQGpuMX7YnSjPn6oo6tscurfyhp+7I3KKyvDH6UbOahXJDh99xMLAZPUYzBERWYFF2+NlEd/urbzQJ8qn2X6uSLQYGh0oz385fOHanzAnB4iPv/bnIWpBGMwREbVwxWVGfLPznDx/bGDrRu32UJ+lVlHb7poLCL/xBtCxIzB7duMMjqgFYDBHRNTCrTl0AWl5JQj0dMKwTsosWXPq18YXbo52uJBThMPJOQ1/ojNngFmzgOJiICqqMYdIpGsM5oiIWrgF25RlybF9I+Bg1/wv+84Odujf1k+ebz6R2vAnevlloKQEGDoUuO22xhsgkc4xmCMiasEOJWVjz7ksONjZ4P4+4aqNY1A7JZjbciKtYU+wdSvw/fdKLbn33mPSA1EVDOaIiFqwhduVWbkRnYMR4OGs2jgGtfOXt3+ezUBBSVn9vrm8HJgyRTl/9FGgS5cmGCGRfjGYIyJqobIKSvDTvmR5Pr5fhKpjifR1RZi3C0qN5fUvUfLLL8rMnLMzMG1aUw2RSLcYzBERtVDL9iahuMyEjkEe6BnhrepYRAateXZO9IatF1GKxMVFKRAcEtI0AyTSMXtoZBngs02nkZpXjOhgT0y/sxO6hXvVeO2aQ+fx399OIT49H2XGckT6ueHxQVEY1aOylUt5eTlmrT2Ob3clIKewFL0ivTFjZCyi/Nya8bciIlKPeB1cvCtBnj/Qp1WzlyOpyfXt/PDtznP1T4J46ilg5EjA0bGphkaka6rPzP28PxkzVhzBX4a2w8rnBiIm2APjv/gDaXnFNV5vcHHEpCFtseyZ/ljz10EY3TMMf//xADYdr3xx+HTTaczbFo/XR3bG8kkD4OJgj/Ff/oGiUmMz/mZEROo5mJSNoxdy4Whvi5HdQqEF/dv4ybyFkxfzZEeKegkKUlp4EZH2grm5W87IDKsxvcLRLtADr4+MhYujHb7/U/lEWVO9ouGdg9A2wAMRvm6YODBKLiH8GZ9h+TT65dYzeO7GthjWKUjO9L1/X1ek5BTj17hGbvRMRKRR5lm54Z2CYHB1gBaIcXQI9JDnuypes69o82ZlrxwRaTeYE61lRNr8gIr6Q3JAtjby/p6zWVf9fhG4bT2ZhtOp+Zb2NAkZhfITX9Xn9HR2kMu2e85m1vg8xcXFyMnJsRy5ubmN8vsREamhsMSI/1UkPtzfW71yJDXpW/FavfNMxtUzWJ9/Hhg4EJg7t3kGR6RTqu6ZyywogdFUDj93p2qP+7s74VRqfq3fl1NUiuveWC+DQRH8zbirs2VjbWpekeU5Ln1OsSevJjNnzsT06dMb4TciIlLf6kPnkVtchnAfF1zX2hda0jvKBwu2n716MLdmDbB/P+DmBtx9d3MNj0iXVF9mbQh3R3usen4Qfnp2AP4+rANeWxmH7afSG/x8U6dORXZ2tuWIi4tr1PESEamxxDqmZ7j8wKslfSKVmbkjF3LkB/NazZyp3D7xBOCrrYCUSGtUDea8XR1hZ2tzWbKDmEG7dGatKvHiJLJYO4UY8Pj1rXFr52B8vPGk/Jq/u1IUM7Uez+nk5ARPT0/L4eGh7OkgItKb+LR8/HEmAyKGu7dXZZa/VgR4Osuac2IVdXd8zVtf5D65338HHByAF15o7iES6Y6qwZzIsuocasC2k5U1h0ymcmw7mY4eETWXJqmJqbxcLrkKYlnB38NJPodZblEp9iVkoYfKdZaIiJra0j2J8vb69v4INrhAi3pXzM7trC0J4s03lduHHwZCtZGJS6RlqteZe2xgFF74YT9iw7zQLdyAL7bEy1Yvo3sqm3YnL96HQIMzpgzvKO//97eT6BJmQISPG0qMRvx2NFUWxpwxsrP8uqilNHFAFGZvOCFn70Rw996vxxHo6YRhMYGq/q5ERE1JJIUt25ckz6vW3tQakbD2w+5E7Kpp39zBg8CKFUoP1pdeUmN4RLqjejB3R9cQZOSXyCK/Igs1OsQTCyb2kbNrQlJWYbVilyJL65/LD+F8dhGcHezQxt8Ns+7rJp/H7KnBrVFYUoapSw/KPRm9I72xYEIfeT0RUUu1+2ymzOh3c7TDzdHa/fBqXiURtfBKjSY42FVZJEpOBiIjgT59gHbt1BskkY7YlIuPclRNYmIiwsPDkZCQgLAw7X66JSKq6pVlB/H1H+dwT48wvDemK7RKbKfp9uqvyCkqw8/PDkRsmKH6BUYjkJ3NIsFUb4lW+v6ty2xWIiKqTuwbXnHgvDy/u7u295mJJLauFS0b9yXUkARhZ8dAjqgeGMwREbUAG49dRHZhKQI8nGSnHK3rXhHM7U2oKBBfVAR88w1QUqLuwIh0iMEcEVELsLwi8eGubiGy5JPWdWtlnpmrCOa++w4YOxa4/np1B0akQwzmiIh0TszIrTtyUZ6P1PgSq1nXMCWYE+0Ys/NLgP/8R/nCqFHqDoxIhxjMERHp3OqD5+WeufaB7ogJ9oQe+Lo7oZWPqzyPX7pKad3l6go89pjaQyPSHQZzREQ6J2ptCnd3D6tWyknrulXsm3P/9CPlgfHjmfhA1AAM5oiIdEzU4hTtu8z75fREZLSGZV1A1PYNygPPP6/2kIh0icEcEZGO/bw/Wd72jfJBiJc223fVplOIJx7Y/wtsRbnToUOB6Gi1h0SkS6p3gCAiomvbLydU7YKjFzEhnsjIUJaI8yY8Dne1B0SkU5yZIyLSqcTMAuxPzIbYJndLpyDojaezA958dAZunvhf7O82SO3hEOkWgzkiIp1ac+iCvO0T6WPpZ603nUM9ccI/AodSC9QeCpFuMZgjItKpVRVLrLfGBkN3UlKA1FR0ClH6sh5OzlF7RES6xWCOiEiHzmcXYs85pXvC8M76W2LFm28CYWEY9us38u7h5Gy1R0SkWwzmiIh0vMTaK8IbgZ7O0JXCQmD+fNmH1b9XV/nQ6bR8FJSUqT0yIl1iMEdEpEOrDyrB3Ag9LrF+/z2QlQVERsJr5O1yv5+oTnLkfK7aIyPSJQZzREQ6czG3CLvOZuh3ifXTT5XbJ58E7OxkvTkhjkutRA3CYI6ISGd+OZwiZ7JEB4VQnRUKlj1Yd+wAHByACRPkQ+ZgjkkQRA3DYI6ISKeFgm/V46zcl18qt3fdBQQGylNzRushzswRNQiDOSIiHUnPK8aO0+nyfERnne2XMxqV/XLCo49aHo4JVmbmTqTkwWgqV2t0RLrFYI6ISEd+jUuBiHdEsd1Wvq7QFTs7ZZl19mzg5pstD4f7uMLZwRbFZSacy2DxYKL6YjBHRKTDQsG6m5UzCwgAnn1WCewq2NnaoF2Ahzw/doEZrUT1xWCOiEgnMvNLsO2UeYlVZ/vlRMbGFbQPVIK54ykM5ojqi8EcEZFOrD2SIveUdQzyQGt/d+jKzJnA4MHAL7/U+OUOQcrvc4zBHFG9MZgjItJbFqveCgWbTMAXXwCbNys9Wa80M8dlVqJ6YzBHRKQD2YWl2HIyTZ7fGquzJVYRxJ0+DXh4APfcU+MlHYKUYO5MWj6Ky4zNPECydhlff42TN96Eo1264syY+1B44MCVr1+wAKeGj8DRrt1w4oYhSJk5E6biYqiFwRwRkQ6sP5KCUmM52gW4o21FsoDuass98ADg5lbjJUGezvBwtkeZqVwGdETNJWfVKlx88y34TZqEqKVL4NyhA8499jjK0pX9qZfK/nkFLr73vry+9cqVCJ4xAzmrViP1/VlQC4M5IiIdWKXXXqzZ2cCPPyrnEyfWepmNjQ06VCy1MqOVrlVubi5ycnIsR/EVZs3S5y+A1+jR8LpnFJzatkXQ9GmwdXZG1pKlNV5fuHcvXHr0gOGO2+EYFgr3gQPgedttKDx4EGphMEdEpHG5RaXYfCJVn0us330HFBYCMTFAnz5XvLR9xVIrM1rpWsXExMBgMFiOmSIBpwblJSUoOnwYbv37WR6zsbWFW79+KNy3r8bvceneXX6PeSm2JCEBeZs3w/3666EWe9V+MhER1cmGoxdRUmZCaz83y+yVbsyfXzkrZ2NzxUsrZ+bymmNk1ILFxcUhNDTUct/JyanG68oys2RnEjtf32qP2/n5ovjMmRq/R8zIGTMzET/2IaXkTlkZvO6/D35PPQm1MJgjItK41ZYl1iC5HKkb4o1u0iTAYADGjr3q5eaM1hMXOTNH18bDwwOenkqbuMaW/8dOpM2Zg6B//RMuXbqi5NxZpLwxE6kffwz/Z56BGhjMERFpWEFJGTYev6jPrg8i8HzoIeWog/aBSq050dJL/N6ujnyLoqZl7+0lu5EYL0l2MKalw97Pr8bvSf3wQxjuvBPeo0fL+84d2qO8sBDn//Vv+D31lFymbW7cM0dEpGEbj6WiqNSEcB8XdAppmpkGrfB1d4Kvm6Oc0DudyoxWano2jo5w7tQJ+dt3WB4rN5mQv2MHXLp1q/F7ROBmY3vJDLmtXZ06nTQVBnNERDroxXpr52B9LbGKzeHvvgskJdXr29pUdLY4lcp9c9Q8fB95GFk//ICsZctRfOoULkybDlNhIbxG3S2/njxliixFYuY+ZAgyv/0O2StXoiQxEXlbt8rZOvchN8CmSs/h5sQ5bCIijSoqNcrkB12WJJk7F5g9G9i7F/j66zp/W5sAN+yMz8CpiwzmqHl43noryjIykTr7QxhT0+AUHY1Wn8+xLLOWJp8XKa6W6/2efkpuIUj94EOUpaTAzscHHkNugP9f/6ra78BgjohIozYdT0VBiREhBmd0DTNAN0pLlZIkwrhxDZyZ4zIrNR+fh8bKoyYRixZWu29jbw//ZyfJQyu4zEpEpPFerGJWTldLrGvXAqmpQEAAMHRovb6Vy6xE9cdgjohIg0R/0nVHLuqzUPBXX1W277K3b1AwdzotH0aTOpvJifSGwRwRkQZtOZGGvOIyBHo6oXu4N3QjNxdYvlw5r0NtuUuFervA0d5WFklOyixs/PERtUAM5oiItNyLtXMwbC8tg6Bly5Yp7bvatwd69ar3t9vZ2shOFwKXWonqhsEcEZHGiFmptXHmYE5nS6yiFImzs1IouIH7/LhvjkiH2awLt8fjs02nkZpXjOhgT0y/sxO6hXvVeO23O89h6Z5EHLugtHuJDTPg77d0rHb9C9/vx5I9idW+7/r2/lg48cpNnomItGDbqTTkFJXBz90JvSJ9oCtTpyotvIzGBj9FG3/zzBwzWol0Ecz9vD8ZM1YcwYy7O6N7uBe+3HoG47/4AxtevEG+kF1qx+l03Nk1BD3u9IaTvR0+3XQK4774A2v/NhhBBmfLdYPb++Od0V0s951UKuRHRNTQXqzDOwfKZUfducaemG0CODNHpKtl1rlbzuD+PuEY0ysc7QI98PrIWLg42uH7PxNqvP6D+7tjXL9IdAoxoG2AO966p4vsnrH1ZFq168QG2gAPZ8thcHWodQzFxcXIycmxHLliAy8RkQrKjCb8WrHEKro+6MqpU43yNJaMVgZzRNoP5sS+kENJ2RjQtrKZrdjoK+7vOZtVp+coLDWi1GiC1yXBmpjB6/naWtz47ka8suwgMvNLan2OmTNnwmAwWI6YmJhr+K2IiBrujzMZyCwohY+bI/pE6WiJNS4OaNsW6NfvmpZYhaiKBIi0vBJkFdT+2k1EGgjmMgtKZB2hS5dT/d2d5P65unhz9REEejpXCwgHd/DH+2O64evH+2LKiI7yxfGReTtrrVk0depUZGdnW4448aJERKRiL9ZhMYGwt1N98aT+teUCA4Fr3Nbi5mQvu14I3DdHpIM9c9fi440n8fP+8/juievg7FD54iH21Jl1DPJEdJAnrn/nNzlbVzXoM3NycpKHmVhqJSJqbuID5y+HL+ivF6vJVNl/VWSxNgKxby45u0jum+sZoaM6e0QqUPVjn7ero9zcm3bJLJyYlROzc1cyZ/MpfLLxFBY92kdmwF5JK19XuWQRn85PeESkXbviM+TSosHFAf3b+EI3tmwBzp1TEh9uv71RnjLSV1lqjU/j6zaRpoM5kaTQOdSAbVWSF0ymcmw7mY4eETWXJhFEBuvs9SexYGIfdAmr/Tqz89mFcklXJEIQEWm9F+vNMYFw0OMS6+jRSo25RhDh6ypvz6YXNMrzEbVkqi+zPjYwCi/8sB+xYV7oFm7AF1viUVBShtE9w+XXJy/eh0CDM6YM7yjvi9m4WWuP44P7uyHM2wUXc4vk426O9nKfRX5xGT5YfwLDOwfJ2b1zGQWYufqI/JR3ffvLl1iJiLRAfJBdfeiC/nqxFhUB33/f4PZdV0uCOMOZOSLtB3N3dA1BRn6JDNBSc4sRHeIpZ9z8PZRl1qSsQthUqSL+1Y6zKDGa8PTXe6o9z19uaoe/3dxeLtseOZ+DJbsTkVNUKmfjRBA3+eYOsi4dEZEW7TmXiYu5xfBwsq9xb69mrVoFZGcDYWHA4MGN9rQRFcusZ9PzUV5eXu19gIg0FswJD/ePlEdNFj/Zr9r9rS/feMXnEokQix7t26jjIyJqrl6sQ2MC9fXB87bblH6s+fmitlSjPW0rH1eIesn5JUa5j5rbZIg0HswREVkzZYn1vD57sYpKACNHNsme6lBvFyRkFCI+rYDBHNEV6GiHLRFRy7Q/MQvns4vg5mgn+0jTJRmtrERAdEUM5oiIVGZOfLgxOrBazUzNGz8e+Ne/gIsXm+TpWZ6EqG64zEpEpCKxud/c9eFWPS2xnj0LLFoEiMSEJ55okh/B8iREdcOZOSIiFR1KykFiZiFcHOxwQ4cA6MY33yi3Q4YomaxNgOVJiOqGwRwRkYrMiQ9DOvrDxVEnS6zl5cqsXCO276pJpF/lnjkxg0lENWMwR0SkgSXWEZ111It13z7gyBElk3XUqCb7MeHeSnmSgoryJERUMwZzREQqOXohF/HpBbIMx5COAfpr33XnnYDB0GQ/xlyeRBDlSYioZgzmiIhU7sU6uL0/3J10ko9mNFbul2vCJVYzlichujoGc0REKlmlx16sublK14fWrYHhw5v8x7E8CdHV6eSjIBFRy3IiJRcnL+bBwc4GN0UHQje8vIC5c0XbikZt31WXJAgiqhln5oiIVOzFOqidPzydHaA7zRDICZEVtea4Z46odgzmiIhUoMterH/+CezcqZQmaSYsT0J0dQzmiIia2anUPJnJam9rg5tjdLTEKlp39e0LvP9+s/1IlichujoGc0REzWxNReJD/7Z+8HJ1hC6I/qu//qqc3357s/1YUZ4k2KCUJ0nIKGy2n0ukJwzmiIiamS57sS5erJQl6d0b6NChWX90uI85mOO+OaKaMJgjImpGZ9PzcTg5B3a2NhjWKUh/hYKbobbcpVr5KEkQ5xjMEdWIwRwRkQpZrH2jfODjppMl1uPHlcQHOzvgvvua/cczmCO6MgZzREQqZLHeGqujXqxff63cDhsGBDZ/wkY4gzmiK2IwR0TUTMSerwOJ2TI7c7ie9stt2KDaEmvVmTnumSOqGTtAEBE1c+JD3yhf+Lk7QTc2bgR++w3o10/VYO5CThGKy4xwsrdTZRxEWsWZOSKi5s5i7aKjJVZB7JUbOhRwUwr4Njext9DV0U7WKk7KZHkSoksxmCMiagaJmQXYn5gNG7HEqpcsVlGKRBwqs7GxYRIE0RUwmCMiagarK7JY+0T6wN9DJ0usq1cDYWHA66+rPRJLEgT3zRFdjsEcEVEzWFmxxHqbnpZYRW25CxeA9HS1R8KZOaIrYDBHRNTEkrIKsS8hS1li1UsWa04O8NNPyvnYsWqPhsEc0RUwmCMiamKrK2blekf6IMDDGbqwdClQVAR07Aj06KGhYI4JEESXYjBHRNRMWay36alQ8KJFlbXlxJSiyqr2Zy0Xaa1EZMFgjoioCSVnFWLPOZ0tsSYmKnXlNLLEKoR5KzNzecVlyCooVXs4RJrCYI6IqAmtPqRksfaK8Eagp06WWL/5BrKo26BBQGQktMDZwQ6BnkoWMPfNEVXHDhBERM1RKFhPS6wjRgDnzwN9+0JLxL65lJxiGcx1DfdSezhEmsFgjoioiZzPLsTus5nyfERnHQVzsbHArFnQGlFrbld8JmfmiC7BZVYioiaypsoSa5BBJ0usGmbOaGXhYKLqGMwRETUR3S2xitZdzz0HrF8PmEzQmvCKJAjOzBFVx2COiKgJpOQU4U/zEmusTrJYN2wAPvoIuO8+oKwMWmNu6ZWYyVpzRFUxmCMiaqJCwSIhtEcrLwQblBppuqktJ4I5R0doTZi3i6Xci9HEWnNEZgzmiIiasBerbpZY8/OVrg/mQsEaJEq72NvaoMxUjou5RWoPh0gzGMwRETUyMXMksi5FoeDbu4RAF5YtUwK6Nm2A666DFtnZ2iDYS0kk4VIrUSUGc0REjWzlgcperLrJYv3qK02176pNmJeyby6JwRyRturMLdwej882nUZqXjGigz0x/c5O6FZLQchvd57D0j2JOHYhV96PDTPg77d0rHa96Ns3a+1xfLsrATmFpegV6Y0ZI2MR5efWbL8TEVmvnw8ky9s7uupkVk4UCF67VtNLrGahFfvmEjOZ0UqkmZm5n/cnY8aKI/jL0HZY+dxAxAR7YPwXfyAtr7jG63ecTsedXUPw7RPXYekzA+TG4nFf/IEL2ZX7Jz7ddBrztsXj9ZGdsXzSALg42GP8l3+gqNTYjL8ZEVmj+LR8HEjMlkuCI/TSi/XsWaB1a2V5tW1baJk5CYLLrNSYMr7+GidvvAlHu3TFmTH3ofDAgSteb8zJwYVXX8XxQYNwNLYLTt0yHHmbNsFqg7m5W87g/j7hGNMrHO0CPfD6yFi4ONrh+z8Tarz+g/u7Y1y/SHQKMaBtgDveuqeLzBjbejLNMiv35dYzeO7GthjWKUjO9L1/X1fZAubXuJRm/u2IyNqsqJiV69/GF37uSi9RzRNB3PHjwM8/Q+vCKmrNJWUxmKPGkbNqFS6++Rb8Jk1C1NIlcO7QAeceexxl6ek1Xl9eUoJzEx9FSVISwj74AK1Xr0bQa6/CPjAQVhnMlZSZcCgpGwPa+lUOyNZG3t9zNqtOz1FYakSp0QQvVwd5PyGjEKm5xdWe09PZQS7D7qmo+XSp4uJi5OTkWI7cXGUJl4iovn7ef15fS6xmYp+cX+XrplaFenFmjhpX+vwF8Bo9Gl73jIJT27YImj4Nts7OyFpSkd19iaylS2HMzkb4Rx/BtUcPOIaFwq1PHzh37AirDOYyC0pkraBLP736uzvJ/XN18ebqIzJd3Ry8peYVWZ6jrs85c+ZMGAwGyxETE9PA34iIrJnYy3ssJRcOdja4pZNOllgPHwaK9FPmw7zMKhIgTKw1R7XIzc2tNkkjJm1qm2UrOnwYbv37WR6zsbWFW79+KNy3r+bn3rABLt264cKrr+H4gIE4fccdSPv0M5SLDirWusx6LT7eeFJ+Cv5sXE84O9g1+HmmTp2K7OxsyxEXF9eo4yQi61piHdw+AAYXZbVA00TLrhEjgKAgYPdu6EGwwVnuRywxmmrdW00UExNTbZJGTNrUpCwzS7axs/P1rfa4nZ8vytKU7VuXKk1IRO4vv6DcZET4Z5/B7+mnkTFvHtI++RRWmc3q7eoo/6O89D9IMYN26czapeZsPoVPNp7C14/1lfvizPzdnS3PEeBZWRJA3I+pcl1VTk5O8jATUTwRUX2I/boioUu4o6tOCgVv3gwkJAAGA9CpE/TA3s4WQZ7Ocs9cQmZhtdd5IjMxKRMaGmq5X/U9/pqZTDL4C371VdjY2cGlcyeUplxE+pdfwP/ZSbC6mTlHe1t0DjVgW0XygiCmzbedTEePiJpLkwifbjqF2etPYsHEPugSVv26cB8X+Hs4yecwyy0qxb6ELPSI8G6i34SIrN2hpBzEpxfA2cEWQ6PV2wjdoPZdY8YAzvoJiszlSZgEQbXx8PCAp6en5agtmLP39gLs7GC8JNnBmJYO+1r2kNr7+8MxMkIGcmZObVrDmJoml22tcpn1sYFRsh7cj7sTcfJiLl5ZfggFJWUY3TNcfn3y4n14a81Ry/ViNu79X4/j7Xu7yL0ToqWLOPKLlabQNjY2mDggCrM3nMDauBQcvZCDyd/vR6CnE4bF6OQFloh0W1vupuhAuDlpooTnlRUUAD/+qIvacpcKsyRBsNYcXRsbR0c4d+qE/O07LI+Vm0zI37FD7ouriUuPHig9e05eZ1YSHy+DPPF8alD9FUdkfGXkl8givyILNTrEU864idk18ycvEaCZfbXjrNwr8fTXe6o9z19uaoe/3dxenj81uDUKS8owdelB5BSVonekNxZM6HNN++qIiGojVhRWmJdY9dK+a/lysacEiIwEBg6EnrDWHDUm30ceRvLLU+HcuTNcusQiY8FCmAoL4TXqbvn15ClTYB8QiIAXJsv73g/cj8yvv0bK62/A+6GxKDl7FmmfzYHPOPU+FKkezAkP94+UR00WP1mZYSJsffnGqz6fCP4mD+sgDyKiprbnXCaSs4vg7mSPGzr4Qxfmz1duH3lE1ISCnlhqzTGYo0bgeeutKMvIROrsD+VSqVN0NFp9PseyzFqafF6kuFqudwgORvjcz5Hy5pvIumukrC/nM24cfB9/zLqDOSIiPTMnPgzrFKiPFYCUFGD9euV8/HjoDVt6UWPzeWisPGoSsWjhZY+5du+OqMWLoRUM5oiIrkGZ0YSVBy/oq1CwqFQvSjBt3AhERUFvLLXmsgplFnHVrThE1ojBHBHRNdh2Kl2WV/J2dcDAKp1nNK9DB+XQIdGTW8RvRaUmpOeX6KdtGlET0ddGCSIijVm+N8kyK+dgp4OXVNHMWudEWatAD6WUCpMgiBjMERE1mCijtOawssQ6sntlgVJNe/55YPRoYO9e6FnVtl5E1o7BHBFRA4lalgUlRkT4uqJ7eO2FzjVVW27hQqW+XHY29KyyPAmTIIgYzBERNdCyiiXWkd1C9bEJv2ptueuvh55VZrRyZo6IwRwRUQOIIue/n0jT1xKrubbcww/rrrZcrbXm2NKLqG7ZrLd9+Hu9nlR8QJ07vjeCDPrp9UdEVB8rDiTDaCpHt3AvRPm5QfPOnQPWrdNtbblLhbKlF1H9grm48zl4fFBruDra1SlR6pNNp1BSVtmzjIiopWax3q2XWblFi5QX6MGDgdatoXdVW3qx1hxpWcrMN+v9PX5PPwU7L6/GrzP3xPWt61zLZ+7vp+s8ACIivTmVmof9idmws7XB7V2CoXkiiKvavqsFCKmYmRMJKFkFpfB2U6fBOdHVZCxcCJdu3WDj4IC6KNizR/Z8bfRg7veXhsC3Hv+hrJ08GIGeXGIlopbpp4pZucHt/eGrh4K1ZWXApEnA998D996LlkC0TfP3cJJ7F8XsHIM50rKwj2bD3te3Ttce69Gz3s9vW9eNpvWZwhafmMQnViKilkYs6S3bV5HFqpclVjEj8Ne/Atu2Ae7uaClYnoT0IPiNN2Dr4VHn64OmT69z4Gd2TelMt8zajGRmEhGRFdlzLhMJGYVwc7TDzdGBag/HqpmTIJjRSlrmdfdI2DrWfebYcMftsHVVsrWbJZgTn4bKjPpvDUNEVN/acsM7B8OlDklhqlu9Gpg3D8jLQ0vDWnOkZ+enT0dZZmajPJe+Cw0RETUjkaW/4sB5fWWxzpgBTJwI/Pe/aGnCODNHOpbzv59haqQPWdcUzPWO8oGzA+NBIrIO64+kyMzJQE8n9GtTvz0tqoiLU/bJ2dm1iNpytc3MsT8r6ZLIMm8kdS5NUpP5E/o02kCIiLTux92J8nZUjzB9JHl98YVye/vtQLAOSqjUU6gXu0AQCbZ1bSZdaqx7EeDfjl5EUamRf2EiajEu5hZh4/FUeX5vzzBoXnExsGCBcv7442iJzDNz2YWlyCsuU3s4RPXSYc9uOIaHo9mCuScX/YmcwtI6P+lz3+7FxZziaxkXEZGm/LRXad/Vo5UX2vjroLzHTz8B6elAaChwyy1oidyd7GFwUQqxsrICaZWxnvvijHn5TbPMKlZ1X/xhPxzt67Y/rriMs3JE1LJqy/2wO0Ge39uzcT5JN7m5c5XbCRMA+2vaUaNpoq6pmJkT++baB9a9lhdRcznepy/a/b65zrXjTg4ejKjly+o1a1en/8Lv6VG/JYW7uoXC3bnlvngQkXU5mJSN4yl5cLK3xe1ddbD3rLQUsLVVEh8efRQtvdbckfM5SOTMHGlVeTmyfvixzrXjykXHlnqqU8T17uiu9X5iIqKWlvgwvHMQPJ3r1l9R9Y4Pa9YAKSlAYMsubGzuAsGMVtIqh+BgZP3wQ52vt/fzg009Z9M5fUZEdAUimeunfcn6SXyoqoUHcgK7QJDWtd2wvsl/BovEERFdwfojF+WerBCDM/q38YPmHT8OJCldKqxBZa059mcl68VgjojoCn6sSHzQTW25KVOAVq0qEyBaOM7METGYIyKqVUpOETZV1Ja7Rw9LrBcuAD//DJhMQP/+sKaZuYu5xbLdGpE1qlMw13X6r8jIL5Hnf/9hP4szEpFVWLonCaZyoFeEN6L83KCLjg9GI9CvHxATA2vg6+Yo20qKzkjnszk7R9apTsGc6P6QV6QEcEv2JKKY3R2IyApqyy3edU6ej+mlg9pyIoj77DPl/OmnYS1sbGxkrTmBGa2kRYnPPWcpHJy1fDlMJcrkWGOqUzZrj1beeGLRn+gcapAFhKf9HAfnWgoIv8MyJkTUAmw/nY749ALZZUAXteVWrgQSEgBRmHT0aFgTsW/udGo+982RJuVu3ITAggLYubvj/D9egfugQbCtYwHhRg3mZt3XDV9sOYNzGfkQ239zi0pRbMftdkTUcn23U0l8uKtbCFwddVDF6ZNPKjs+ODvDmlhqzTGYIw1yiopC6vuz4Nq3rywgnLN6DWzda9624TVyZIN+Rp1eofw9nPDyiI7yfOBbGzBrTDd4uzk26AcSEWmd2CO85tAFef5An1bQvMxMYMsW5fzJJ2FtQgxcZiXtCpo2DSlvvYm8TZvEvgCkfvCBvL2MjU3TBnNVbZlyY4N+EBGRXizdk4gSowmdQz3l9hLN8/YGEhOBDRuAtm1hbSy15jgzRxrk2qM7ohYvludHomPQZs3qOvdpbdRgbt7WM3V+wgkDoq5lPEREqic+fLdLWWK9v7cOZuXMDAbg7rthjVhrjvSi7bq1sPPxafTnrVMwJ/bLXboEUVhqtPQozCkqhYuDHXzdHRnMEZGu7T6biZMX8+Rrmtgvp3k5OYCnJ6yZeWbufFYRTKZy2OqhuDNZjaJjx6rdN4ouLbVw7tCh6YK5qkurP+1LwqLtZ/HWvV3Qxt9dPnYqNQ9TlxzEg3119CmWiKgG3+xUypHc3iUYHhUfWDXt1luBoiJgzhygRw9YoyBPZ9mdQyyNp+YVI9DTuhJASNvOjLxb2SMniiHWtFeuiui4w82zZ+69X4/j47E9LIGcIM7/eXsMnv56N0Z2D23QQIiI1CZ6sK46eF6eP6CHD6cHDwJbtwJ2dkBQEKyVvZ2tDOjEMmtiZiGDOdLc0qpZ0ZEjSHn7HfhOnAiX7t3kY4V79yFj3jwE/P3FBv+MegdzF3OLYBQl0S9hLC9HWl5xgwdCRKQ2sfJQVGpCh0APdA/3gm7KkYi9ciE6WBJu4n1zIpgTR88Ib7WHQ2ThEFo5yZX4178h6JV/wH3w4GpLqw7BQUj94EN4DB2Khqh3sbgBbfzwj2UHcSgp2/LYwcRs/N/ygxjY1q9BgyAi0kLiw7cVteXu7xMuOwtoWm4usGiR1XV8uGpGK8uTkIYVHz8Oh7DL+zyLx4pPnWq+mbm37+2CF37Yjzs+2gIHWyUWLDOZcH17f7x5T5cGD4SISE17zmXhyPkcONnb4m49bBdZuBAQLYLEhukhQ2DtKjNaC9QeClGtHNu0RvqcOQh+7TXYOCr1estLSuRj4mvNFsz5ujth/oQ+OJ2aJzO+xKfXNv5uaF1lD119LNwej882nZabVqODPTH9zk7oVsvyxvGUXLz/63EcTMqWU+lin96jA6tnz85aexwfrD9R7bHW/m7Y8MINDRofEVmHRdvj5e0dXUPg5arxougmE/Dhh8r5c89ddVO1NeDMHOlB8LRpSHj6GZy4YQicOrSXjxUfOy7/Gw7/5OMGP2+De9SI4C3KT2lH0dDliJ/3J2PGiiOYcXdnuT/ly61nMP6LP7DhxRvg5+502fWFJUa08nXFrV2C8dqKuFqft32gO756rK/lvn3FDCIRUU3Eft9VB5WOD+P7RUDzRHFgUd5AlCQZP17t0WhqZi45q0jtoRDVyqVLF7Rd+yuyf16BktOn5WOeI0bAcPvtsHV1bd5gbvGuc7L2XHyaMp0d6eeKiQOicH89297M3XJG7k0Z0ytc3n99ZCw2HL2I7/9MwDM3XF7FvGu4lzyEt1YfrfV57WxtEeBR92ym4uJieZjlir0oRGQ1Fu9KkGUtxOtLlzAdJD6IZdX//Q84fx7w8FB7NJoQUqVwsNj/qPk9j2S1bF1d4X3fmEZ9znoHc+//ekwGYQ/3j0SPVkrG0J5zmXKmLDmrEJOH1a3gXUmZSSZRPHNDG8tjotDjgLZ+2HM2C9ciPi0ffV5fBycHWznGl4Z3tHxqq8nMmTMxffr0a/qZRKRPIjv/mz+U2nLjr9PBrJwgSpHccYfao9AU82t8XnEZcgrLYHDVQY1Asjppn82BvZ8vvO65p9rjWUuWoCwjA36PP96g5633+uNXf5zDzFGxmDK8I26OCZSHOH9jVCwW7Thb5+fJLCiRL6KXLqf6uzvJ/XMN1a2VF94d3RULJvbBjJGxSMgowJhPt8v/wGszdepUZGdnW464uNqXcImoZVl/JEXO5ni7OuC2LsHQPFF4lC7j4mgHXzdlr2MikyBIo7IWL4Zj1OWJDk5t2yLrO6V/a7MEc6VGU43LELGhBpTVUH+uuQ3pECBfkEUyxeD2/pg3oQ9yCkux8kByrd/j5OQET09Py+HBZQsiq2H+EDqmdzicHeygadnZQPv2wLRpYn+I2qPRHCZBkNaVpaXBPsD/ssdFv9ay1NTmC+ZGdQ/FVzXMwH278xxGdqt7Or+3q6Nsv3JpoWExKydm5xqLwcUBUf5uiE/nJzUiqk5k5f9+Ik0mgz7UVwdLrPPmASdPAj/8AFSUNaCaypMwmCNtsg8OQuGePZc9Lh6zDwho+PM25Ju+35WA30+konu4smduX0KW3C83qkdotSxTUTqkNo72tugcasC2k2m4pZPShkY0SN52Mh3j+zfei2p+cRnOphfg7u6NFyASUcvw1Q5lr9yNHQIQ7tPwTLJmYTQCs2cr588/z3IkVwrmODNHGuU9ejRS3piJ8tIyuF2nVN3I37EDF995Fz4TJjRfMHcsJRedQj3l+dmMfGVwbg7yEF8zs8HVX2geGxglCxDHhnmhW7gBX2yJR0FJGUb3VLJbJy/eh0CDs9yTZ06aOHEx17Lcm5JThMPJ2XBztEdkRZmU11fG4aboQPkftWg9NmvtCTkDeGdX6251Q0TVideaH3YrHR/G6aEcyerVgChl4OUFPPSQ2qPR9jIrZ+ZIo3wefRTGrCxcePVVlJeWysdsnJzg+9ij8HvyieYL5r57oh8aiyjOmZFfIgv9puYWIzrEUyYu+Hs4Wf6DrJpeLoK32z7cYrk/Z/NpefSN8sHiJ5Vxnc8uwvPf7kVWQSl83BzRK9Iby57pL4sdExGZ/bQvGblFZYjwdcX17S7fw6I5//mPcvvYY4Cb8uGVquMyK2mdiGkCXnwRfk8/jeLTp2Ug5xgZCdtr3DbR4KLBjUWUOBFHTcwBmplYBol/87YrPt9HD/Zo1PERUcsj6pDN23pGno+7LkKWRdK0ffuA9euVkiTPPqv2aDSLCRCkF7ZubnCJjW2852u0ZyIi0oktJ9NwPCUPbo52MotV8957T7kdMwaI0MGSsErCvJR9j+n5JbJjEJG1UH1mjoiouYkONsLoXuHwdNZBcdmpU0UNJeCZZ9QeiaZ5utjLAD2/xIjk7EK0aWDPcCK94cwcEVmVkxdzsfFYqkwGnTCg5i0emhMTA8ydC/TgNpKr7UfiUitZIwZzRGRVvtwaL2+HRgciwpeJBC0NkyDIGjGYIyKrkZlfgqV7EuX5owOjoHkffACMGwccOqT2SHSDM3Nkjbhnjoisxjc7z6Go1IROIZ6ypJGmlZQA77wDJCUBQ4YAnTurPSJdCK1IguDMHFkTzswRkVUQRccXbo+3zMpVrWGpSd9/rwRyQUHA2LFqj0Y3ODNH1ojBHBFZhVUHzyMlp1gWJb+9i8Y7wpSXA+++W9m6S2SyUp1wzxw1RMbXX+PkjTfhaJeuODPmPhQeOFCn78teuRJHOkYjYZK69R8ZzBGRVRQJ/mzzaXk+/roI2Rta09auBfbvVzo9PPmk2qPRlbCKmbkLOUUoM5rUHg7pQM6qVbj45lvwmzQJUUuXwLlDB5x77HGUpadf8ftKEpNw8e134NKrJ9Sm8Vc0IqJrt/lEGo6cz4Gro50++rC+8UZl6y4fje/t0xh/dyc42tnCaCqXAR3R1aTPXwCv0aPhdc8oOLVti6Dp02Dr7IysJUtr/Z5yoxHJf/87/J97Fo5h6hceZzBHRC3epxtPydv7e7eCl+u19UBsclu3Aps2AQ4OwIsvqj0a3RGt2YK9nOU5981Zr9zcXOTk5FiO4uLiGq8rLylB0eHDcOtf2T7UxtYWbv36oVC00atF2n8/hp2vD7zuvRdawGCOiFq0/QlZ2H46Hfa2NnhskA7KkYh+jW++qQRyYWFqj0aXuG+OYmJiYDAYLMfMmTNrvK4sMwswGmHn61vtcTs/X5SlpdX4PQW7dyNryRIEv/YatIKlSYioRft0kzIrd2e3EIRUvMlrmqcnMGWK2qPQNfP/z8kM5qxWXFwcQkNDLfedGimJyJiXj+SXpiD4tVdh7+0NrWAwR0Qt1qnUPKw5fEGePzW4jdrDoWbCmTny8PCAp/hgdBX23l6AnR2MlyQ7GNPSYe/nd9n1pQnnUJqUhISnq/RJNimJNkc6dUab1avg2KoVmhuXWYmoxfp882lZ5WNodADaB3pA044eBfr2BZYvV3skLabWXCL3zNFV2Dg6wrlTJ+Rv32F5rNxkQv6OHXDp1u2y6x1bt0bU/35C1LKllsP9xhvh2revPHcQdSFVwJk5ImqRLuYUYemeJP3Myol9cjt3AgsWACNHqj0aXQvjzBzVg+8jDyP55alw7twZLl1ikbFgIUyFhfAadbf8evKUKbAPCETAC5Nh6+QE5/btq32/nYfyQfHSx5sTgzkiapG+2HoGJUYTekV4o1ekxst7xMcDX32lnP/jH2qPpsXMzIk9c6LGoOa7fZCqPG+9FWUZmUid/SGMqWlwio5Gq8/nWJZZS5PPixRXtYd5RQzmiKjFycgvwaLtZ+X50zfoYFbu7bdlRh1uvhno3Vvt0ehesMEFIn4TfXjT80vg584OGnRlPg+NlUdNIhYtvOL3hrxZc6Zsc9J2qElE1ABfbjmDghIjOoV44saOAdC0c+eAL75Qzjkr1yhEh48ADyWAY605sgYM5oioRckuKMX8bfHy/Pmb2ml/iU10eygpAYYMAW64Qe3RtBjMaCVrwmCOiFqUL7eeQV5xGToGeeDm6EBoWkJC5azc9Olqj6ZFCfV2lbecmSNrwD1zRNRi5BSVymBOeO7GdrK1k6aJDg8//gisWwcMGqT2aFoUzsyRNWEwR0QtxoKt8cgtKkO7AHeM6KxOvad6EUvAd92lHNSoWGuOrAmXWYmoRRBLq3O3KLNyz97YVvuzcqWlao+gRQv1cpa3bOlF1oDBHBG1CAu3xyO7sBSt/dxwe5cQaNrx40B4OPDOO5AtKqjRhXpV7JljMEdWgMEcEbWIvXJzNp+2zMrZaX1W7tVXgZQUYPNmZamVmmyZVQT4YtaWqCVjMEdEujf39zPIKihF2wB33NUtFJp25Ajw7bfKOTNYm4y7kz0MLg7ynBmt1NIxmCMi3Xd7+OJ3ZVZu8s3ttT8rJwoDm0xK/9UePdQejZVktBaoPRSiJsVgjoh07ZONJ5FfYkTnUE8M76TxDNbt24HlywFbW6VYMDXLUitn5qilYzBHRLp1IbsICyp6sL4wrIO2M1hFosOUKcr5hAlAdLTaI7KamblEJkFQC8dgjoh0a/aGEygpM6F3pDduaO8PTTtwANi6FXB2BqZNU3s0ViGMM3NkJVg0mIh06Vx6ARbvSpDnLw7roP0erF27KgHdnj1K5wdqcuwCQdaCwRwR6dKsdcdRZirH9e390be1L3ShUyfloGbBPXNkLbjMSkS6cygpG8v2Jsnzvw/rAE0rKgKOHVN7FFY9M3cxtxjFZUa1h0PUZBjMEZGulJeXY8bKOHk+slsIYsMM0LTZs5XZuH/9S+2RWB0fN0c4Oyhvc+ezitQeDlGTYTBHRLqy4ehF7DidAUd7W7x4i8Zn5USXh9deA4xGoHVrtUdjdcQ+ypCK2Tn2aKWWjMEcEelGmdGEmauPyvOJA6IQ5q3039QsMRuXmwv07AmMH6/2aKwSy5OQNWAwR0S6sfjPBJy8mAdvVwc8M6QNNE1krs6dq5zPmqUUCqZmx/IkZA346kJEuiCapc9ae1ye/3Voe3g6K303NVsgePJkpW3X6NHAoEFqj8hqsTwJWQPVS5Ms3B6PzzadRmpeMaKDPTH9zk7oFu5V47XHU3Lx/q/HcTApW/6H+c/bY/DowKhrek4i0ofPNp1CWl4Jovzc8GDfVtC0n38G1q8HnJyAt95SezRWjeVJyBqoOjP38/5kzFhxBH8Z2g4rnxuImGAPjP/iD6TlFdd4fWGJEa18XTFlREf4ezg1ynMSkfYlZBRgzubT8nzK8I5wsNP4okJ2NmAwKLNzUZd/4KTmE+ql7KvkzBy1ZKq+Is7dcgb39wnHmF7haBfogddHxsLF0Q7f/6lUdb9U13Av/OPWaNzZNQSOtbyY1/c5iUj7RCmS4jIT+rfxxS2dAqF548YBJ08CU6eqPRKrZ56ZO59dCJOpXO3hELWsYE70UxSFPwe09ascjK2NvL/nbFazPmdxcTFycnIsR67IPiMiTfj9RCp+OZwCO1sbTLuzk/bbdpn5+QEeHmqPwuoFejjJfzulxnJZPJioJVItmMssKIHRVA4/9+rLpf7uTnKvW3M+58yZM2EwGCxHTExMg34+ETUu8QFt2v8Oy/Px/SLQPlDjwdGLLwIrV6o9CqrC3s4WQZ7O8jwpq0Dt4RA1CY1vPGkeU6dORXZ2tuWIi1OqyxORuhZsi8ep1Hz4ujnKDFZNW7cOeO894M47gVOn1B4N1VRrjkkQ1EKpls3q7eoop74vTUwQM2hiJq05n9PJyUkeZmKplYjUdTG3CB+sP2FJejC4aLgUSXExMGmSci5u22i8Bp417puLZxIEtVyqzcyJVjydQw3YdjLN8pjYnLrtZDp6RHhp5jmJSB1vrT4ma8t1DTPg3p5h0DRRFPj4cSAwEHj1VbVHQ7XMzLGlF7VUqtaZe2xgFF74YT9iw7zQLdyAL7bEo6CkDKN7hsuvT168D4EGZ/mp3Lx/5sRFJTmh1GhCSk4RDidnw83RHpF+bnV6TiLSvu2n0rFkT6I8F0kPIpFJs86dU/qvCu+8A3jxg6PWsNYctXSqBnN3dA1BRn6JrOqemluM6BBPLJjYx1JDTkyJV81cE8HbbR9usdwXdafE0TfKB4uf7Fen5yQibSsqNeKVZQfl+di+rdC9lTc03elBLKsWFChdHh56SO0RUQ3YBYJaOtU7QDzcP1IeNTEHaGbhPq6If/O2a3pOItK2jzeewum0fPkB7KWKWXnN2roVWLECcHAAPv0U0EvZFCuemSsvL9dPeRsivQRzRERmJy/m4ZONJ+X5tDs6aTvpQRg4EPjpJ+DsWYAljTQ/M5dfYkR2YSm8XB3VHhJRo2IwR0SaIJKV/rHsoCzuOqSDP26NDYIuiFIkpGnODnbwc3eUvX1FeRIGc9TSsM4cEWnCD7sTsPNMBlwc7PDqXZ21vRS2dy9w4YLao6B64L45askYzBGR6kRy0+srj8jzyTe3l/tjNUskO9x7LxAdDWzbpvZoqI6Y0UotGYM5IlKV2JD+j6UHkVNUhthQAyYM0Hjy0j//CZw+Dbi7A7Gxao+G6ogzc9SSMZgjIlUt3ZOE9UcvwtHOFu+O7ip7aWrW5s1KgWDhs88AD433iiWLEHMwx5k5aoE0/KpJRC3dhewiTPv5sDz/y9B26BCk4eAoNxd45BGlttyjjwK33qr2iKgeODNHLRmDOSJSbXl16tIDyC1SWnY9eX1raNrf/w6cOQNERADvv6/2aKiBe+bY0otaIgZzRKSKH3cn4rdjqfpYXl2/XllWFebNAzw91R4R1VOYl5JUk55fgsISo9rDIWpUrDNHRM0uMbMAr/4cJ88nD2uPdoEaXl4VrrsOePZZwM4OGDJE7dFQA3i62MPdyR55xWVyqbVtgLvaQyJqNAzmiKhZlRlN+NvifcgtLkOPVl54fJDGl1cFNzdg9mxlvxzpkqhbKPbNHUvJZTBHLY6G1zWIqKX2Xt0VnylnST64vzvsbDVcHHj/fsBYZUlOy4WM6apYa45aKgZzRNRsdp/NxAfrT8jz10Z20nZx4GPHgP79gaFDgawstUdDjZrRWqD2UIgaFYM5ImoWuUWl+OvivTCaynFXtxDc3T0MmlVcDDzwgNLtwdaW9eRaiLCKmbmEDM7MUcvCYI6ImsW/fzos30TFG+prIztD06ZOVfqv+voCixYpiQ+kexG+bvL2bHq+2kMhalQM5oioyX2/KwFL9yZBbI/7z33d4OnsAM1ataqyy4MoQxISovaIqJFE+CrL+mczuMxKLQuDOSJqUnHJOfjnT4fk+eSb26NXpA806+xZYNw45VyUIrnjDrVHRE0QzGUVlCK7oFTt4RA1GgZzRNRkcopK8czXu1FcZsINHfzxzA1toWmiXVdGBtCrF/DOO2qPhhqZq6M9/D2c5PnZDC61UsvBYI6Imqxd10s/HEB8eoHMIpw1phtstVyGRPjwQ6VA8A8/AM7Oao+GmkBERQa1+HdJ1FIwmCOiJvHl1nisOXwBDnY2+OjB7vB2c4TmxcYC27YBkZFqj4SaOAniHJMgqAVhMEdEje6P0+mYueqIPP+/22LQvZU3NOvgQSWAM2NhYOtIguDMHLUgDOaIqFElZBTg6a/3oMxUjju6hmB8vwhoVno6MHIkMHgwsHy52qOhZsBgjloiBnNE1Gjyi8vw+MI/kZFfgs6hnnj7ni6yJ6YmlZYC994LnD4NhIcDgwapPSJqzlpzTICgFoTBHBE1CpOpHC/+sB9HL+TCz90Jc8b1goujhovt/uUvwMaNgLs78PPPSoFgspoEiJScYhSWVOm7S6RjDOaIqFHM3nASqw8pCQ+fPtQDIRV9MDXp44+BTz5R9sd98w3QqZPaI6Jm4uXqAE9ne3l+jsWDqYVgMEdE12zFgWTMWndcnr8+MlbbhYE3bACef145f+MNFga2MmLZn2296FIZX3+NkzfehKNduuLMmPtQeOAAapP5/feIH/sQjvXpK4+zEyZc8frmwGCOiK7JzjMZmLx4vzyfOCAKY3qHQ9N++gkwGoGxY4EpU9QeDamASRBUVc6qVbj45lvwmzQJUUuXwLlDB5x77HGUiQSpGhTs3AXP225FxIL5iPzuWzgEBePco4+hNCUFamEwR0QNdvJinkx4KDGacEunQLxyWzQ07z//AebMAT7/nGVIYO09Wjkz11Ll5uYiJyfHchQXF9d6bfr8BfAaPRpe94yCU9u2CJo+DbbOzshasrTG60PffQc+Dz4I5+hoOLVujeAZr4lNw8jfvh1qYTBHRA2SmluMR+btRHZhKbq38sIH93eHnVY7POTnK7NxggjgHn8ccNHwnj5qUpXLrJyZa6liYmJgMBgsx8yZM2u8rrykBEWHD8Otfz/LYza2tnDr1w+F+/bV6WeZCotQXlYGO4MBalF2gRIR1bMEyaMLdiExsxCRvq6YO74XnB3stFuC5O67ATc34OuvAVdlVoasV2RFMHcmjTNzLVVcXBxCQ0Mt952clJ68lyrLzJIf9OwuyWa38/NF8ZkzdfpZF997F/YBAXDr3x9qYTBHRPVSVGrEE4v+xIHEbPi4OWL+hD7wda/5hVJ1JpMyC7d2rRLEnTwJdOmi9qhIZVF+SjCXlFUo/z1r9oMINZiHhwc8PT2b/OekzfkcOatWI2LhAtjWEjA2By6zElGdlRlNeP7bvdh6Mh1ujnb48pHeiKx4Y9Sc8nLgb38DFiwA7OyA779nIEeSn7sjPJzt5T+ReGa0WjV7by/5+mC8JNnBmJYOez+/K35v+hdfIv3zz9Fq7lyZNKEmBnNEVOeiwC8tOYBf41LgaG+Lzx/uhW7hXtCsf/8b+PBD5XzePOC229QeEWmoPEkbf3d5fjqVwZw1s3F0hHOnTsjfvsPyWLlIZtixAy7dutX6felz5yLtk0/Q6vM5cIntDLUxmCOiqyovL8erK+KwdE+STHL474M90L/NlT+1quq994DXXlPO//tfYNw4tUdEGtPaX5lRPp2ap/ZQSGW+jzyMrB9+QNay5Sg+dQoXpk2HqbAQXqPull9PnjIFF99733J92uefI/WDDxH8+utwCA1FWWqqPEwi0Uol3DNHRFcN5N5cfRTzt8XLRND3RnfFzTGB0KwLF4Bp0yqLAj/zjNojIg3izByZed56K8oyMpE6+0MYU9PgFB0tZ9zMy6ylyedFiqvl+qxvv0N5aSmSREvAKkSdOv/nnoUaGMwR0RUDuTdWHcHnvytZXa/d1Rkju1dmiGlSUBDw66/AunXA1Klqj4Y0qnXFXs9TnJkjAD4PjZVHTSIWLax2v+2G9dAaBnNEVGsg9/rKI5i7pSKQG9kZD10XAc3KyAB8KtqI9eunHES1aBNQOTMn/q2LfXREesU9c0R0GfHmNqNKIDdjZGeM03IgJ/bFtW8P7FfaihHVpQuEqHGdW1yG1LzauwMQ6QGDOSKqxmgqx/8tP4QvKgK5N+6O1faM3OzZwLPPAqK0wPLlao+GdMLJ3g5h3koBae6bI71jMEdEFiVlJvzlu734+o9zMtlh5qhYPNi3FTTrnXeA559Xzl9+GfjXv9QeEelIm4qMVu6bI73TxJ65hdvj8dmm03KqOzrYE9Pv7HTF+lUrD5zHe2uPyVZCUb5ueHlERwzpGGD5+gvf78eSPYnVvuf69v5YOLFPk/4eRHpWUFKGp77ag83HU+FgZ4NZ93XD7V1CoEmi2utLLwHvvqvcf+UVpRQJ9z1RPbT2d8dvx1I5M0e6p3ow9/P+ZMxYcQQz7u6M7uFe+HLrGYz/4g9sePEG+NXQImj32Qw8/91evHRLB9wUHYCf9iXL1kIrnhuEDkEelusGt/fHO6Mrq707iQrwRFSjrIISTJy/C3vOZcHFwQ6fjusp/xvSpLIy4LHHlM4OggjoXnhB7VGRDrHWHLUUqi+zig3W9/cJx5he4WgX6IHXR8bCxdEO3/+ZUOP1X26Nl28yTw5ug7YBHnhhWAd0CjFgwfb4ateJCvUBHs6Ww+DqUOsYiouLkZOTYzlyc3Mb/fck0qqEjAKM+Wy7DOQMLg74+vG+2g3kBKMRSEhQWnTNn89AjhqstV9FRmsaZ+ZI32zV3p9zKCkbA9pWVpK3tbWR9/eczarxe/aezax2vXkJdc/ZzGqP7Tidjp6vrcWN727EK8sOIjO/pNZxzJw5EwaDwXLExMRc8+9GpAd7z2Xi7o+34nhKHgI9nfD9k/3Qo5U3NE00sxaJDr/8Ajz8sNqjIR1rE+Bm+UBTXGZUezhE+gzmMgtKZObcpcup/u5OtaaKi8dFk+Tq1zsircr1gzv44/0x3eQMw5QRHfHHmQw8Mm+n/Fk1mTp1KrKzsy1HXFxco/x+RFq26uB53D9nB9LyShAT7InlkwZU26qgKceOKXvixF45wcMDuOkmtUdFOifeazyd7SHeGs5wdo50TPU9c03hzq6Vm7Y7BnkiOsgT17/zm5ytu3RWT3BycpKHmVhqJWqpRA25Tzadwttrjsn7N3UMwIcPdIebk0ZfDjZsAO65B8jKAoKDlf1yRI1AFAoWH2B2xWfi2IVc+X5BpEeqzsx5uzrKpt1VZ9XMs2/iE1NNxONiJqH69SU1JkuYtfJ1hY+bI+LT+cmLrFthiRF/W7zPEsg90j8Sc8b30m4gN3cucMstSiDXvz9w111qj4hamPaBymy0COaI9ErVYE4kKXQONWDbyTTLYyZTObadTEePiJpLk3SP8K52vbDlRCp6RNS+z+d8dqFc0hWJEETW6lx6AUZ9sg3L9yXLD1GiBNC0OzvJc80pLQVEE+vHH1eyVx98EFi/HvDXcGIG6ZJ5a8HxFAZzpF+qfxx/bGAUXvhhP2LDvNAt3IAvtsTLeleje4bLr09evA+BBmdMGd5R3p84IBL3fbYDn28+LWvLidImB5OyMXOUUoYkv7gMH6w/geGdg+Qs3rmMAsxcfQSRvm64vv3lS6xE1mDjsYv4y3f7kF1YKvecfvRgD1zX2headP48MGYMsGWLcn/aNKUYMGvIUVPOzDGYIx1TPZi7o2sIMvJLMGvtcaTmFiM6xBMLJvaBv4eybJqUVVitAXLPCB98cH93vPfrMbzzyzFE+rlizrhelk9XYpbhyPkcLNmdiJyiUjkbJ4K4yTd3kO1biKyJSPr5+LeTeH/dcZk7IIpxf/JQDwQbXKBZIgFp2zbA0xNYuJBLq9QswVxCRqGcDNDslgOiK7ApF7uhqZrExESEh4cjISEBYWFhag+HqEFScork/rhtp9Ll/Qf6tMK0O2P08aHmyy+BgQOB9u3VHglZgd6vr5OTCSKj+0rdh0j7Eq30/Vv1osFE1Ph+O3oRIz74XQZyoqPDO/d2kX1WNRnIZWQAY8cq5UfMJk5kIEfNpqN53xyTIEinOJ9M1IKIwqciU/WLLWfkfVE/bvaD3dHGX6l0rzmbNyuBXGIicOoUsH0798aRKkutv59Iw1EGc6RTDOaIWoiDidl48Yf9lo3couzIyyM6wtlBg7NxIkN1xgylELDJBLRrB3z8MQM5UkWHin1zzGglvWIwR6Rzoi3eRxtO4L8bT8mEB183R7x5TxfcHBMITTpyBHjkEWDnTuW+aMn10UeAu0ZnD6nFa1+xzHr0Qo4sql016Y5IDxjMEelYXHKOLO0jMriF27oE49U7O8H3CkW0VSUCuOuvB4qLAYMB+O9/lWVWIpX3zCkF7EtwMbcYgZ6sSUr6wmCOSKedHGZvOIE5m0+jzFQOb1cHvDayM27vUtnKTpN69AC6dgV8fYHPPwdCQ9UeEZHcitDW311uURDbFQJjGMyRvjCYI9KZDUdT8K+fDiMxs1Dev6VTIGaMjLXUZtSUkhLg00+VfqquroC9PbBmDeDlxf1xpCmiG5EI5g4lZ2OoVrcoENWCwRyRToi2dNP/F4c1hy/I+yEGZ9mOa1inILWHVnum6tNPK0WAU1KA119XHveuvfUekVo6h3piyR7gUFK22kMhqjcGc0QaV1RqlKVGRCeH/BKj3Nvz6MAo/OWmdtqsVp+WBrz0EjBvnnJf9FONiVF7VERXFBtqkLeHkpT9p0R6osF3AiISRFbd//Yny7pxoq2d0KOVF16/OxbRwZ7QZLmRzz5T+qiKQsDCk08Cb7wB+PioPTqiKxL/TYmV/ws5RbIbhCa3LRDVgsEckQbtPpuJGSvjsPdclrwfbHDGlOEdcWfXENjaanSv2csvA++9p5x36aLslevXT+1REdWJmOVu7eeGU6n5ct/ckA4Bag+JqM4YzBFpiCgx8v7a41gblyLvuzra4enBbfDYoNZwcdRg8V9R8Ne2oivgc88BixcDU6cCTzyhJDsQ6WypVQRzh5MYzJG+8NWWSANOXszFrHUnsPLAeXlfTL7d2zMMLw7rgAAt1rw6cwZ49VVlaXXRIuWxiAjlcQZxpOOM1uX7knEgkUkQpC981SVSUXxaPj7ccALL9ybBVK48dnuXYPx1aHu0DdBgR4SkJKUN19y5SiAnvPIK0LGjcs5AjnSsW7iXvN1zLpOdIEhX+MpLpAJRmPTTTaew+tB5SxAn2m9Nvrm9NpMbRGmRt95S+qeK7g3CsGFKb1VzIEfUAmbmHO1sZSeIs+kFiPRzU3tIRHXCYI6omYhP+ttOpcsg7vcTaZbHb+wYIMuMdK2YFdBkvbhbbgGKipT7gwYps3OiLRdRC+sEERtmkAlIf57NZDBHusFgjqgZ6sSJvXDzt8XjYEVBUlErTmSmPjm4NToGaXAmLj8fcKt4I+vVC/DwUNpwiX1yN9/M7g3UYvWK8JbB3O6zGXLfKpEeMJgjaiLJWYX4asdZfLcrARn5JfIxZwdb3NcrXGanhvu4QlPKy4F164APPlASGQ4eVDJVRRuuPXuUPqoM4qiF6xmhdCj5Mz5T7aEQ1RmDOaJGZDKVY/vpdCzafha/xl2w7IcTrbfGXheB+3uHw9ddY8VIc3OBhQuBjz4Cjh5VHhNB259/An36KPfDOENB1hXMnbiYh6yCEni5Oqo9JKKrYjBH1AgSMgqwZE8iftydiMRMpVuD0K+1Lx7uH4Gh0YGwt6uox6YV584B77+vtN3KqWhh5O4OPPII8PzzQLt2ao+QqNmJD1uiePDptHyZ1Xpjx0C1h0R0VQzmiK5hL9wvhy/g+z8TsPVkuuVxDyd73NU9BOP7RaJ9oAc0SwRzYklVaN8eePZZ4OGHAU8N7uEjaka9Ir1lMPfHmQwGc6QLDOaI6qGkzITfT6Ti5/3JskuDaHxv1r+NL8b0CsctnYK01a1B7IXbuRP48kvA2xt4803l8QEDlE4No0YpSQ3mTg5EVq5/Gz98/2citois8xFqj4bo6hjMEV1FmdEk98GJAG7NoQvIKaoolgsg1MtFZryJQ3MJDcePA999B3z7beVeOIMB+Pe/ARcXZV/cZ5+pPUoizRnQ1k/eHk7OQVpeMfy0ts+V6BIM5ohqkF9cJmvBrTuSgg1HL1qyUYUADyfcGhuMO7qGoHu4l/Ya38+fD8yerWSgmong7d57gYkTASe+MRFdib+HkyzeLXolbz2Zhru6hao9JKIrYjBHVOFCdhHWH03BurgUbD2VLpdUzXzcHDGic5AM4HpH+sg6cZpx4oSSbSoCNvN9EcjZ2SnLpw88ANx1lzIrR0R1cn07PxnMiQ91DOZI6xjMkVUnMIhaUr+fTJV7Y8SSSlWtfFxliy2Rido70ls72agmk7IH7qeflOPIEWD5ciVgE0QSQ3i4MhPnpywXEVH9DGrnj882n8am46my5JDmZuCJqmAwR1ZDvCAfvZCLLSdT5aftnWcyUFxl9k1sIRPLpkNjAnFzdKBsdK+ZRtt5ecDq1cAvvwArVwIXLlR+TTS3F/vjzERmqjiIqMH6RPnIzPTU3GLsTchEzwgftYdEVCsGc9RilRpNOJSUjV3xGdh5RvRazEBWQWm1a8T+t4Ht/DConR8GtvWXe2U0obQUSE8HgoKU+6mpwJgxlV8X5UNGjFBm48Stl0b7uhLplKO9LW6KDsDyfUriE4M50jIGc9RiZBeW4mBitgzaRAC352wWCksrS4cILg52uK61Dwa285cBXDutzL6J4E3scxNN7cWxcSNw443KMqoQFQXcfrtSyHf4cOCGGwBHVqYnakrDOwcpwdzhC/jHrdHaeK0gqgGDOdLtfrfDydnYn5CNA4lZ2J+YjTNp+Zdd5+XqgF4RPugT5S0TFzqHGuCglb1vwttvA7/+CmzfDhQUVP/aoUNKjTjzG8jPP6syRCJrdX17f9lPOSGjEAeTstEljDPgpE0M5kjzsgtKcfRCjswsE3veDiRm43hKLsrMjU8vSVroFu6F3lE+6Bvlg7b+7upvXBYJC2JPm0haOH0amDat8mtiH5yYhRN8fICBA4Hrr1dm3rp3Z2N7IhW5OtpjWEwQ/rc/WXZ6YTBHWsVgjjS1xy0+LR9HLuTiaEXgJm6Ts4tqvF4U8uwWbpAvsF3DvdAl1ABvNw0sPSYnAzt2ALt2KQGcaFhv7n0qiL6nInATJk1S9sINGgTExLALA5HG3Nc7XAZzP+1Lxiu3xmiruwtRBQZz1Owy80twKjUPp1Pz5e2p1HycTs3DuYyCGmfbhDBvF3QM8kR0sAdigj1l8BZscFZ3D0t+PnD4MHDgADB2bGWdt1dfvbyzgvhajx5Anz5ASWUBYlk+hIg0q19rX4T7uMil1lUHz+OenmFqD4noMgzmqElKgKTmFcvgLCGjoOK2EGfTleAt85KM0qrcHO3QIcgDHYM9ER3kIauwtw/ygKezA1R19iywbZvSFisuTgngRHFesadN6NYN6NVLORe3YmZOBG69eyu3nTopJUSISFfENo37e7fCO78cw9wtZzCqRygTIUhz+O5CDepVKoK189lFsmtCclahJWgTR2JmYbX6bTURPU1b+7uhjb97tdsgT5Vm24xGZXlU7G0TAduxY8BzzynZo8KyZcDf/nb59wUEAF27KvvizB57TDmIqEUY27cVPv7tpNy3K9r73RQdqPaQiKphMEcW5eXlyCsuQ1peiSyUeSFHBGuFlqDNfHsxtwi1rIZaiHZXYhlUJCSEe7uila+rbETf2s9NBm1iY3Gzy84GHBwAV1fl/oYNSjbpmTNAfHz15U+hf//KYE4EbCI5oWNH5ejSRTkC+aJO1NJ5uTrioX4R+GzTaXyw/gSGdAhQP7GKqAoGc1Ywi5ZTVCYbxaflFStHrritvJ8qzuVjxVedUTOzt7VBoKezDNiCzEGbj6sleAv2clanBEhSkhKkJSYqR0KCciuCtcxMYPHiyuK7oquC6Khg+aXslXpu0dFAhw7VuygMGQL8/nvz/z5EpAmPDWyNr7afldn0i/9MwAN9Wqk9JCILBnM6UVxmRF5RGXKLypBZUIKswlJkiduCUrkHLbugRN5WfVzcikCuvsS+NT8PJ7nkqQRrLpagzXzr5+bUfJ9Ms7KUmmspKdUPc8D2738Dd9+tXCsK744ff+Vgz0zsZ5s7F2jdWjlCQ7mvjYhqJLrDTB7WAa+tiMPMVUdwY8cA+YGWSAv4ztWMUnKKcDa9ALlFpXI5UwRaIkDLKy6VQZoM1orLLF+v+lhJHWfMaiN6DIoAzd/dCX4ejrKsR+XhWPk1d6fmSb0X7alE2Q7RsiojQ7k1B2mi7+jUqcDIkcq1W7cq3Q9qc/Jk5XmbNsBNNwFhYZWHaDovDhGwubtXXhscDDz6aBP+kkTUkjzcLwLL9ibiUFIOnli0G4ufuA7ODixVQurTRDC3cHu83IsgNtWL7MXpd3aShV9rs/LAeby39pjcaB/l64aXR3TEkI4B1fZ+zVp7HN/uSkBOYSl6RXpjxshYRPm5QU2LdyXg/bVVGqI3gJg1E/s3RGcDb1dHGOStA7xclMfk11wc4O3mAEPFYwYXh8ZZ8hSZm4WFSs00sf9M3EZEKEkAgsju/OabyuDs0ttZs4CHH1au3b277gGamDETQZrYn1b1EI+LIC02tvJaUatt3bpr/12JiC5hb2eLjx7ogZEfb8X+hCwZ0H08tgfcnTTxVkpWTPV/gT/vT8aMFUcw4+7O6B7uhS+3nsH4L/7AhhdvkLNEl9p9NgPPf7cXL93SQTZBFoUcn1j0J1Y8N0iWtBA+3XQa87bF473RXeU+rvd+PY7xX/6BtX8brOqnqEBPJ5kA4OFsD3dxONnDw9lB3npaHnOwfN3D/PWKa8UhEgvqHHiJDf2iFlpmvlKk1q0imBVLk6J9lPhaTceECUo5DUHsKXv66crgreySZVuxTGme3bq0u8Gl0tIqz0NCgJ49AV9fZWziVgSFIkgTzeVFwoGZKPtRNbgjIlJJpJ8bPhnbExPm78Tm46m466MteO2uzujXxpclS8h6gzlRt+f+PuEY0ytc3n99ZKxM/RatU565oe1l13+5NR6D2/vjycFt5P0XhnXA7yfSsGB7PN64O1bOyomA8Lkb22JYpyB5zfv3dUWvGevwa1wK7uwaArXc17sV7mtvUJYSi4oqjuzK88xCpY2TOUNSzF6tWFHl2oqjuFi5FUuRYt+XuXTGSy9VD8pEuQ2zH36oLFAr6qXdd1/tAzXXRjMHhSLbsyrRpcDTUzlEdqiZSB548kklODMHaFWDNTGTZiYyQUVnBCIinRGB2+In+uHRBX/KoucPzv0DHQI9cH17P3QKMSDAw0mukjja20J8/ra1sZGHiPUY71XycHKQq0takPH118j44kuUpaXBqWNHBP3fK3AR71O1yFmzBqkffIjSpCQ4RkQg4MUX4D54MKwymBP7wA4lZeOZG5TATBCb6ge09cOes1k1fs/es5l4dFDry5oh/3r4gjwXxWlFWQ3xHGai4KxYtt1zNrPGYK64uFgeZrm5uWgyX3wBvPBC7V8XTddvvrlyM/+VZrrGjasM5sT4a5u9EgFX1bIbYlZMtI8SM3U1HVVnxa67TpnFE4GbwaAc4pqaXpFE9uenn17lD0BEpH+iC826ydfLrTPf7UrAsZRceVDdiff+l4Z3VHsYyFm1ChfffAtB06bBpWsXZCxYiHOPPY42q1fBXkxEXKJgz14kvfAiAib/De433IDsFSuQ8OxziFryI5yrVkGwlmBOZGUaTeWXLaeKjfji005NxL46sWG/+vWOsqyG8vUiy3Nc+pzie2syc+ZMTJ8+Hc3CwwPw8gKcnWs+xNfNRNeAp56q/dqqQdeNNyqlM2oKzqrOngmiXtrmzXUbrxirCOiIiKgaMfv26l2d5QrR2rgUuY/u2IVcZFRUFCgzmeR7nFjgMJWXy3OqXuJKC9LnL4DX6NHwumeUvB80fRryNm1C1pKl8Hvi8cuuz1i0EO4DB8K3YotRwF/+gvxt25D59TcInn6FCZiWvMyqBVOnTsXkyZMt95OSkhAjNtI3hccfV466EEVrxVEXYr+ZORGBiIiajUgyu7dnmDxIG3Jzc5Ej9nlXcHJykselyktKUHT4cLWgzcbWFm79+qFw374an7tw3374PlKRzFfBfcBA5K5fD7WoUNW1ksjGFBv6zbNqZmIG7dKZNTPxuCh4W/36Esvsnr+7UvcntR7PKf4P9vT0tBweVWfHiIiISFdiYmJgMBgsh1iBq0lZZpbcX253yXKqnZ+v3D9X4/ekpcHO16/O17f4YE5sDu0casC2k2nVmrRvO5mOHhE1lybpHuFd7Xphy4lU9IjwlufhPi6yuKN4DjNRt21fQpblGiIiImq54uLikJ2dbTnEClxLpvoy62MDo/DCD/sRG+aFbuEGfLElHgUlZRjdU8lunbx4HwINzphSsUly4oBI3PfZDny++bSsLSdKmxxMysbMUUrWiUgNnzggCrM3nJAp5CK4E6VJRFmQYTHso0lERNTSeXh4yJW2q7H39gLs7GAUtVCrMKalw97Pr+bv8fODMT2tztdbRTB3R9cQ2TdUFPkVWajRIZ5YMLGPnF0TkrIKq9Xu6Rnhgw/u7473fj2Gd345hkg/V8wZ18tSY054anBrFJaUYerSg8gpKkXvSG8smNCHlbqJiIjIwsbREc6dOiF/+w54DB0qHys3mZC/Ywe8x45FTVy6dZXX+5iL4AMyAcJF1ERViU25KMxG1SQmJiI8PBwJCQkIE+2giIiIqEW+f+esWoXkl6ciaPp0uHSJlaVJRB25NqtWytm25ClTYB8QiIAXJltKk5wdPx4BkyfD/YbByFm5Cmlz5lhvaRIiIiIiNXneeivKMjKROvtDGFPT4BQdjVafz7Esm5YmnxcprpbrXXt0R+i77yD1Px8gddYsOEZGIPyj2aoFcgJn5mrAmTkiIiL9SbTS929Vs1mJiIiI6NowmCMiIiLSMQZzRERERDrGYI6IiIhIxxjMEREREekYgzkiIiIiHWMwR0RERKRjLBpcA5PJJG/Pnz+v9lCIiIiojs5XvG+b38etBYO5GqSkpMjbPn36qD0UIiIiasD7eKtWrWAt2AGiBmVlZdi7dy8CAwNha1u3lejc3FzExMQgLi4OHh4eTT7GloZ/v2vDv1/D8W93bfj3uzb8+zXu385kMslArnv37rC3t575KgZzjSQnJwcGgwHZ2dnw9PRUezi6w7/fteHfr+H4t7s2/PtdG/79Go5/u0pMgCAiIiLSMQZzRERERDrGYK6RODk54d///re8pfrj3+/a8O/XcPzbXRv+/a4N/34Nx79dJe6ZIyIiItIxzswRERER6RiDOSIiIiIdYzBHREREpGMM5oiIiIh0jMFcI3j99dfRv39/uLq6wsvLq8Zrzp07h9tuu01eExAQgL///e+y0wRd7vjx47jrrrvg5+cnC0EOHDgQv/32m9rD0pWVK1eib9++cHFxgbe3N0aOHKn2kHSnuLgY3bp1g42NDfbt26f2cDQvPj4ejz76KKKiouS/uzZt2shMw5KSErWHpln//e9/ERkZCWdnZ/nf686dO9Ueki7MnDkTvXv3ll0fxPvpyJEjcezYMVgzBnONQLxYjR49Gk8//XSNXzcajTKQE9dt27YNCxYswPz58/Gvf/2r2ceqB7fffrsMdDds2IDdu3eja9eu8rELFy6oPTRdWLJkCcaNG4cJEyZg//792Lp1Kx588EG1h6U7L730EkJCQtQehm4cPXpUtlL67LPPcPjwYcyaNQuffvop/vGPf6g9NE1avHgxJk+eLAPePXv2yNe5W265BRcvXlR7aJq3adMmTJo0CTt27MDatWtRWlqKYcOGIT8/H1ZLlCahxjFv3rxyg8Fw2eOrVq0qt7W1Lb9w4YLlsU8++aTc09OzvLi4uJlHqW2pqamiVE755s2bLY/l5OTIx9auXavq2PSgtLS0PDQ0tHzu3LlqD0XXxH+zHTt2LD98+LD8t7d37161h6RLb7/9dnlUVJTaw9CkPn36lE+aNMly32g0loeEhJTPnDlT1XHp0cWLF+V/p5s2bSq3VpyZawbbt29HbGwsAgMDLY+JT2Cir5z4BEuVfH190aFDByxcuFB+yhIzdOKTvphK79mzp9rD0zzxCT8pKQm2tray0XRwcDBGjBiBQ4cOqT003RBNuh9//HEsWrRIboughhM9M318fNQehuaIVRqx6jB06FDLY+K/WXFfvF9Q/f+dCdb8b43BXDMQy4NVAznBfJ9Lh9WJ/Unr1q3D3r175X4IsZfk/fffx5o1a+TeL7qy06dPy9tp06bh//7v/7BixQr5d7vhhhuQkZGh9vA0T9RQf+SRR/DUU0+hV69eag9H106ePInZs2fjySefVHsompOWlia339T0vsD3hPoRS/t//etfMWDAAHTu3BnWisFcLV5++WUZWFzpEHtEqHH/nuLNVOyFEDNxv//+u9wQLDa33nHHHTh//jysVV3/fuKFTXjllVdwzz33yNnMefPmya//8MMPsFZ1/fuJ4CM3NxdTp05Ve8i6fi0Us8PDhw+Xe4nFLCdRUxHvF4cOHcJ3330Ha2av9gC06oUXXpCf0K+kdevWdXquoKCgy7KUxFKO+WvWoK5/T5H0IGaTMjMzZSar8PHHH8tNriJxRLyxWKO6/v3MAW9MTIzlcdG3UHxNZFRbq/r8+xPLXJf2ehSzdGPHjpX/Bq1NfV8Lk5OTMWTIEJnhP2fOnGYYof6ITH07OzvL+4CZuG8t7wmN4dlnn5XvF5s3b0ZYWBisGYO5Wvj7+8ujMfTr10+WLxFZSmLGSRDBiQhWqr7ptmR1/XsWFBRY9o9UJe6bZ52sUV3/fmImTgQiIk1flHQRRKaXKBsREREBa1XXv9+HH36IGTNmVAtMxP5WkXkoSkdYo/q8FooZORHImWeEL/3vmBSOjo7yb7R+/XpL2SDx+ibuiwCFrkys4Dz33HNYtmwZNm7cKMvhWDsGc41AzHiI/UjiVuyDMNekatu2Ldzd3WXKtAjaRLmIt99+W+6JEPuZxPTwpTMA1k4EvmKP18MPPyxLt4h6VZ9//jnOnDkjy7vQlYkPCGK/lyh3EB4eLgO4d955R35NLHnRlbVq1araffHfryBqpln7J/+6BHJib6b4N/fuu+8iNTXV8jXONl1OlCURr3Ni1rdPnz74z3/+I5O+REkhujLx3vnNN9/gp59+knurL1TsMzQYDPI9wyqpnU7bEjz88MMyLfrS47fffrNcEx8fXz5ixIhyFxeXcj8/v/IXXnhBlpGgy+3atat82LBh5T4+PuUeHh7l1113nSwVQXVTUlIi/30FBATIv9/QoUPLDx06pPawdOnMmTMsTVKP0kw1vQ7ybaZ2s2fPLm/VqlW5o6OjLFWyY8cOtYekC7X9O5s3b165tbIR/6N2QElEREREDcMNDUREREQ6xmCOiIiISMcYzBERERHpGIM5IiIiIh1jMEdERESkYwzmiIiIiHSMwRwRERGRjjGYIyIiItIxBnNEpGuRkZGyFVJTmj9/PmxsbOTx17/+tc7fN23aNMv3NfUYich6MZgjIqpj39vz58/jtddeq/P3vPjii/J72NeViJqSfZM+OxFRCyFm1+rbMN7d3V0ednZ2TTYuIiLOzBGRKubMmYOQkBCYTKZqj991112YOHGiPD916pS8HxgYKIOi3r17Y926dbU+Z3x8vAy69u3bZ3ksKytLPrZx40bLY4cOHcKIESPkc4rnHjduHNLS0uo1/qNHj8LV1RXffPON5bHvv/8eLi4uiIuLq9dzERFdCwZzRKSK0aNHIz09Hb/99pvlsYyMDKxZswZjx46V9/Py8nDrrbdi/fr12Lt3L4YPH4477rgD586da/DPFcHdjTfeiO7du+PPP/+UPy8lJQVjxoyp1/N07NgR7777Lp555hk5nsTERDz11FN46623EBMT0+DxERHVF5dZiUgV3t7ecnZMzGzddNNN8rEff/wRfn5+GDJkiLzftWtXeZiJ/WrLli3D//73Pzz77LMN+rkfffSRDOTeeOMNy2NffvklwsPDcfz4cbRv377OzyUCuVWrVuGhhx6Co6OjnDl87rnnGjQuIqKG4swcEalGzMAtWbIExcXF8v7XX3+N+++/H7a2tpaZOZFEEB0dDS8vL7kseuTIkWuamdu/f7+cDTTvZxOHmGUzL+vWlwgEDxw4gD179liyXomImhNn5ohINWLJtLy8HCtXrpSzWr///jtmzZpl+boI5NauXSuXM9u2bSv3o917770oKSmp8fnMQaB4TrPS0tJq14gAUfxcsRx6qeDg4AYFh/n5+fJni8zVhjwHEdG1YDBHRKpxdnbGqFGj5IzcyZMn0aFDB/To0cPy9a1bt+KRRx7B3XffbQnERJJDbfz9/eWtCKrEUqpQNRlCEM8vZgNFfTp7+2t7CRR7/MT4XnnlFfkzxUyjmKETQScRUXPhMisRqUoEQGJmTixXmhMfzNq1a4elS5fKgEzMgD344IOXZb9WJYKo6667Dm+++aZcjt20aRP+7//+r9o1kyZNkkHYAw88gF27dsml1V9++QUTJkyA0Wis19hFwoPYayd+xvvvvy+/X8wmEhE1JwZzRKQqkVnq4+ODY8eOyWCtKhEgiUSJ/v37y6XRW265pdrMXU1EUFhWVoaePXvKbg0zZsyo9nVRDkXM+InAa9iwYYiNjZXXiT155mXauli4cKFMfli0aJGc4XNzc8NXX32Fzz//HKtXr67nX4GIqOFsyqtuLiEiosuIxAYR8ImyJg0hlnTF99enFRgRUV1xZo6IqA6ys7Nl5uuUKVPq/D2i/In4nmvJviUiuhrOzBERXUVubq4sLCyI5VhRC68uxN48cZiTMwwGQ5OOk4isE4M5IiIiIh3jMisRERGRjjGYIyIiItIxBnNEREREOsZgjoiIiEjHGMwRERER6RiDOSIiIiIdYzBHREREpGMM5oiIiIigX/8PVBYunR1aZUEAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "stochast.inverted = True\n", "\n", "stochast.print()\n", "stochast.plot()" ] }, { "cell_type": "markdown", "id": "4a0b304a", "metadata": {}, "source": [ "### Fit parameters of a distribution function\n", "It is also possible to estimate parameters of a distribution function from data. In this example, we consider the following dataset:" ] }, { "cell_type": "code", "execution_count": 19, "id": "863de9e1", "metadata": {}, "outputs": [], "source": [ "data = [2.3, 0.0, -1.0, 2.6, 2.7, 2.8, 3.3, 3.4, 1.0, 3.0, 0.0, -2.0, -1.0]" ] }, { "cell_type": "markdown", "id": "f785e20f", "metadata": {}, "source": [ "Let's consider a normal distribution. By using [stochast.fit()](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.fit), we obtain the fitted [location](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.location) and [scale](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.scale):" ] }, { "cell_type": "code", "execution_count": 20, "id": "943b07e4", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Variable:\n", " distribution = normal\n", "Definition:\n", " location = 1.3153846153846152\n", " scale = 1.8959809043720852\n", "Derived values:\n", " mean = 1.3153846153846152\n", " deviation = 1.8959809043720852\n", " variation = 1.4413889916279012\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAGwCAYAAADCJOOJAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAcbdJREFUeJzt3Qd4FFXbBuAnvfeeECAhtFBCR3pTpAgiiuInWLChyGcXsfyCDbCh2MEG2AApflJFkN57Cb0khJLeezb7X+dMdpNAAklIMruzz31d485uZmfPmjD77inva6XX6/UgIiIiIrNkrXYDiIiIiKjmGMwRERERmTEGc0RERERmjMEcERERkRljMEdERERkxhjMEREREZkxBnNEREREZsxW7QaYoqKiIuzfvx8BAQGwtma8S0REZA6Ki4sRHx+P9u3bw9bWckIcy3mn1SACuS5duqjdDCIiIqqBXbt2oXPnzrAUDOYqIHrkDH8MQUFBajeHiIiIquDy5cuyM8bwOW4pGMxVwDC0KgK5Bg0aqN0cIiIiqgZrC5siZVnvloiIiEhjGMwRERERmTEGc0RERERmjMEcERERkRljMEdERERkxhjMEREREZkxBnNEREREZozBHBEREZEZYzBHREREZMYYzBERERGZMQZzREREZJFydu/GhfFP4VSv3jjWoiUy//nnhs/J3rkLZ0eOxPE2bXF64O1IW7IUamMwR0RERBapODcXDi2aI+D/3qzS8QVxcbgwfjxcunRF2LKl8H7wQVx+801kbd4CNdmq+upERPWouFiPjLxC5BcVw8PJDo52Nmo3iah+6fXKptMpW3GxsonHRHF6F5fSYzMzgaKi8s8z7Itjvb1Lj01JAQoKyh9j2MSxwcGlx8bHA46OgIcH1Obau7fchItVOD7t999h3yAEAa9OkvcdmjRB7r69SJk7F669ekItDOaISNNSswvw54GLWH30Cg7FpSOnQGf8WSMfZ3Rv4oMR7ULQJcwbVlZWqraVNEQESvn5gLOzcl8ETOvWAdnZQE6Oclt2CwsDHn+89PkPPghkZSkB0tVbu3bAd9+VHivuJyaWD9AMt1FRwObNpceGhwPnz1fc5ubNgePHS+937w4cOVLxsaGhQGxs6f3Bg4Fduyo+VgR9ycml9++/HxgwAHj9ddSVzMxMZGRkGO87ODjI7WblHDgA527dyj3m0qMn4qdNg5oYzBGRJuUUFOGL9afx07bz5QI4wdoKKNYDMck5cvtt1wW0C/XEa0NayqCOqBzRuyR6qa5cAWxtlYBIEEHYf/8LpKaWbmlpyq0IJEaNAhYuVI4VXxRuv7205+pqAweWD+aWLVNesyKiV6ss0S7R21UR0cayRC9ZXRDnFe/R8IWo7L6dXflj7e0Bm7rtFY+MjCx3/6233sKUKVNu+ry6xCTY+viWe8zW1wfFWVkozsuD9dW/m3rCYI6INGfXuRS8/MdBGagJLYPcMapjA/Rs6ovGPi6ws7FCak4hDsalYfXhK/jz4EUcuJCGe7/djoe7N8akQS3gZM8hWIuUmwt89hlw7pzSgyW2CxeUx4X77gN+/13ZFx/cP/2k9IBVRAR1BiKw6dJFuRW9dWI407CJ+23alH/uhx8qgZ8IfAyb6FkStz4+5Y/9+2+lDSKgEkGS2Az7VwcXht6zsscaAq+rA719+0rbbrgtu1/W9u2ostWrUdeio6MREhJivF8bvXKmjMEcEWnKzzti8Nb/jkJXrEeQhyOmDG+FgZEB1wyhervYo19zf7m9dHtzfLTmBBbsuSB78vbFpuK7BzvB312db9lUh0Qv1uHDwLFj4hNf2Tp2BGbOLO1FeuMNZZjyam5u5XuUxL4IukTA5OV17ebpWf75O3ZUvZ1PPln1Y9u2rfqxVweC13N1j5oZcXNzg7u7e62f18bPF0XJSeUeK0pKhrWrq2q9cgKDOSLSBL1ejxmrT+CbjWfk/TvbBeOdEa3h7njjDyQ/NwfMuKcthrQNwnO/75dz6+78cit+fqwrmvi51kPrqU6JSfxiyHP3buBiBdPcxdw2AzGMOnEiIAKBxo2VuWxiflhgYPnFAQYvvFC3bSeT4tyuHbI2bir3WPa2bXAS8xZVxGCOiDQRyH24pjSQe2lgM0zoF1HtBQ19mvlh2YQeGPfTbpxJzMYDc3Zi4ZPd0NCnZBI7mbaEBGDjRmDDBuX+l1+WBmiiN04EcuJvomlToFUrMbEKaNny2iFOQy8daV5xdjYKyizkEKlH8o4dg42HB+yCg5Hw8ScoSohH8IwZ8ueeo0cj5ZdfEf/hh/C8+25k79iBjNWrEfrNNyq+C8BKL66CVE5cXBxCQ0Nx4cIFNGjQQO3mENENfLvxDKatUlbhvXNnK4zt1vimzpeclY/Rs3fgVEIWQjydZIAneu/IxBQWAtu2AcuXAytXKkOmBq6uypw1EcgJK1YovW3t2ys/I02Kq+bnt0gAHPvQQ9c87jFiBIKnT8OlVyej8OJFNJo/r9xz4qdPR8Hp07ANDITvU0/Bc+RdUBODuQowmCMyH2uj4/HE/D1yrvjrQ1ri8d4lKw1vUkJmHu77dgfOJWWjQ0NP/PbELXCw5aIIkzJoELBmzbXzx/r2Bfr0Ae64Q1kwQBYjzkI/v1kBgojM1qn4TDnHTQRyY25pWGuBnODv5ojvH+oEd0db7ItNwxtLK8m3RXVP5Fb76y9g7FggPb30cRG0+foqOdkWLACSkoCDB5XVqCNHMpAji8FgjojMUl6hDs/8uh/ZBTrcEu6Nt4a1qvXXCPdzxZcPdJB56RbtjcPS/XG1/hp0HWLF6XPPAUFBwPDhwM8/K/nXDJ59VlmdOncucO+91VupSaQhDOaIyCxNX3UcJ+Iz4etqj8/v7wA7m7q5nPVq6of/Dmgq999cdhSxJbnrqA574X79FRAllsQCBdHLJkpFiYBOBHadOpUe6+RU58lnicwBgzkiMjtbTiXJfHDCR6Oi6nxxwjP9ItC5sRey8ovw4qIDssYr1RGRpHfMGKUElQjURowAVq1SEveKVaZiFSoRlcNgjojMSm6BDq8tPSz3H+zWCH2b+9f5a9raWOOTe9vB2d4Gu8+n4vfdF+r8NS2GKEMleuIMmjUDxo8Hpk4FYmKApUuVhQ7sgSOqFIM5IjIrs9afQmxKjqzu8MqgFvX2uqHeznhxYHO5P23VMSRk5NXba2uSSBsiCq2LOqdiAYMon2Xw1VfA//0fUKYcExGZeNLgedvP49uNZ5GYlS9rKE4d3koWva7Ib7tisWRfHE5cUQoQt2nggZdvb1HueJFtZebak/ht9wVk5BaiU2MvvDuiDcJ8K8jeTURm49jlDMzedFbui+uEq0P9XsJE3dY/D1yUFSKmLo/Gl//pUK+vrwmi8PusWcAHHyhF6QVRs1QUpici8+yZ++vgJby7/BievbUpVkzsicggNzz4/U4kZZUpr1LGjrPJGB4VLHM+LXm6B4I8nDD2+524kl76LfmbjWfx47bzeG9Ea5ns08nOFg/+sFOufiMi8yS+pL39V7SsuXp7qwAMbBVY722wsbbC+3e1kbcrDl2W1yOqIpE/ZtEipeLCa68pgVzr1srqVFGzNCpK7RYSmS3Vg7nvtpzD6C6huLdTKJoGuOG9EW3gZG+DhXsqnpPy2ej2Mrt7q2APRPi7YsbdbeU1YuvpJOMF/4et5zCxf4S82Iuevk/ui0J8Rj7+jo6v53dHRLVl/fEEbD+bDHtba7wxNFK1drQO8cDozqFy/70Vx7gYoqqSk4FHH1UWMjRqpKQZOXAAuPNOpcQWEZlnMFdQVIwjF9PRI8K3tEHWVvL+vpiS7vcbyC3UoVBXDE9npZj2hZRcJGbmlzunKLQthmH3xaRWeI78/HxkZGQYt8xMZQiXiEyD+Df+/spjcv+RHo3l/DU1PX9bMznEe/hiOv48WEHhdiotcG8gkvu+/z4wZYqSP+6BB7iogUgLwVxqToEcMvF1LZ9WwM/VQc6fq4rpq44hwN3RGLwlZuUZz1HVc06bNg0eHh7GLVLkNiIik/H7rlhZ+N7bxR4T+kWo3Rx5zXqqbxO5/8HqE5zCUZGtW5Vh1PXrSx975hngrbeU/HBEpJ1h1pvx1YbT+OvgZXw7tiMc7Wr+DW/y5MlIT083btFlizUTkapEoDRr/Wm5/+yAprKn3RQ82jMMwR6OuJyeh593xKjdHNORmws8/zzQqxdw4oSyKpWItBvMeTnby4nEVy92ED1oV/esXW32pjP4esMZzH+0i5wXZ+Dn6mg8R1XP6eDgAHd3d+Pm5uZ2E++KiGqTCJTE1IkQTyfc36UhTIX4AmmoDCEWXYn8dxbv6FFlZeqnnyoLHh55BFi+XO1WEWmeqsGcmMgsJhNvK1m8IIjJxNtOJ6NDo4pTkwjfbDyDz9edxtxxXdC2QfnjQr2dZDZ4cQ6DzLxCHLiQhg6NvOronRBRXRABkgiUhGf6R8hrhim5u2MDNPBykl9If9lpwb1zInCbMwfo3Bk4cgTw9wdWrAB++AHwrPxaTkS1Q/Ur42M9w2Q+uD/2xuF0QiZeX3YEOQVFGNVRWS32woIDmLH6uPF40Rv3yd8n8cE9beVFNCEzT27Z+cpEWysrK4zrEYbP15/C2uh4HL+SgRcWHkSAuwMGRgao9j6JqPpEgCQCJfFv/Z6ODWBqRD1YsXLe8CVTXLss0rp1wBNPKEOsAwcChw4BQ4ao3Soii6F60uBhUcFIyS6QSX7FUErLYHfZ42aotXgxLVcGaGWHXAp0xXjql33lziPm0ogVZsL4PuHILSjC5CWHkZFXKGsqzn2ky03NqyOi+p8rZ+iVEwGTCJxM0cgODfDFv6flSvpfd8bisV7hsDgDBgBjxyoLHl56SaQlULtFRBbFSi8Ss1E5cXFxCA0NxYULF9Cggen1BhBZAhEYiRqsYq7chpf7mmwwZ1ht++qSw3JBxMZX+pl0W2vNxo1Au3aAh4dyX3yUMF8cqSzOQj+/LeCKQ0TmRsyd/W6z0is3rmeYyQdHI9qHyHQll9LzZGUIzfviC6B/f2DMGPHLUh5jIEekGtO+QhKRRfrnWDzOJmXDzdEW95VUWzBlYgrHw90byf1vN52VlWg0SQRur7wCTJyo7ItEwGUTAxORKhjMEZHJmVPSKzfmlkay0oI5eKBrIzjZ2eDY5QxsLbOaXjPy85WqDR9+qNwX1RzEalV7e7VbRmTxGMwRkUnZF5uK3edTYWdjhYe7N4a58HKxN/YifrvpDDQlIwO4/Xbg998BW1tg3jyRbZ1Dq0QmgsEcEZmU7zefk7cj2oXIUn3mRFSFsLYCNp9KkmmRNGP0aGXBg0iovmqVsnKViEwGgzkiMhnxGXlYffSK3H+0VxjMTai3M25vFSj3NVXi6513gCZNgH//BW69Ve3WENFVGMwRkcn4bVcsdMV6dGnsjRaBpWX6zMnYW5SFEEv3XZTVZ8xW2UUcHTsCx48rt0RkchjMEZFJKNQVy2BOGNNNCYjMUbcmPgj3c0F2gQ7L9l+EWUpIALp2BXbsKH1MzJUjIpPEYI6ITMI/0fGIz8iHr6s9BpUMVZojUbHG0Ds3f0eM+aUpSUkBbrsN2L1bKdFlyCNHRCaLwRwRmQQR+AijOzeEva15X5pEiS+RpuRkfBZ2nUuB2cjMBAYPVmqrBgQAixezNBeRGeC/UiJS3emELGw7kyxXgt7ftSHMnYeTHUa0D5b788xlIURuLnDHHcCuXYCPD/DPP0DTpmq3ioiqgMEcEZlEbVOhf4sAWYtVC0TCY+Hvo1eQnJUPk6bTAf/5D7BpE+DuDqxZA7RurXariKiKGMwRkeoLH5aWLBQYbQalu6qqVbAH2oR4oFCnx7IDl2DSZs0Cli0DHByA5cu5apXIzDCYIyJVrT+egOTsAvi5OaBvcz9oyb2dGsjbRXsumPZCiPHjgXvuAX7+GejVS+3WEFE1MZgjIlUt2hMnb0e2D4GtjbYuScOjQuRijuNXMnH4YjpMlpMTsHChEtARkdnR1pWTiMxKQmYe/j2RIPdHlfRiaYmHs50xzcrCPRdgUkQOuXffLU09wjqrRGaLwRwRqUYk1RUVH9o39ESEvxu06N5OyjzAPw9cQl6hDibh4kXgrruAN98EPv1U7dYQ0U1iMEdEqhBzyBaWDLEaAh4t6t7ER67QzcwrwpqSurOqpyARgdyVK8qKVZEYmIjMGoM5IlLFgQtpMr+co5017mgbBK2ytrbCPR2VIeQ/9irBq2rEIgwRvInqDt7ewJ9/Aq6u6raJiG4agzkiUoUhsBncOghujnbQsrvah8jbraeT5DxB1cycqaxYtbEBFi0CwsPVawsR1RoGc0RU7wqKirHi8GW5P7KDEuhoWWNfF7QL9USxHvjroPK+6922bcArr5QGdf37q9MOIqp1DOaIqN5tPpWItJxC+Lo6oHsTX1iCEe2U8l5/HlASJNe7M2eUHrnRo4FnnlGnDURUJxjMEVG9Eys7hWFRQbARBVktwB1RwfK9HopLx9nErPpvwNixSjqS2bOZhoRIYxjMEVG9ys4vwtroeLl/ZzvtD7EaiF7IXk2VXsh6Le9VVFS637494KbNFDBElozBHBHVq3+OxSO3UIdGPs6IauABSzKiJHgV+fXqpbzXhg1AZCSwb1/dvxYRqYbBHBHVKxHIGHrlrCxsuO+2yAA42dkgNiUH+y+k1e2LpaYCY8YAp04BX39dt69FRKpiMEdE9SY5Kx+bTiXJ/eFRyoIAS+LiYIuBrQLk/p8lQW2dEL1+48crlR6aNmWVByKNYzBHRPVm5ZErsnxX6xB3RPhbZrJaw1DrisPK/4s68csvwMKFyupVse/iUjevQ0QmgcEcEdWbv0om/t8ZZTkLH67WI8IX7o62SMrKx65zKbX/AjExwIQJyv6UKUDnzrX/GkRkUhjMEVG9SMjIw+4YJXgZquHyXTdib2uNga0C5f7KksTJtUanAx58EMjIALp3B159tXbPT0QmicEcEdWL1UevyKlc7Rt6ItjTCZZsaBslmF1VMuxca7KyAGdnpd7q/PmArW3tnZuITBaDOSKqF4ZeqCGtLbdXrqKh1t3na3Go1cMDWLkS2LWLdVeJLAiDOSKqc4mZpfPDBrdRhhgtWZ0OtYp0Ly1b1u45icikMZgjojq35ugVWWReJAlu4OWsdnO0N9T62WfA448D6em10zgiMisM5oiozq06ovQ+DS4JYKh0qFX0Wu65maHWM2eAyZOB774DFi+uzSYSkZlgMEdEdZ4oePuZZLnP+XLlh1pvi7zJoVaxokT0yOXmAv36AQ8/XLuNJCKzwGCOiOrU39HxcohVJApu6MMh1rKGtg00DrUW12Sodc4c4N9/lRWsYt+al3QiS8R/+URUP6tYOcR6jZ4RfnBztEWCGGqNSa3ek69cAV55Rdl/7z2gSZM6aSMRmT4Gc0RUZ1KzC7CtZIh1MIdYKx5qbanUal195Er1nvzSS8qCh06dgIkT66aBRGQWGMwRUZ1ZeyxertRsGeSOMF/WB62IIUXJ39EiqXIVh1oTE4E1a5Q0JF9/rdRgJaIaS/nlF5zuPwDH20bh3L33IffQoesfP3cuzgwajONR7XCqbz/ET5uG4vx8qIXBHBHVmbXR8fJ2UEnAQtfq3cwXDrbWiEvNxfErmVV7kp8fcPw48MsvSs8cEdVYxsqVSJg+A74TJiBsyWI4Nm+O2MceR1GyMqpwtfS/liPh40/k8eErViDo3XeRsXIVEj+ZCbUwmCOiOpFboMPmU4ly/7ZIZSiRruVsb4teTf3k/t9HleC3Snx8gPvvr7uGEVmI5J/mwnPUKHjePRIOEREInDoF1o6OSFu8pMLjc/fvh1OHDvAYdgfsG4TAtWcPuA8ditzDh6EWBnNEVCdEIJdXWIwQTye0DHJTuzkmbWCrAONQ63WdPavkkqvqcCyRhcrMzERGRoZxy69kCFRfUIC8o0fh0r2b8TEra2u4dOuG3AMHKnyOU/v28jmGodiCCxeQtWkTXHv3hloYzBFRnaUkMQQqVmJuF1VqQAt/WFsBRy9lIC41p/ID//tf4J57gLfeqs/mEZmdyMhIeHh4GLdp06ZVeFxRahqg08FG9HSXYePrg6KkpAqfI3rk/CZOxPkHxuBY6zY4c9tAOHfpDN/xT0Ittqq9MhFpllj0sP54gtznEOuN+bg6oFNjb1m/VswzfKRH2LUHrVoFrFgB2NkBDzygRjOJzEZ0dDRCQkKM9x0cHGrt3Nk7dyFp9mwE/t+bcGobhYLYGMS/Pw2JX30Fv6efhhrYM0dEtW5vTCpSsgvg4WSHLo291W6OWRhYEvRWOG+usBB44YXS3rnmzeu5dUTmxc3NDe7u7satsmDO1stTrgbXXbXYQZeUDFtf3wqfkzhrFjyGD4fXqFFwbN4M7rfdBv/nn0Py7DnQFxdDDQzmiKjW/X30inH40NaGl5mqGFhS2mvX+RSZn6+cr75SVq+KVaxvvqlOA4k0yMreHo6tWiF7+w7jYyIgy96xA07t2lX4HH1uLqzEvIiyrEvSA6k0n5VXWSKqVSJXmsgvJ3CItepEqbMWgW7lhqglMW9nypTSSg8eHqq1kUiLfB5+CGmLFiFt6TLknzmDK1Omojg3F54j75I/vzRpkkxFYuDarx9Sf/sd6StWoCAuDllbt8reOtd+fWGlUs5Hzpkjolp1Mj4LMck5srpB72ZKyg2qegJhkWtOrGq9u2MD5cH/+z8gLQ2IigLGjVO7iUSa4z5kCIpSUpH4+SzoEpPg0LIlGs6ZbRxmLbx0WSxxNR7v+9R4mbA78bNZKIqPh423N9z69YXfc8+p9h4YzBFRrVpbkl6jZ4QvXBx4ianuvLlZ605h48lEmafPyd4GGD4c+Pdf4LPPWOmBqI54j3lAbhVpNH9euftWtrbwe2aC3EwFh1mJqE5SknCItfpaBbvLvHwiP9+W0yVpEQYNAo4cAfr0Ubt5RGSiGMwRUa25kp6HQ3HpsmTogJb+ajfH7Ih8fIYgeF3ZBMLskSOi62AwR0S15p+ShQ/tQz3h7+aodnPMkgiCbYp1uP/F/6D4ww+BvDy1m0REJo7BHBHVGsMqzAEtOcRaU13CvDE2+h9ExUajeNp0oJIyREREBgzmiKhWiAn7W0vmeXGIteYc8vPw3Nbf5P6W0eOZioSIbojBHBHViu1nk5BfVIxgD0c0D3BTuznm69NP4ZmWhFiPAHzedIDarSEiM8BgjohqdYi1Xwt/OZGfaiAxEZgxQ+5+1Hss9sbnIiGTc+aI6PoYzBFRrVR9WH/MMF+OQ6w1Jio8ZGYCHTog9tZh8qENxxPVbhURmTgGc0R0007EZ+JSeh4cbK3RLbzi4tR0AykpwOzZyv6MGegXGSR31x1XVggTEVWGwRwR1doQa/cmPkrVAqo+b29gzx6lDuuttxp7ODefEnMRdWq3johMGIM5IrpphiHW/kxJcnMiI4G33jJWg/B3c0BOgQ47z6ao3TIiMmEM5ojopqRmF2BfbKrc79+C8+Vq5EqZag8lxCISw/9PQ88nEVFFGMwR0U0RReGL9ZDpSERdUaqmvXuB0FDgiSeA4uJyPzIEc2LenFhkQkRUEQZzRHRTDL1G/bmKtWb+7/+AoiIgNxewLn9J7hHhC3tba1xIycWZxCzVmkhEpo3BHBHVWJGuWPbMCRxirYHt24GVKwEbG+NcubJcHGzRLdxH7q8rmZdIRHQ1BnNEVGP7YtOQnlsIT2c7tA/1VLs55tkrJzz8MBARUeEhpUOtDOaIqGIM5ojopodY+zTzg60NLyfVsmkT8M8/gJ0d8OablR5mCOb2xqTKwJmI6Gq8+hJRjf1rmC/HIdbqEYsZ3nhD2X/sMaBRo0oPDfV2RhM/F+iK9dhyKqn+2khEZoPBHBHVSFxqjqz8YG2l9MxRNcTGAocOAQ4OwOuv3/Dwvs2VYHnjSQ61EtG1bKGyedvP49uNZ5GYlY+WQe6YOrwV2lUy9+ZkfCY++fskDl9Mx8W0XLx5RyQe7RlW7piZa0/is3Wnyj0W7ueC9S/2rdP3QWRp/j2hLHzo2MgLns72ajfHvIieuHPnlAUQISE3PLxvcz98v+WcXGwiUpSIHHRERCYRzP118BLeXX4M797VWk6e/mHrOTz4/U6sf6kvfF0drjk+t0CHhj7OGNI2CO8sj670vM0CXPHzY12N922vWu5PRDdvY0kwZ+g1omry8gKGDKnSoV3CvOFkZ4P4jHwcu5yJyGD3Om8eEZkPVaOc77acw+guobi3UyiaBrjhvRFtZF3HhXsuVHh8VKgnXhvSEsOjgmF/ncnWNtbW8HdzNG7eLtfvNcjPz0dGRoZxy8zMvOn3RqRlBUXF2HZGmb/FIdZq2rVLmTNXDQ62NrLurbCBQ61EZCrBnPgwOHIxXSbFNDbG2kre3xeTdlPnPp+UjS7v/YNeH6zHs7/vl0Oy1zNt2jR4eHgYt0hRH5GIKrXnfIqsGSp60COD2EtUZZs3A127Av36XVPt4Ub6NFeC5g0lPaJERKoHc6k5BXJ11tXDqX6uDnL+XE21a+iJj0ZFYe64Lnh3RBtcSMnBvd9sR1Z+UaXPmTx5MtLT041bdHTlQ7hEpJTwEno385VfwqiK3n1XuW3R4ppqDzfSt5kynL0vJhUZeUxRQkSlNDeZrF9zfwxtGyQXU4jhnx8f6YKM3EKsOHSp0uc4ODjA3d3duLm5udVrm4nMNZjjEGs1h1f//lup9jBpUrWfLuYLh/u6oKhYj22nmaKEiEwgmPNytoeNtRWSruqFE71yoneutng42SHMzwXnk3Nq7ZxEluxKeh6OX8mEWFDZqymDuWr3yo0dC4SVX4VfVRxqJSKTCuZE8ejWIR7lvmEWy2+cyejQqPbKAmXnFyEmOQf+brUXIBJZsk0lvXJtG3jecHERlThwAPjrL8gIePLkGp/GsHJYBHMiRQkRkeqpSR7rGYYXFx1EmwaeaBfqge+3nEdOQRFGdQyVP39hwQEEeDhi0qAWxkUTpxKUlaaFumLEZ+Th6KV0uNjborGvi3z8vRXRGNAyACGeTkjIzMPMtadkD6BYAUtEN49DrDXw3nvK7X33Ac2a1fg0XcO84WBrjSsZeTgZn4XmgZwSQkQqB3PDooKRkl0gE/0mZuajZbC7XLjgV9KLJlahlk2OKYK3obO2GO/P3nRWbuICt+DJbvKxy+l5+O9v+5GWUyh7DTo19sLSp7vDpxaHboksVZGuGJtPGfLLMZirktxc4OhRZb8K1R6ux9HOBt2a+MieuQ0nEhjMEZFpVIB4qHtjuVXEEKCVrVF4fvrQ657vi/90qNX2EVGpg3FpyMgrknNRoxrU3nQITXNyAg4fVqo9tG5906fr28yvJJhLxJN9mtRKE4nIvGluNSsR1X3Vh15NfeX0BaoisYK1Z89aOZVh3tyemJTrplwiIsvBYI6IqmwD58tVP0lwXl6tnlLMD27s44xCnR5bmaKEiBjMEVFViTRCh+LS5T6DuSqIjwduuw1o3Bi4VHmey5ow/P83LEYhIsvGYI6IqmTLKaUXSCTk9nd3VLs5pm/WLFH4WckpFxRUq6c2DLWKYW+mKCEiBnNEVCVMSVINmZnAV18p+6+8ouSXq0W3hPvIXJ1ixf/phKxaPTcRmR8Gc0R0QyKhtyFZMIO5KpgzB0hLU3LK3XlnrZ/eyd5GBnQCq0EQEYM5Irqho5cykJxdAFcHW3Rs5KV2c0xbQQEwc6ay//LLgHXdXGZFihJhw8mEOjk/EZkPBnNEdEMbSwKG7k2U4T26jt9+A+LigMBApQ5rHTHUad19LlVWziEiy8WrMhFVfb4cqz7c2L59yu1zzwEOdVd5JtzXBaHeTijQFWPH2eQ6ex0iMn0M5ojoutJzC7EvNk3u927KYO6GPvsMOHgQGD++Tl9GlDo0/D4MyZyJyDIxmCOi6xKJaXXFejTxEz1Bzmo3xzy0bQt4eNT5yzDfHBEJDOaI6LoMvT59mim5zagSp08rc+XqUfcIX9haW+F8cg7OJ2XX62sTkelgMEdElRIJaTlfrorEytXwcOCHH+rtJcXq4k6NldXFm06xd47IUjGYI6JKnYzPwpWMPDjaWaNrmLfazTFdJ08Cf/4JFBYC3brV60sbekw5b47IcjGYI6IbpiQRCWod7WzUbo7p+vRT0Y0JDBsGtGxZry9tmDe37Uwy8ot09fraRGQaGMwRUaVYwqsKkpOBn35S9l94od5fvmWQG/zcHJBbqMOe86n1/vpEpD4Gc0RUoez8IpmQVmAwdx2zZwO5uUC7dkCfPvX+8iJFCVe1Elk2BnNEVCGRiFYkpG3g5YQwXxe1m2O6pbs+/7y0V87KSpVmGIM5zpsjskgM5oioQptKenl6N/OTvT9UAZEcOD0dCAoC7rtPtWb0jPCFtRVwIj4Tl9NzVWsHEamDwRwRVWjTqSR5yyHW6+jcGbhwAVi8GLC3V60ZXi72iAr1LBeEE5HlYDBHRNe4kJKDc0nZMiFt9yY+ajfHtHl713s6kopw3hyR5WIwR0TXMAQEHRp6wc3RTu3mmKYTJ2BKDMHc5lNJKNIVq90cIqpHDOaI6Drz5XzVboppOnVKySfXvTuQnw9T0LaBJzyd7ZCZV4QDF9LUbg4R1SMGc0RUTqGuWCagNSx+oAp89pmSJFgMsTo4wBTYWFuhV1MOtRJZIgZzRFTOvphUZOUXwdvFHq2DPdRujulJSQF+/FG1JMHXw3lzRJaJwRwRlWMo2C7TXYh8F3RtkuCcHCAqCujXD6akd1NlWPxQXDqSskxj+JeI6h6DOSIqZ9NJpiSpUpLg559XLUlwZfzdHREZ5C73t5SkliEi7WMwR0RGyVn5OHIpXe734uKHay1aBFy6BAQGAqNHwxT1ac6hVqLqSvnlF5zuPwDH20bh3L33IffQoeser8vIwJW338bJXr1wvE1bnLl9ELI2boRaGMwRkdGW00lyXn/LIHf4uzmq3RzTs2CBcjthgsksfLiaoUdVrEguLtar3Rwik5exciUSps+A74QJCFuyGI7NmyP2scdRlKwsBLuavqAAseMeRcHFi2jw2WcIX7UKge+8DduAAKjFVrVXJiKTY+jNYUqSSixZAvzvf0Dv3jBVIjegq4MtkrMLcPRSBto04CIWsjyZmZnIyMgw3ndwcJBbRZJ/mgvPUaPgefdIeT9w6hTZy5a2eAl8n3j8muPTliyBLj0djX/7FVZ2Sh5O+wYhUBN75ohIEr04xvlyJSku6Cq2tsDIkYCv6Qa79rbWxqodG08mqN0cIlVERkbCw8PDuE2bNq3SXra8o0fh0r20iouVtTVcunVD7oEDFT4nc/16OLVrhytvv4OTPXri7LBhSPrmW+h1OqiFwRwRSceuZMgVkE52NujY2Evt5piW7GygsBDmwjBvzhCcE1ma6OhopKenG7fJkydXeFxRahqg08HGp3zZQhtfHxQlVfzvp/BCHDLXrIG+WIfQb7+F71NPIeXHH5H09TdQC4M5Iir3wd+tiQ8cbG3Ubo5p+egjoHFjYP58mIPeJT2re2NTkZFnPkEoUW1xc3ODu7u7catsiLVGiotl8Bf09ttwat0K7kOGwGf8eKQu+B1qYTBHROVKeDElSQXpSL75RlnFWjI/xtSFejujiZ8LdMV6bDvN3jmiyth6eQI2NtBdtdhBl5QM20qmU9j6+cG+cSNY2ZR+6XVoEg5dYpIctlUDgzkiQnZ+EfbEpMh9lvC6yuLFwJUrQFAQcPfdMBd9mvnLW6YoIaqclb09HFu1Qvb2HcbH9MXFyN6xQ86Lq4hThw4ojImVxxkUnD8vgzxxPjUwmCMi7DibjEKdHqHeTmjs46x2c0yLIUnw+PFm0zNXdkXyxhOJ0It8M0RUIZ+HH0LaokVIW7oM+WfO4MqUqSjOzYXnyLvkzy9NmoSEjz8xHu91/2i5mjX+vfeRf+4cMjdsQNK3s+H1wH+gFqYmISLjEKuYa2VlYlUNVLV3L7B9uxLEPfEEzMkt4WLuozUupefhdEIWmga4qd0kIpPkPmQIilJSkfj5LDlU6tCyJRrOmW0cZi28dFkscTUebxcUhNDv5iB++nSk3TlC5pfzHjsWPo8/ptp7YDBHRNhUUvqJQ6yV9MqNGqVUfTAjjnY26BruIwN1MdTKYI6oct5jHpBbRRrNn3fNY87t2yPMkETcBHCYlcjCxSbn4FxSNmytrYz5yQhAairwe8nqtIkTYY4Mi1k4b45I2xjMEVm4jacSjZUD3BzNZ05YnfPyArZtA956C+jaFeYczO08m4KcgiK1m0NEdYTBHJGFM6YkKUk0S2V06ABMmQKY6TxCkZ4kxNMJBbpiGdARkTYxmCOyYIW6Ymw/k1wu0SyJ3ATaWP0pFrMYgnQOtRJpF4M5Igu2LyYVWflF8HGxR6tgd7WbYzqGDgUefRSIjYW547w5Iu1jMEdkwTaVzJfr2dQX1tbmOZRY644cAVatAubONdvh1bLEohaxuEUscolJzla7OURUBxjMEVkwQz1WDrGW8cUXyu2IEUBoKMydWNTSsZFXufmRRKQtVcozN3TW5mqdVHyZ/e7Bzgj0cKxpu4iojiVn5ePIpXS536ukWoDFE+lI5s8363QkFRHz5naeS5FDrWO7NVa7OUSkRjAXfTkDj/cKh7N9aVHZ680b/nrjGRQUldYsIyLTs+V0kvz32jLIHf5u/OIl/fgjkJMDtGkD9O4NrRDz5j5YfQLbziQjv0gHB9sbX8uJqHbET5te7ef4PjUeNp6etV8B4one4fB1dajSsd9tPlvlBhCROgwT4g01PC2eTgd8+aWy/8wzmpgvZxAZ5A4/NwckZuZj7/lUdI/g75yovqTMmwendu1gVcXazjn79sFrzAO1H8xtfqWfXO1WVWtf6IMAd37TJzJVxcV643w5w2pHiycWPZw9C4gL6AMVl/Ux5xQlYl7k4n1xMohnMEdUvxp88TlsfapWYedEh451swCigZdztYpvB3s6wYYr44hM1rErGUjKypdTJzo18la7Oaahc2fg7beBSZMAFxdoDfPNEakj6P33Ye1W9drIgVOnVjnwq5XVrLfP3IRLabk3cwoiUoGhV65buA/sbbmoXQoIAN58E3j1VWhRrwhfOXJ8/EomrqTnqd0cIovhedcIWNtXfXTTY9gdsHZ2rtZr3NRVPC41B0U6bWRKJ7IkhhQVvTnEajG8XOwR1UCZg8MUJUTquzx1KorECvpawK/kRBYmO78Ie2KUOp0M5gBkZgLDhgFLl4rJhNAyVoMgMh0Z//sLxVlZ6gdzncO84WjHeJDInOw4m4xCnR6h3k5o7FO9rnxNmjcPWL5cs8OrFc2b23wqEUU6bQeuRJZUA/qmIrGfHukCf65aJTIrG04kGntpqrOwSbMXU0PFB5GOxFrbX07FMKuHkx0y8opwMC5N7eYQUS2p0pVrbXQ8CqvxLe7f4wnIK9TdTLuIqA7o9XpsOJkg9/s281e7Oepbtw44fhxwdQUeeghaJ7IM9GqqpCXZWBLUE5E6mu/bC/taKhlYpWDuyfl7kJFbWOWTTvxtPxIy8m+mXURUB84mZeNCSi7sbazRPaJ6S9816fPPlduHHwbc3WEJOG+OqH7pqjkvTpeVXe3XqFLSYDGq+9Kig1VOYSDKxRCR6Q6xdgnzhrN9lQvAaNO5c8Bffyn7EybAUhiCuUMX05GSXQDvaiSEJ6LqO9mlK5pu3lTl3HGn+/RB2LKl1eq1q9LV/O4ODVAdd7YLgaujhX9QEJmgDSdKhlhLJsJbtK++UubM3XYb0KIFLIWY5yzq8R67nCEXQojrNRHVIb0eaYv+qHLuOH1RUbVfokoR10ejoqp9YiIyLbkFOuw8p6QkYTAHoGtXperDxImwNKJ3TgRzYqiVwRxR3bILCkLaokVVPt7W1xdWttXrEGP3GZGF2H42CQVFxQjxdEITP1e1m6O+e+5RtlpMD2AuejfzxTcbz8hKIKJOrzXLLxLVmYj161DXtL0On4iM/j2eaOyVs/iUJGVZ4P8LUY9X1OUV9XmjL2eo3RwiukkM5ogsLCVJv+YWnpJk1y7gk0+ANMvNsyYWs3VvUpKihKtaicwegzkiC8CUJGV89BHw4ovA5MmwZIZqEAzmiCwkmIua+rdcwi68vOggsvKrv9KCiNTDlCQl4uKAJUuU/aeegiXr01QJ5vbFpCIjr+p5RInITIM5Uf0hK08J4Bbvi0M+qzsQmRWmJCnx7beATgf07g20bQtL1tDHGeG+Ligq1mPb6WS1m0OkWXETJxoTB6ctW4biAqVzrDZV6St6h4ZeeGL+HrQO8ZAJhKf8FQ3HShIIf8g0JkQmhSlJSuTnA7NnK/sWmI6kIr2b+ckheDHUOqh1oNrNIdKkzA0bEZCTAxtXV1x+7XW49uoF6yomEK7VYG7mfe3w/ZZziE3Jhlj3lZlXiHwbTrcjMgdMSVJi4UIgIQFo0AAYMULt1pjMvLmftp3HppOJcpEMVzkT1T6HsDAkfjITziK3pV6PjFWrYe3qUuGxnjW8NlUpmPNzc8Crg5UM6T1nrMfMe9vBiyVgiMwCU5KU+OKL0rly1UzIqVW3hPnIla0X03JxJjELEf5uajeJSHMCp0xB/IzpyNq4UaZCSvzss4pTIllZ1W0wV9aWSf1Rm+ZtP49vN55FYla+LDEzdXgrtAv1rPDYk/GZ+OTvkzh8MV1efN68IxKP9gy7qXMSWUpKkr6WnJIkNxdo3Bg4ehR47DG1W2MynOxt0DXMG5tPJclFMgzmiGqfc4f2CFuwQO4faxmJJqtXVblOa60Gcz9uPVflEz7S49rgqjJ/HbyEd5cfw7t3tUb7UE/8sPUcHvx+J9a/1Be+rg4Vzv0Rk3aHtA3CO8uja+WcRBaTkqSJBackcXICxMU0IwNwd1e7NSZX2ksEc2Le3GO9wtVuDpGmRfyzFjbe3rV+3ioFc2K+XFkiTUluoQ7ujnbyvljW7mRnAx9X+2oFc99tOYfRXUJxb6dQef+9EW2w/ngCFu65gKf7RlxzfFSop9yEGauO18o5hfz8fLkZZGZmVvk9EJlLShIXBw4tMpC7lhh+f3fFMblIRnxhFr11RFR78k6cKHdfd/Jkpcc6Nm9eo9ewre7Q6p8HLmL+9hjMuKetcTK1mGsxefFh/Kdrwyq/sJiQfeRiOp7u28T4mKgP2CPCF/tiapaZvabnnDZtGqZOnVqj1yQyZUxJAuDvv4FGjYAaXiS1TlzHxeIYMXVlx7lkVgghqmXnRtylzJETdaBvMG+5ZfTRGr1GtZekfvz3SUwZ3qrcqjixL+avffR3+ejzelJzCqAr1l8z9Onn6iDnutVETc85efJkpKenG7fo6IqHcInMCVOSiCSZhcAjjwAtWgD//KN2a0ySWBQjUpQIG0t6comododWI9b+LW8bzPoMdg0aIPD//g9hS5fITezbh4bKn9VUtcddEjLzZMB0NZ1eL4s2myMHBwe5GWSIeTVEZm7bGaYkwbJlwKVLQECAkiiYKp0399uuWJmihIhql11IiHE/7rnnEfj6a3Dt06fc0KpdUCASP5sFt1tvrZ+euR5NfPHa0sNyONPgcFw63lh2GD0jlMLNVeHlbA8ba6trAkDRgyZ60mqiLs5JZK7EXFGhfwt/y01J8vnnyu0TTwD2TKdUGVGv19baSi6YiU3OUbs5RJqVf/Kk7Jm7mngs/8yZGp+32sHcB/e0lXnnhn2xBc1eXyW3O7/cIoc2p99d9fI4IreRqCix7XSS8bHikrIyHRrVLI1IXZyTyFxTkhiDuZYWOgfqwAFg82Ylp9z48Wq3xqSJxWwdGnnJ/Y2n2DtHVFfsm4QjefZs6MuU9BL74jHxs3obZvVxdcBPj3TB2cQsnE7Ikt/4m/i5ILwGwziP9QzDi4sOok0DT7QL9cD3W84jp6AIozoqK1FfWHAAAR6OmDRISVgshoxOJWQa68XGZ+Th6KV0uNjborGvS5XOSWQJoi9n4HJ6nlxl3i3cx7J75e65BwgOVrs1ZjHUuutcipw3N/aWRmo3h0iTgqZMwYWnnsapvv3g0LyZfCz/xEm5MCL0669qfN4a5yoQwVtYSQBV0yGcYVHBMs3JzLUnkZiZj5bB7pg7rovs+RPE6qqy5xbB29BZW4z3Z286KzeR9HLBk92qdE4iS7D+mNIrJ1ZyO9pZYKqJpCTg11+VfdZhrXIw9+GaE8a5lmKkg4hql1PbtnIxRPpfy1Fw9qx8zH3wYHjccQesnZ3rN5hbsDtW5p47n6TMrWjs64xxPcIwukvVU5MYPNS9sdwqfJ2SAM0g1NsZ56cPvalzElmCdSVDrAMsdYj1yBFAXBhbtQK6lb+OUMUig9zldBkx51j00PVsWvU50ERUdSJo87rvXtSmagdzn/x9QibmFcFSh4bKHIt9samyIsOltFy8MJC5nIjUJHqkD8YpeRUtNmdY375AXBxw8eIN8zpRaU7O/i38sHBPHP45Fs9gjqgOJH07G7a+PvC8++5yj6ctXoyilBT4Pv54jc5b7X70n3fGYtrINnIe222RAXIT+++PbIP5O2Jq1Agiqt1EwSI3ZesQdwR6OMKiS3hFVFz1hSo2oGWAvF13PF4uoiGi2pW2YAHsw65d6OAQEYG035X6rfUSzImFB20bXLsytE2IB4oqyD9HRGqlJFE+mC3Ozp1KpnWqtl5NfeVcOVHP91RCltrNIdKcoqQk2Ppfm8Rd1GstSkysv2BuZPsQ/FxBD5xIODmiXWliPCKqf2LiuiHx64AWFjjEeugQcMstQNu2QJml/1Q1zva26N5EWf0shlqJqHbZBgUid9++ax4Xj9n6+9fvAoiFuy9g86lEtA9V5swduJAm58uN7BAi584ZiBJfRFR/xMT17AKdnMguesstzhdfKLctWzJJ8E0MtW44kYh1xxLwdF8OUxPVJq9RoxD//jToC4vgcktX+Vj2jh1I+PAjeIvSg/UVzJ2Iz0SrEHe5H5OSrTTOxU5u4mcGVuCkY6L6JuY6CWIiu5jQblFSUoCff1b2mY6kxkSP7pslC9uSs/JlblEiqh3ejz4KXVoarrz9NvSidrSIlxwc4PPYo/B98on6C+Z+f4LL/IlMkZiwLnpTLHa+3PffA7m5QLt2QM+earfGbAV7Osk0JSLx9L8nEnFPx2tLDxFRzYjcuf4vvQTfp55C/tmzMpCzb9wY1jc5ksCskEQacSYxG7EpObC3sba8tBI6HfDll6W9ckxHclNuLclPuL6kp5eIape1iwuc2rSBY7NmNx3IyfPVSquISHWGD96u4d5wdahxcRfz9NdfQEwM4OMD3H+/2q0xe/1LUpRsOqlUgyAi08ZgjkgjDEOsFrmKdcUK5VYk3BT55eimtA3xkCUQs/KLsPNcstrNIaIbYDBHpAHpOYXYE5NqufPlZs8G1q8HnnlG7ZZopxpESfUQw5cEIjJdDOaINGDDyQToivWI8HdFQ5+aF2s2W2KOXL9+QAhzXdYWQ11fkW+O1SCITBuDOSIN+DtamS83MNLCeuWys5WNal3PkmoQcam5OBnPahBEpozBHJGZyy/SYUNJCa+BrQJhUb79FmjQAJg1S+2WaLIaRA9WgyAyCwzmiMzctjPJsuqDv5uDnLhucelI0tK46KEOq0EI6xjMkcal/PILTvcfgONto3Du3vuQK0oDVkH6ihU41qIlLkxQd74ugzkiM7e2ZIj1tsgAy6r6sHIlcPYs4OUFPPCA2q3R9Ly5/RfSkJSVr3ZziOpExsqVSJg+A74TJiBsyWI4Nm+O2MceR1Hy9VdyF8RdRMIHH8KpU0eojcEckRkrLtYbgzmLG2KdOVO5fewxwNkCF33UgyAPJ1njV6x/+Kfk74xIa5J/mgvPUaPgefdIOEREIHDqFFg7OiJt8ZJKn6PX6XDp5ZfhN/EZ2DcIhdoYzBGZsQNxaUjMzJdJgm8J94bFOHAA+PdfwMaGdVjr2O2tlKHWNUevqN0UoirLzMxERkaGccvPr7hnWV9QgLyjR+HSvbRUqZW1NVy6dUOuuM5UIunLr2Dj4w3Pe+6BKWAwR2TGDL1yfZv7wcHWBhbjs8+UW3EhDVX/W7GW3V7S47v1dDIy85TC4ESmLjIyEh4eHsZt2rRpFR5XlJom59/aiOoxZdj4+qAoKanC5+Ts3Yu0xYsR9M47MBUWVvOHSFv+Luktsagh1owMYMECZf/559VujeaJ3IXhvi44m5SNDScSMSwqWO0mEd1QdHQ0QsrknXRwcKiV8+qysnHplUkIeudt2Ir5uiaCwRyRmTqTmIUzidmws7GSPXMWw90dOHwYWLYM6NpV7dZonpWVFW5rFYBvN56VQ60M5sgcuLm5wV1cK27A1stTTtfQXbXYQZeUDFtf32uOL7wQi8KLF3HhqadLHyxW6hcfa9UaTVathH3DhqhvDOaIzHyI9ZZwH7g72sGiNGkCvPii2q2wqKFWEcyJnjmR19CihvRJ06zs7eHYqhWyt++A2623ysf0xcXI3rEDXhWskrcPD0fY//4s91jiZ7NQnJ2NgNcmwy5QnVESBnNEZsoih1jFJOZaGi6hqmvXwFPmMUzIzMe208no10JJWUKkBT4PP4RLr06GY+vWcGrbBilz56E4NxeeI++SP780aRJs/QPg/+ILsHZwgGOzZuWeb+PmJm+vfrw+cQEEkRlKyMyTub+E20oSu2qeyI9xyy3A3XcDsbFqt8aiiPyFA7mqlTTKfcgQ+L/yChI/n4VzI+5C3vHjaDhntnGYtfDSZRQlJsKUsWeOyAytO5YgY5uoBh4I9HCERVi3TklJcuqUMm+O6n2o9ecdsXJ4/7279LCxpATVpHneYx6QW0UazZ933ecGT694pWx9Ys8ckRlaY4lDrIYkwY88Anh6qt0ai6PMzbRFcnYB9sWmqt0cIiqDwRyRmUnPLcTW00nlErpq3okTSvkuKyvg2WfVbo1FsrOxNtZqXXOEQ61EpoTBHJGZEUXPC3V6NPV3RYS/MvHWYpIEDxsGRESo3RqLZawGEX0FejHOT0QmgcEckZlZVdIrMrhNECxCSgowd66yzyTBqurdTFQascaFlFwcu5ypdnOIqASDOSIzkpVfhI0nlVVVQ9pYyHy5778HcnKAqCigTx+1W2PRnO1tZUAncFUrkengalYiM7L+eAIKiopleaXmARYyxDp+PODkpNRgFXPmSFWDWgXKFa2rjlzG87epl1eLiEoxmCMyI6sOX5a3g9sEyjJLFkEk5HzmGbVbQSVujQyQJeROxmfhVHwmmlrKlwoiE8ZhViIzkVNQhH9PJMj9wa0tYL6cmGDPSfYmx8PJDr2aKkOtK0q+XBCRuhjMEZkJURczr7AYod5OaBVsAUlz//5bmSe3cKHaLaGrDC1ZfLPiEIM5IlPAYI7ITKws6QUZ0jrIMoZYP/gAOHwY2L5d7ZZQJUOtpxKycDKeq1qJ1MZgjsgM5BXq5OIHi0lJsm8fsH49YGPDdCQmOtTa2zDUyt45ItUxmCMyAyIdSU6BDsEejrIeq+Z9+KFyO3o00LCh2q2hCgwp+VJh6DEmIvUwmCMyq1WsFjDEeu5c6Ty5l19WuzV0naFWextrDrUSmQAGc0RmMMQq8npZTKLgmTOB4mJg4EBlAQSZ8KpWX7nPoVYidTGYIzJxYq5cdoEOIZ5OaB/qBc2X7hIVH4RXXlG7NXQDQ9uWrGrlUCuRqhjMEZm4/x24JG/viAqCtbXGh1i9vIA//lCqPvTvr3ZrqIpDrac51EqkKgZzRCYsI68Q60sSBQ+PCobmifmAgwcDX3/N0l1mwN2xdKh1OYdaiVTDYI7IhK09Gi9rsTbxc0FkkMYTBbPag1kPtS4/eAl6/g6JVMFgjsiE/e+gMsQ6LCpY26tYdTqge3fg//4PyMhQuzVUDQNbBcLRzhpnk7Jx+GK62s0hskgM5ohMVHJWPracTrKMIVYxT27HDuDLLwFrXpbMiauDLW5tGSD3l+1XvnwQUf3iVZPIRK08cgW6Yj1ah7gj3M8VmiWG5t5/X9l/9lnAVcPvVaPubBcib/86dEn+zRJR/WIwR2Si/ipZxar5Xrnly4FDh5Qg7pln1G4N1UCfZn7wdLZDYmY+tp9JVrs5RBaHwRyRCbqcnotd51Pk/h1tg7XdK/fee8r+008D3t5qt4hqwN7W2ljea9mBi2o3h8jiMJgjMkHLDyppHro09kawpxM0699/gZ07AUdH4IUX1G4N3YQRJUOtq49ckVVLiKj+MJgjMuVVrO003CsnTJ+u3D76KBCgTKIn89SpkReCPRyRlV8kq5YQUf1hMEdkYk7FZ8oUD7bWVhjSWuO1WL/6Cnj8ceDll9VuCd0kUZ1keEnv3LL9HGolqk8M5ohMzOJ9ygdh3+b+8HF1gKZFRACzZwONGqndEqoFI9orPckbTiQiPadQ7eYQWQwGc0QmRKR1WLo/Tu7f01Hp5dCk4mK1W0B1oEWgO1oEuqFAV4xVR1jei6i+MJgjMiHbziQhPiMfHk526NfCH5r14IPA6NHAqVNqt4Rq2fCSeZ5LONRKVG8YzBGZkMV7lV65YVFBcLC1gSYdPw78+iuwYAGQk6N2a6gOVrWKynO7zqUgNpm/X6L6wGCOyESIVYCrj16R+3d3aADNevttJb/ciBFAVJTaraFaJlLp9Izwlft/7FO+nBBR3WIwR2QiVh6+jLzCYoT7uqBdqCc0KToa+P13Zf+tt9RuDdWRezo2MPY0F7O8F1GdYzBHZCKWlPRi3N2xAazEOJUWvfOO0it3111Au3Zqt4bqyO2tAuHmaIuLabnYcZblvYjqGoM5IhMQl5qDHWeV8l0j2mt0FevRo8o8OWHKFLVbQ3XI0c4Gw0pqCv9RMg+UiOoOgzkiE7CkJLdct3AfhGi1fNfMmUqv3N13A23bqt0aqqeh1pVHLiMzjznniOqSbZ2enYhuSMwpWrD7gtwf1UnDCx8+/RRo1gwYPFjtllA9aB/qiSZ+LjiTmI0Vhy5jdJeGajeJSLPYM0eksi2nk+TcIjHHaEibIGiWqyvwyitAmzZqt4TqgZj3OapTqNznUCtR3WIwR6QyQ6/cXe1D5FwjzUlPZ8UHCyX+pq2tgD0xqTibmKV2c4g0i8EckYqSs/Lxd7SSW250Z40OQ40bB3TsCOzcqXZLqJ4FuDuiTzM/ub9gj/KlhYhqH4M5IpUXPhTq9GjbwAORwe7QnD17gCVLgIMHlWFWsjiGuXJ/7IlDfpFO7eYQaRKDOSKV6PV6/LY7Vtu9cq+9ptyOGQO0aqV2a0gFA1r4I8DdAcnZBVhzNF7t5hBpEoM5IpUo84iy4WxvYyxOrinr1wNr1wJ2dsDUqWq3hlRia2ON+0q+rPy6M0bt5hBpEoM5IpX8tkvplbujbRBcHTSWJUjkk5s8Wdl/8kkgLEztFpGKRncOlQshRGLsM1wIQVTrGMwRqSA9t1DWYhU0mX9r2TJg1y7AxQV44w21W0MqC/Z0Qr/m/nL/t53Klxgiqj0m0R0wb/t5fLvxLBKz8tEyyB1Th7e6bqFxkYDy47UnEJeaizAfF7w6uAX6tVAuFMKLCw9icUmdS4Pezfwwb1yXOn0fRFUl8m7lFRajRaCbTK6qOWLRg/D880BAgNqtIRPwn64Nse54Av7YF4eXbm+uzTQ8RJYazP118BLeXX4M797VWn6o/bD1HB78fifWv9QXvq4O1xy/NyYF//19P165vTkGtPTHnwcu4Yn5e7B8Yi80D3QzHieWw384qrRkkIMNLxxkOhUf5m8/L/fHdmskk6tqzrx5wMiRQP/+areETETf5v4I9nDEpfQ8rD5yRbs1iIkscZj1uy3nMLpLKO7tFIqmAW54b0QbONnbYGElOYl+2HpeBmpP9mmCCH83vDiwOVoFe2BuyYejgb2tNfzdHI2bh7NdpW3Iz89HRkaGccvMzKz190lksOlUIs4n58iKDyPaafQDTQSod90FeHio3RIyETbWVsaFEL9wIQSRdoK5gqJiHLmYjh4RvqUNsraS9/fFpFX4nP0xqeWONwyh7otJLffYjrPJ6PjOWvT/aANeX3oYqdkFlbZj2rRp8PDwMG6RkZE3/d6IKjNvu/JBNqpjKFy0tvBh82al4gNRBe7rHCqDut3nUxF9KUPt5hBphqrBXGpOAXTF+muGU/1cHeT8uYqIx31d7a863h5JZY7v09wPn9zbDr883hWTBrfAznMpePjHXfK1KjJ58mSkp6cbt+jo6Fp5f0RXi03Owb8nEoxDrJqSlAQMGwZERAAnTqjdGjJBgR6OGNQ6UO7/tO2c2s0h0gzVh1nrwvCoYNwWGYAWge64vVUgfnioMw7Gpcveuoo4ODjA3d3duLm5lc69I6pNP++MkVk7RG9ymK8LNOXtt5VeuZAQJaAjqsC4Ho3l7bIDl2Q5OyIy82DOy9ledrmX7VUz9L6J3rmKiMeTssoPmSZmFVS4WMKgoY8zvF3scT45u5ZaTlR9uQU6LNitzAV9SGu9csePA199pex//DHABUdUiQ4NvdAmxENOs/m95N8DEZlxMCcWKbQO8cC200nlVvptO52MDo0qTtfQvpFXueOFLacS0aGRV6Wvczk9Vw7pioUQRGqu3Bb55UK9neTKPk155RVAp1OGWQcMULs1ZMLE6u1HSnrn5m+PQaGuWO0mEZk91YdZH+sZht92X5B5t04nZOL1ZUeQU1AkJ4cLLyw4gBmrj5frot94MhFzNp3F6YQszFx7EocvpuOhbsrFITu/CO+vPIZ9sam4kJKDraeT8Pi8PWjs44LezcovnCCqzzqsIu2OMKZrI9kjrRnr1gF//QXY2gIffqh2a8gMDG0bJEdTrmTkYdWRK2o3h8jsqb6UblhUMFKyC2RQlpiZj5bB7pg7rgv83JRh04tpueXycHVs5I3PRrfHx3+fwIdrTqCxrzNmj+1kzDEnPiSPXc7A4r1xyMgrlL1xIoh74bbmcLDl0A+pY8vpJBy/kinrsI4uSc+gCaI37sUXlf2nngKaN1e7RWQGxLV4zC0N8ek/p/DT1nNynjMR1ZyVXnQZUDlxcXEIDQ3FhQsX0KBBA7WbQxrw4A+7sOlkIh7u3hhThreCZoicjBMnKj1zJ08CPj5qt4jMREJmHnpMX49CnR5/TuiBKC1WQqF6F2ehn9+qD7MSad2JK5kykBMjq+N6aKzgvFj5/dNPwKlTDOSoWsSoybC2wcbk8URUcwzmiOrYnM1n5a3IryVWVmuSt7faLSAz9Ggv5cvNikOXZA5GIrWk/PILTvcfgONto3Du3vuQe+hQpcemLlyI8w+MwYkuXeUW88gj1z2+PjCYI6pDCRl5+PPARbn/WK9waMbRo0rt1bNKoEpUE6IUo8i5KPK5G770ENW3jJUrkTB9BnwnTEDYksVwbN4csY89jqLkinPT5uzaDfehQ9Bo7k9o/PtvsAsMQuyjj6EwPh5qYTBHVId+2nZezgnq1MhL5tfSBDHN9plngKVLRfkUtVtDZu6pPk3krajHfXXOUaL6kPzTXHiOGgXPu0fCISICgVOnwNrREWmLl1R4fMhHH8L7P/+BY8uWcAgPR9C774i8asjevh1qYTBHVEcy8wrx844Y7fXKLVwIbNgAODoCM2ao3Royc7eEe8vFD/lFxfhp63m1m0MakZmZiYyMDOOWn1/xFwV9QQHyjh6FS/duxsesrK3h0q0bcg8cqNJrFefmQV9UBBsPD6iFwRxRHZm/IwYZeUVo4uciy8tpQlZWaSoS0SvXWMnvSFRTIvWUoXdu3vbzyMovUrtJpAGRkZHw8PAwbtOmTavwuKLUNJliyeaqBVw2vj4oEvWmqyDh449g6+8Pl+7dYbF55oi0Wrrr+83KCr2n+0ZoJ0nwO+8AFy8C4eFK1QeiWjAwMgDhfi44m5iN33bG4vHeGurJJlVER0cjRNSJLlODvS4kzZ6DjJWr0GjeXFjX0WtUBXvmiOrAb7tikZxdIEt3DW+nkYSoR44An3yi7H/2mTLMSlQLrK2t8GRJAPfdlrPIL9Kp3SQyc25ubnB3dzdulQVztl6espa07qrFDrqkZNj6Xr9qVPL3PyB5zhw0/O47uWhCTQzmiGqZ+CD6dtMZuf9UnwjY2Wjkn9n06UBREXDnncAdd6jdGtKYEe1DEODugPiMfCzaE6d2c8hCWNnbw7FVK2Rv32F8TC8WM+zYAad27Sp9XvJ33yHp66/RcM5sOLVpDbVp5FOGyHQs3ntRfiAFujvi7o6l3fxm77vvgLfeAr74Qu2WkEZLfBnmzn3572n2zlG98Xn4IaQtWoS0pcuQf+YMrkyZiuLcXHiOvEv+/NKkSUj4+JPSodU5c5D42SwEvfce7EJCUJSYKLfi7GzV3gPnzBHVokJdMb7eeFruP9E7XFv1gMWw6pQpareCNGx0l4b4euMZXE7Pw8LdFzC2GxfYUN1zHzIERSmpSPx8FnSJSXBo2VL2uBmGWQsvXRZLXI3Hp/32O/SFhbj47LPlziPy1PlNfAZqYDBHVIvE8NCFlFz4utrj/i4NoYmcciKf3PDhgC0vF1S3HO1s5IKht/53FF/+ewajOoXKx4jqmveYB+RWkUbz55W7H7F+HUwNh1mJakleoQ6frz8l98UHkpO9Bj6E/vgDuPtuoHdvuXyfqK7d1zlUTlG4kpEnEwkT0Y0xmCOqJb/sjJXDQ0EejvhPVw30yonVXRMnKvu33ipXfBHVNdETN6Ff6dw58SWJiK6PwRxRLcjOL8JX/ypz5f47oKk2hoZEyS5Ra7BFC+C119RuDVmQezuHItjDUS4kMlRRIaLKMZgjqqUarCKvXCMfZ9zTsQHM3qJFwO+/K71xc+cypxzVK7FwSHwpEr749zTScwvVbhKRSWMwR3ST0nMK8e1GJa/cC7c1M/+8cqI37qmnSkt2demidovIAokvRRH+rkjLKcQ3Jf++iKhiZv6pQ6Q+sehB1GBtHuCGYW01UO3hv/9V5stFRQFvvql2a8hC2dpYY9KgFnL/hy3ncDk9V+0mEZksBnNEN+F8Ujbmbj8v918b2lKWJTJ7Ipdcjx7AvHmAvb3arSELdmtLf3Ru7IX8omLMXHtS7eYQmSwGc0Q3Yfqq4yjU6dGnmZ/cNKFlS2DzZqBtW7VbQhbOysoKrw5uKff/2BuHE1cy1W4SkUliMEdUQzvPJmP10SsQnXGvD1U+cMxWYSGwe3fpfSsN9DCSJnRs5IVBrQJRrAfeXRENvUhkTUTlMJgjqoHiYj3eW3nMWIKoWYAbzH5o9ZZbgA8+ULslRNeYPKQF7G2ssflUEv6Ojle7OUQmh8EcUQ0s3heHQ3HpcHWwxfO3NoNZW78emDZNRKhAWJjarSG6RiMfFzzeW/nbfGd5NBMJE12FwRxRNaXlFMi5csIz/SPg5+agdpNqLjERGDNGqcH6+OPAqFFqt4ioQhP6RcgyX3GpuZi96azazSEyKQzmiKrpwzUnZILgpv6uGNfDjHuyRE/cgw8Cly8rix4+/VTtFhFVytneVq4YF77acBpxqTlqN4nIZDCYI6qGgxfS8OuuWLn/zojWsLc1439Cb78NrF6tVHcQ1R6cndVuEdF1DWsbhC5h3sgrLJbDrUSkMONPIqL6pSvW441lR+SI5Mj2Ibgl3Adm6+BBYOpUZf/bb5mGhMwmVcnbd7aCrbUV1hyNx+ojV9RuEpFJYDBHVEXzt5/H4YvpcHO0xeQhZp6KRFR3mDMHeO45ZaiVyEy0CHTHk33C5f7//XmEdVuJGMwRVU1scg4+WHNC7r8yqIV5L3oweOwxYOZMtVtBVG0T+zdFmK8LEjLzMWO1shiJyJIxmCOqQk65SYsPIadAh65h3nigS0OY7YKH999X6q4SmTFHOxtMG9lG7v+6M1Ym8CayZAzmiG5ALHjYfjYZTnY2+OCetuZbf1XMkXv9daBXL6XiA5EZE3NW7+8SKvdfXXIYOQVFajeJSDUM5oiu40JKDqaVVHp4ZVBzmbzULP36q7J6VXj5ZcDOTu0WEd00UbdV5J47l5SN90v+nRJZIgZzRNdZvfryHweRXaBDl8beeKhbY5il7duBceNKA7lHHlG7RUS1wsPJDh/fGyX3f94Ri3+PJ6jdJCJVMJgjqsTXG05jx9kUONub8fDq6dPAnXcC+fnA8OFK2S4iDekR4WtM3v3yH4eQkl2gdpOI6h2DOaIK7I1Jxcx/Tsn9d+5sjca+Zji8Kio7DByolOxq3x745RfAxkbtVhHVOjEFQlRkScrKx+Qlh6AXySCJLAiDOaKriLxV//1tvxxmHdEuGCM7hMAs5eYC1tZAkybAqlWAq6vaLSKqs9Wtn45uBzsbJZnwT9vOq90konrFYI6oDPGN/rUlh3ExLRcNvZ1lyS6Rdd4shYcDW7cCa9cCAQFqt4aoTrUK9sDrJcm831txDPtiU9VuElG9YTBHVMaczWex4vBlWS7os9Ht4OZoZqs+CwqAjRtL74sgLkyZT0SkdQ91b4yhbYNQVKzHM7/s4/w5shgM5ohKbDmVhOmrlGzybw2LRPuGXjArInfcvfcCAwYAv/+udmuI6p3oRZ9xd1uE+7rgUnoenltwQE6XINI6BnNEJfnkJv62D+K6P6pjA4y5pRHMLpC7/37gzz8BW1vA21vtFhGpwtXBFl+N6QBHO2tsOpnIcl9kERjMkcXLzi/Ck/P3IjWnEG0beJjfPDkRyI0ZAyxeDNjbA8uWKatYiSxUi0B3fHiPkn9u9qazWLA7Vu0mEdUpBnNk0Yp0xZjw6z5EX86Aj4s9vh7TUa6MM6sVqyNHAgsXKlUdliwBBg1Su1VEqhsWFYznbm0q919fegTbz7B+K2kXgzmy6JWrb/55BBtOJMohme8e6oQQTyeYjbw8YPBgYPlywNFR6ZEbOlTtVhGZjGcHNMUdJQsinvplL84kZqndJKI6wWCOLNZXG87gt10XIEZUZ41ub34LHhwcgLZtAXd3YM0aYMgQtVtEZFLEdImPRkUhKtQTaTmFGPvdTlxKy1W7WUS1jsEcWaSfd8TgwzUn5P6UYa0wsFUgzI6IQj/9FNi3D+jdW+3WEJkkMW3ih4c6IdxPWeE69vudSM7KV7tZRLWKwRxZnIV7LuCNZUfk/vg+TWRuKrMhcsjdfbeST04wVHggokr5uDrg50e7ItjDEWcSs/Hwj7uRmVeodrOIag2DObIofx64iEmLD8n9h7s3xqRBzWE25s4FbrtNWeTw0Udqt4bIrAR7OmH+Y13h7WKPwxfT8eAPu2TpPiItYDBHFmPZ/ot4YeFBiBrc/+naUCYGNosUJCL1yIsvAg8/rOyPGgU8/7zarSIyO038XDFvXBd4Otthf2waxny3E2k5rBJB5o/BHFmEudvOG7PBi6TA795pJrnkLl9WKjp88oly/7XXlOoOTma06pbIhLQO8cCvj91i7KG7fw7n0JH5YzBHmk8/MmvdKbz1v6PGoVVR7sfa2gwCuZ07gQ4dgM2bATc3ZXj1vfeUeXJEVGORwe74/Ylb4OvqgGOXM3DPN9sRk5ytdrOIaoyfCqRZhbpivL7sCD5Ze1Lef/7WZnJo1SwCOUGU5MrJAVq3BvbsAe66S+0WEWlGswA3LHzyFplb8lxSNu76ahv2x6aq3SyiGmEwR5ok5sE89MMu/LozVmbwmDIsEs/e2tT0h1aTy2Spb9oUWLsW2LEDaNZMzVYRaVK4nyuWTuiONiEeSMkuwP1zdmDV4ctqN4uo2hjMkeacTsjEiC+3YtuZZLjY2+C7Bzvh4R5hMGk6HTBrFtCoEfD336WPd+kCuLio2TIiTfN3c5RDrv1b+COvsBhP/bIPM1Yfl6X+iMwFgznSlMV74zDs8604n5wjh08WP90dA1oGwKQdPgz06AE8+yyQnQ3Mm6d2i4gsiouDLWaP7YhHeypf+r7ecAYP/biLCyPIbDCYI03ILdDh5UUH8eKig8gt1KF7Ex/8+UwPtAh0h8kSgdvrryuLHMRiB1GW66uvGMwRqcDWxhpv3hGJWfe3h5OdDbaeTsbQWVuw5VSS2k0juiHbGx9CZNr2xqTg5UWHcDYpG2Jtw7MDmuGZ/hGwMeWFDn/+CTz9NHDpknJfLG74/HMgJETtlhFZtOFRwWgR6Ibx8/fKa8qY73diXI8wvDKouSwNRmSK2DNHZiuvUIf3VkTLtALiouvv5oCfH+sqFzqYdCBnIAK5sDBg6VIl7QgDOSKTWem6/L89MeaWhvL+D1vPYdjnW7DnfIraTSOqEIM5MsvcceuOxeP2TzdhzuZzsqLDyA4hWPt8H3Rv4guTJIZRFywovT98OPDzz0B0NDBihJotI6IKONvb4t0RbfDjw51lPrpTCVnyi+PkJYdYNYJMjpVefDJSOXFxcQgNDcWFCxfQoEEDtZtDZZxJzMI7y6Ox4USivB/g7oD372pjuoscdu0CpkwBVq0CvLyAc+cADw+1W0VE1ZCaXYDpq45jwZ4L8r6Piz2eu7UpRndpCDsb9omYkjgL/fzmnDkyC/EZefjq39P4dVcsCnV62NlY4dGe4XJunKuDremlGfnrL2DmTGDTJuUxGxulBy6fq+OIzI2Xiz1m3NMWd3dsgNeXHpa9dG/+eRQ/bD2PSYOa4/ZWgaafw5I0zcQ+BYnKS8zMl2kCftkZg/wiJe+TyAclVp2F+Zpg/rWNG4Fx44CzZ5X7trbAmDHAG28ATZqo3Toiugldwryx8tle+H1XLD7955SsHDH+532IauCBp/tF4LaWAeZTYYY0hcEcmaRT8Zly0vGSfReNQVynRl544bZm6B5hQvPiiouB1FTAx0e5L7r1xVCqKMX15JPAhAlc2ECkIWJYdWy3xhjRPgRzNp2V83YPxqXjyfl70dTfFeP7NMGwqGDY23L4leoP58xVwFLH3E2hlqqYCzdv+3lsLpPbqV2opwziejX1NY2hDPFPZt8+YNEiZVFD27ZKqhEDMT+uTx/A2VnNVhJRPUjKysePW89h3rYYZOYXycd8Xe1xb6dQ3N+lIUK9eR2oT3EW+vnNYK4ClvrHoJYTVzKxaM8FLDtwEUlZyioxEbMNjAyQ8+I6N/ZSP4gT8+BEsXuRRkQEcYZhVEH0ysXGMngjsmAZeYX4eUcMftp6HgmZytxYcdnq08wPd7YLxm2RgaY3v1eD4iz085vBXAUs9Y+hvog/uejLGVhzNB5/H72C41cyjT8T32jvah+Csbc0RkMfEwqO7rkHWLy49L6TEzB0KDBqFHDHHQzkiMg4wiBSJ/28IxZbTpeOMDjYWuPWlgG4o20QejXzY2BXR+Is9PObf01UL9JzCrH9bDK2nUnC+uMJiEvNNf5MrEwd0CIA93RsgD7N/dRZ6i++05w/D2zZAmzdqtyuWVM6361nT+Cff4CBA5UAbsgQwMUEF2AQkarE9WtQ6yC5iQUSy/ZfxF8HL8nE5isOX5abuOZ1buwtF3OJnrsIf1f1Rx/IrLFnrgKWGtnXpivpeThwIQ37Y1Ox7UwyjlxKl/GSgaOdNXo39ZNL+ge09Iens339N/L4cWDhQmD/fiWp7+XL5X/+ww/AI48o+zk5gL29sjqViKgaxMfs0UsZ+N/BS1gbHS+DvLJE3joR3HUO80bXMG9ZTkzUiqXqi7PQz28GcxWw1D+GmtAV6xGbkiNXn56Mz8ShuHQcjEtDfMa1+dSa+LmgR4Sv3EQg52RvU/fz3MRcthMngJMnldv77gN691Z+vmyZUhPVwM4O6NhR6YUTW69eyqpUIqJaJIK5f48n4N8TCdh1LsW4Yt9ArIQVAV2rYA+0CnaXW9MANw7NVkGchX5+m8Rfhli9+O3Gs0jMykfLIHdMHd5KrmCszIpDl/Hx2hNyqC7MxwWvDm6Bfi38jT8X8enMtSfx2+4LyMgtRKfGXrIsi0nmJTMD+UU6XE7Lk/+/41JzcDEtF+eTlQBODB0UXHUhEkSqJVHfMKqBJ7qGe8syW4EejrXbsNxcpb6pqysQUFIB4uhR4KWXgJgYZZHC1Ul6g4NLg7lOnYCxY4H27ZUgrnNnZS4cEVEdEp9FYT3DMK5nmLy+Ho5Lx67zKdh9LgV7YlKRmVckvxiLrSxRf1o8N9zPFeG+Lmjk44xgTyd5bRW9exyqrbmUX35Byvc/oCgpCQ4tWiDwjdfhJDIVVCJj9WokfjYLhRcvwr5RI/i/9CJcRRYDS+2ZE3MJXlx4EO/e1RrtQz1lbjERrK1/qa+sh3e1vTEpuPfbHXjl9uZyeO7PA5fwzcYzWD6xF5oHusljRJLZrzacxsejouSy8I//PokT8Rmydqej3Y17g7Qe2YvgKzOvUF4wxJaWW4DkrAK5xD6p5Da5ZD8hM0+uzLreX4kYMhVzPiL8XNE6xANRoZ7ym6SobVilPG3Z2UB6OpCRoWxiXxSgb9ZMOUYEZe+8AyQmAgkJyq3YxPOEd98FXn+9NJhr3br0/GJotGlT5VzNmytz3USPGxGRCSouGe0Qw7JHL6XjyKUMRF/KkNfl67G3sZZBXZCHo7z1drGXAZ6oXuHtXHIr7jvbw83RVi7I0GLwF1eDz++MlStxadKrCJwyBU5RbZEydx4y1qxBk1UrYWvIIVpGzr79iBk7Fv4vPA/Xvn2Rvnw5kr/7HmGL/4Cj4XPL0oK5O7/cKrNnv31na+Mfcrfp6/BQ98Z4um/ENcdP+HUfcgt0+OHhzsbHRny5FZHB7rJGp3g7Xd5fh8d7heGJ3k2MS8Y7vfsPPhoVheFRwaoFcyKAyohPBpKTUaQrhr64WN6KeEZXXAydrhh5/oEodHSWw5dITYFd/GXodHr5s2LoUawTz9GjsKgIyb4hyHRyQV5hMaxSk+FyIQaFRToUFhajQKdDUaEOBUU65BYU4ZR7EGJt3WQbnDNS0TwpBlbyN68XfwQQ/6St9cWwKdbhlG8jXPRQejr9M5PRM+YAnKz08HW0gY+jNbwdrOFjbwU/Jxu4Db4dfv17KlnPz5wBvvhC6TEzbHl5pfsiia7oCRPEPLW+fYHMTGXxwdXeekupaVpRgFaWWEX64ovA22+Xzm0Tud9CQ4HwcKBRI6WUFhGRGUvPLZTDs+eSsnA2MVtuYqTkUnqeDPSq+0lua20FZ3sbOXTrUrIp+zZwsbeFg521DBAd7GyUW1trOfyr3NoY74sFHzbWVvJ81oZbKyvY2pTcWlvJn5fbrJRbdyc7eDjZ1er/p7gafH6fu/c+OLVujcD/e1PeF5/Np/v2g9eYMfB94vFrX+P556HPyUXot9+UnuO+++DYoiWCppZ8blnSMKvoITpyMR1P9y0tcyT+GMScqn0xaRU+Z39MKh7tFV7usd7N/GSKC+FCSq4sASXOYeDuaCeHbffFpFYYzOXn58vNIFMEGHVg3vYYJL73Iaasm13pMQ+NmoqN4R3l/n0H12DG6s8rPXb8iMlY3byH3B8evRGz/vqw0mOfH/oC9rXuL/d7XTyO75a8U+mxG55/Gwl33wofV3uEHdiO8K9mVv6mQryBW0t6uuLjgU8/rfxYsRLUQCwkEL1wZe+LAvTu7sqtb5kqDyIwe/99wM8P8PcvvRWbGGIt++1SBHeGRQtERBohgh7xOVbRFCTxWSrqV1/JyMOltFy5n5JdiNTsAqTkFJS7TcstlIFfUbEeGXlFclPLU32bYNKgFnVy7szMTGSU+YxxcHCQ29X0BQXIO3q0XNBmZW0Nl27dkHvgQIXnzj1wED4PP1TuMdcePZG5bh3Uomowl5pTIHugrh5O9XN1wJnE8qt9DMS8OpGLrPzx9sYu6MSsPOM5rj6neG5Fpk2bhqlTp6KuieXoYpJ9rq0D9CL+sLIS/WLGYETs+3m6yCFL8W3G95IH0l09xIHQi2MMQUvJfrumgXDr2EAOHbe2a4j0nUGwsrKWP7OytpK9beKPUnSlP3VHOzw+vJfsXvfaaQ99dAuli73sJnqwbG3Rt3tLoHOo8loFYcCgQUqwVdEWGVn6Bhs2BF59VZl3JjZHx/L7rVqVHiu6osVqUkMAJ46prMtf/Hzy5Lr7xRARmTHRQyamFFWl2oT4zM0pKEJ2vg5Z+eJW2eR+gbjVISe/SAaIBbpiuThD7Iu5fWLfcN/wWKEYOSrWo1ivl6NG8lbcL1ZudYZNX2a/ZBM9fnUlsuxnkxzseQtTDKM9ZRSlpsnFcjZXDafa+PogX5RmrICYV2fj43vN8eJxi14AobbJkyfjhRdeMN6/ePHiNX8ItUEO+/b+AoDYKvZRuXtion7lPWjjy94Z0Rp455lKjy03ij/4NmDwsSq1GVFRSnmqqhBd2tOmVe1Y8Q1JzGEjIqJ6I4Y33Rzt5KZl0dHRCClTF7uiXjktUTWYExMxxR/W1RM7RQ/a1T1rBuJxQ8mn0uMLjL17fq6OxnP4u5eunhT3I4PcKzzn1d2vZbtmiYiIyLy4ubnBXYzq3ICtl6ccldIlJ5d7XJeUDNuy033KPsfXF7rkpCofXx+s1e4aFqsft5UpeSK6ZredTkaHRhWnJmnfyKvc8cKWU4no0MhL7od6O8HPzUGew0BM+hcJbA3HEBEREVnZ28OxVStkb99hfEwsgMjesQNO7dpV+ByndlHljheyt22r9Pj6oHqK6cd6hsl8cH/sjcPphEy8vuyIHM8f1VGZs/XCggOYsfq48fhxPRpj48lEzNl0FqcTsmQ+ucMX0/FQt8by52Ie2LgeYfh8/SmZafv4lQy8sPAgAtwdZOF2IiIiIgOxmCFt0SKkLV2G/DNncGXKVBTn5sJzpJJU/tKkSUj4+BPj8d5jH0TWli1I/uFH5J89i8TPv0Du0aPweuA/sNg5c8OigpGSXSCDMrEKtWWwO+aO6yJ71wSRoLZsLpyOjbzx2ej2+PjvE/hwzQk09nXG7LGdjDnmhPF9wmU6jslLDsu0JJ0be2HuI12qlGOOiIiILIf7kCEoSklF4uezoEtMgkPLlmg4Z7Zx2LTw0mWxmtB4vHOH9gj56EMkfvoZEmfOhH3jRgj94nPVcsyZRJ45U6T1pMFERERaFGehn9+qD7MSERERUc0xmCMiIiIyYwzmiIiIiMwYgzkiIiIiM8ZgjoiIiMiMMZgjIiIiMmMM5oiIiIjMGIM5IiIiIjPGYI6IiIjIjKlezssUFRcXy9vLly+r3RQiIiKqossln9uGz3FLwWCuAvHx8fK2S5cuajeFiIiIavA53rBhQ1gK1matQFFREfbv34+AgABYW9fvSHRmZiYiIyMRHR0NNzc3aJklvVdLe7+W9F4t7f1a0nu1tPerhfdaXFwsA7n27dvD1tZy+qsYzJmYjIwMeHh4ID09He7u7tAyS3qvlvZ+Lem9Wtr7taT3amnv15Leq9ZwAQQRERGRGWMwR0RERGTGGMyZGAcHB7z11lvyVuss6b1a2vu1pPdqae/Xkt6rpb1fS3qvWsM5c0RERERmjD1zRERERGaMwRwRERGRGWMwR0RERGTGGMwRERERmTEGcyZuxYoV6Nq1K5ycnODl5YURI0ZAy/Lz89GuXTtYWVnhwIED0KLz58/j0UcfRVhYmPy9NmnSRK4gKygogFZ8+eWXaNy4MRwdHeXf765du6A106ZNQ+fOnWWmfH9/f/lv88SJE7AE06dPl/9Gn3vuOWjVxYsXMWbMGPj4+Mh/p23atMGePXugRTqdDm+++Wa5a9I777wDro80H5ZT68IMLV68GI8//jjef/999O/fX5YZO3LkCLTslVdeQXBwMA4ePAitOn78uCw58+233yIiIkL+TsXvOTs7Gx999BHM3YIFC/DCCy/gm2++kYHcp59+ittvv10GOiLo0YqNGzdiwoQJMqAT/zZfe+01DBw4UJZCcnFxgVbt3r1b/u22bdsWWpWamooePXqgX79+WLVqFfz8/HDq1Cn5hVqLZsyYga+//hpz585Fq1atZND6yCOPyGoQ//3vf9VuHlWFSE1CpqewsFAfEhKi/+677/SWYuXKlfoWLVrojx49Kr4O6vfv36+3FB988IE+LCxMrwVdunTRT5gwwXhfp9Ppg4OD9dOmTdNrWUJCgvy73bhxo16rMjMz9U2bNtWvXbtW36dPH/2zzz6r16JJkybpe/bsqbcUQ4cO1Y8bN67cYyNHjtQ/8MADqrWJqofDrCZq3759spvf2tpaFgwOCgrC4MGDNdszJwoji96p+fPnw9nZGZZG1EL09vaGuRNDxXv37sWtt95qfEz8DYv727dvh9Z/h4IWfo+VET2RQ4cOLff71aL//e9/6NSpE0aNGiV7k8U1eM6cOdCq7t27Y926dTh58qS8L0ZGtmzZIj9zyDwwmDNRZ8+elbdTpkzBG2+8geXLl8su/r59+yIlJQVaIuZlPPzwwxg/fry8gFqa06dP4/PPP8eTTz4Jc5eUlCTn3wQEBJR7XNy/cuUKtEoMm4v5Y2JornXr1tCi33//XX7JFHMFLeH6K4YdmzZtijVr1uCpp56Sw41iGFKLXn31VYwePRotWrSAnZ2dDF7F3/MDDzygdtOoihjMqfCPRkwcvt5mmFMlvP7667j77rvRsWNH/Pjjj/LnixYtgpbeqwhkMjMzMXnyZJizqr7fskTv66BBg2QPgOiZJPPtsRK95iLg0aILFy7g2WefxS+//CIXtWiduP526NBBzlcWgc0TTzwh/32KeaBatHDhQvm7/fXXX2XALoJWMX9Xq8GrFnEBRD178cUXZS/U9YSHh+Py5ctyPzIy0vi4qJcnfhYbGwstvdf169fLIbir6wGKXjrxzdBcLihVfb8Gly5dkhOsxRDH7NmzoQW+vr6wsbGRw+ZlifuBgYHQomeeeUb2nG/atAkNGjSAFomh84SEBBngGIgeWPGev/jiC7kKXfzetUJMayl77RVatmwpF6Vp0csvv2zsnRPEyt2YmBjZC/vQQw+p3TyqAgZz9UysihLbjYieOBHciBWAPXv2lI8VFhbKtBaNGjWClt7rrFmz8O6775YLcsTqR7EqUqyGNBdVfb+GHjkRyBl6XMW8Mi2wt7eX70nMvzGk0RG9HOK+CHq0Nj1g4sSJWLp0KTZs2CDTOmjVgAEDcPjw4XKPidWOYlhu0qRJmgrkBDFcfnWaGTGfzFyuvdWVk5NzzTVI/E4NI0Rk+hjMmSh3d3c5h0zkHwsNDZUXkQ8//FD+TAzJaUnDhg3L3Xd1dZW3IteRFns6RCAn5j6K36kYykhMTDT+TAu9VyItifg2L3pWu3TpIlOTiLQr4sNfa0OrYljqzz//lLnmDHMCRToHkatLS8T7u3ouoEi/InKwaXGO4PPPPy97zMUw67333ivzJIrec630oF9t2LBheO+99+S1WKQm2b9/Pz755BOMGzdO7aZRVVVz9SvVo4KCAv2LL76o9/f317u5uelvvfVW/ZEjR/Rad+7cOU2nJvnxxx/l+6to04rPP/9c37BhQ729vb1MVbJjxw691lT2OxS/X0ug5dQkwl9//aVv3bq13sHBQaZMmj17tl6rMjIy5O9S/Jt1dHTUh4eH619//XV9fn6+2k2jKrIS/6ly5EdEREREJkUbE3WIiIiILBSDOSIiIiIzxmCOiIiIyIwxmCMiIiIyYwzmiIiIiMwYgzkiIiIiM8ZgjoiIiMiMMZgjIiIiMmMM5ojIrDVu3FiWDKtLP/30E6ysrOT23HPPVfl5U6ZMMT6vrttIRJaLwRwRURXrJV++fBnvvPNOlZ/z0ksvyedoscYwEZkOW7UbQERkDkTvWmBgYLWe4+rqKjcbG5s6axcREXvmiEgVs2fPRnBwMIqLi8s9fuedd2LcuHFy/8yZM/J+QECADIo6d+6Mf/75p9Jznj9/XgZdBw4cMD6WlpYmH9uwYYPxsSNHjmDw4MHynOLcY8eORVJSUrXaf/z4cTg7O+PXX381PrZw4UI4OTkhOjq6WuciIroZDOaISBWjRo1CcnIy/v33X+NjKSkpWL16NR544AF5PysrC0OGDMG6deuwf/9+DBo0CMOGDUNsbGyNX1cEd/3790f79u2xZ88e+Xrx8fG49957q3WeFi1a4KOPPsLTTz8t2xMXF4fx48djxowZiIyMrHH7iIiqi8OsRKQKLy8v2TsmerYGDBggH/vjjz/g6+uLfv36yftRUVFyMxDz1ZYuXYr//e9/eOaZZ2r0ul988YUM5N5//33jYz/88ANCQ0Nx8uRJNGvWrMrnEoHcypUrMWbMGNjb28uew4kTJ9aoXURENcWeOSJSjeiBW7x4MfLz8+X9X375BaNHj4a1tbWxZ04sImjZsiU8PT3lsOixY8duqmfu4MGDsjfQMJ9NbKKXzTCsW10iEDx06BD27dtnXPVKRFSf2DNHRKoRQ6Z6vR4rVqyQvVqbN2/GzJkzjT8XgdzatWvlcGZERIScj3bPPfegoKCgwvMZgkBxToPCwsJyx4gAUbyuGA69WlBQUI2Cw+zsbPnaYuVqTc5BRHQzGMwRkWocHR0xcuRI2SN3+vRpNG/eHB06dDD+fOvWrXj44Ydx1113GQMxscihMn5+fvJWBFViKFUouxhCEOcXvYEiP52t7c1dAsUcP9G+119/Xb6m6GkUPXQi6CQiqi8cZiUiVYkASPTMieFKw8IHg6ZNm2LJkiUyIBM9YP/5z3+uWf1algiibrnlFkyfPl0Ox27cuBFvvPFGuWMmTJggg7D7778fu3fvlkOra9aswSOPPAKdTlettosFD2KunXiNTz75RD5f9CYSEdUnBnNEpCqxstTb2xsnTpyQwVpZIkASCyW6d+8uh0Zvv/32cj13FRFBYVFRETp27CirNbz77rvlfi7SoYgePxF4DRw4EG3atJHHiTl5hmHaqpg3b55c/DB//nzZw+fi4oKff/4Zc+bMwapVq6r5f4GIqOas9GUnlxAR0TXEwgYR8Im0JjUhhnTF86tTCoyIqKrYM0dEVAXp6ely5eukSZOq/ByR/kQ852ZW3xIR3Qh75oiIbiAzM1MmFhbEcKzIhVcVYm6e2AyLMzw8POq0nURkmRjMEREREZkxDrMSERERmTEGc0RERERmjMEcERERkRljMEdERERkxhjMEREREZkxBnNEREREZozBHBEREZEZYzBHREREBPP1/yCqSikjYNsjAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "stochast = Stochast()\n", "stochast.distribution = DistributionType.normal\n", "stochast.fit(data)\n", "\n", "stochast.print()\n", "stochast.plot()" ] }, { "cell_type": "markdown", "id": "c69fcac1", "metadata": {}, "source": [ "The goodness of fit can be assessed using the Kolmogorov-Smirnov test through the [get_ks_test()](https://deltares.github.io/ProbabilisticLibrary/probabilistic_library/statistic.html#Stochast.get_ks_test) method:" ] }, { "cell_type": "code", "execution_count": 21, "id": "4ebd38dc", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "kolmogorov smirnov test = 0.23669173779063168\n" ] } ], "source": [ "def get_ks_test(data):\n", " print(f\"kolmogorov smirnov test = {stochast.get_ks_test(data)}\")\n", "\n", "get_ks_test(data)" ] }, { "cell_type": "markdown", "id": "4e11623d", "metadata": {}, "source": [ "When we consider a log-normal distribution, the fitted parameters are as follows:" ] }, { "cell_type": "code", "execution_count": 22, "id": "f9c39f13", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Variable:\n", " distribution = log_normal\n", "Definition:\n", " location = 1.5964855623845133\n", " scale = 0.4261942592095209\n", " shift = -4.0\n", "Derived values:\n", " mean = 1.4049020870683506\n", " deviation = 2.412211284018044\n", " variation = 1.7169960143284249\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAGwCAYAAADCJOOJAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAcdtJREFUeJzt3Qd4VEXbBuAnvffeIKEnoVepgogKWBAEsaEiCooFUX9EPxVsYAPF8ikoooAISvlQsICF3juEFpJAGum9l/2vmZNdkpBAApucLc99XYc9uzl7djZZdt+dmfcdC41GowERERERGSVLtRtARERERNeOwRwRERGREWMwR0RERGTEGMwRERERGTEGc0RERERGjMEcERERkRFjMEdERERkxKzVboAhKi8vx6FDh+Dn5wdLS8a7RERExqCyshIpKSno1q0brK3NJ8Qxn2faCCKQ6927t9rNICIiomuwd+9e9OrVC+aCwVwdRI+c9sUQEBCgdnOIiIioAZKTk2VnjPZz3FwwmKuDdmhVBHLBwcFqN4eIiIgawdLMpkiZ17MlIiIiMjEM5oiIiIiMGIM5IiIiIiPGYI6IiIjIiDGYIyIiIjJiDOaIiIiIjBiDOSIiIiIjxmCOiIiIyIgxmCMiIiIyYgzmiIiIyCwV7tuH+ClP4uzAQTjZIRx5mzdf9T4Fe/YiZvRonOrUGdG33IrsNWuhNgZzREREZJYqi4pg16E9/F5/rUHHlyYkIH7KFDj17oOwdWvhOWECkl97DfnbtkNNXJuViIiIzJLzoEFyExIbcHz2jz/CNjgIfi/PkNftWrdG0cEDyPzuOzgPHAC1sGeOyIQVlVYgPb8EhaXlajeFiMyVRgOUlQH5+UBGBpCcDOTmNulD5uXlITc3V7eVlJTo5byFhw/DsW/fGrc59R+AosOHoSb2zBGZGBG4/bg3HmsOJSAqKReVGsDCAmjt44zbOwfg/j4t4Otir3Yziai5iYCqqAgoLATKy4Hg4Es/27IFSEu79HPtJq7b2QGvVRuGfPVV4PhxQARItTdHR2Dv3kvH3nYb8OefSkBX3bvvAjNnNtlTjYiIqHH9jTfewKxZs677vBVp6bD28q5xm7W3Fyrz81FZXAxLe3XeWxnMEZmQnefSMX3lEVzMLa5xu3gfjU7Nx8ebz2LR1hg8P6wdJvYPg6WlhWptJaKrqKhQgiln50u3iQn66emi6+nSJnq5xKWPD/DOO5eOHTIEOHXqUmAmAjitNm2As2cvXZ82Daivd8nPr2Ywt3UrsL2eOWJOTjWvi2+StQM5S0ugshJNKSoqCkFBQbrrdiIgNWEM5ohMxLLd5/Ha/47L981gDwdMvrE1hoX7wc/VDhkFpdh+Nh2Ld8TiaEIO3t5wErvOZWD++K5wtbdRu+lEpq20VOn1Sk1VAjERWFTN09IFUgkJQFZWzS0nB+jdG9iz59KxkyYB58/X/Tjt2tUM5sSQ5sWLlx8nAiyxVdetG+DiAjg4KL1r1TdPz5rHvvACMGECYGurPJfqW+2eqe++U4LS6sdYN33o4eLiAldXV72f18rHG+UZ6TVuK0/PgKWzs2q9cgKDOSIT8N3OOLyx/oTcH9sjGLPvioSj7aX/3t7OdhjVLQh3dgnED3sv4M1fo/DXqVTcv2g3lk7sAw8nWxVbT2RkxDcm0RuWlKRsIkgTvWd33HHpmFtuAeLilJ+JoKy62gHa2rXAhQt1P5YI6qrr0wcIDQVEoCKCL+0mrgcE1Dx22TKlrbWDMxGE1Q7mFi9u+PMfNarhx/r6wpQ4du2K/C1ba9xWsHMnHLp2hZoYzBEZuX9Op2L2L0og9+Tg1vi/W9vDovYbdRUxrPrgDS3RJdgdj3y7F8cTc/HgN3uwanJfONnx7YBI9iKJAC0+Xrner9+lnw0fDpw7p/y8oODyIKt6MCeGMEUwpyV6o8QwqLc30LZtzfuKOWhiPpuHR91bdStXNvy5dO7c8GPNVGVBAUqrBdKi9EjxyZOwcnODTWAgUj+ah/LUFAS+9578ufv48chc/gNSPvgA7mPGoGD3buT+/jtCvvxSxWfBYI7IqCVlF+HZFYdkksO4nsFXDOSq6xTshpWTb8D4hbtxIilXnmPhhJ6w4hw6MnWip6r6/5G5cy8FXmITH+zauWW1e9BOnwZiYy9dd3dXesPEnLJOnWo+zjffADY2Ss+U2MSx9f3ffOIJvT5Farii4ydw4eGHdddT5ypBm9uoUQicOwflaWkoS0rW/dw2OFgGbilz5yLr+6Ww9vdHwFtvqVqWRLDQaGrPTKSEhASEhIQgPj4ewdWzfYgMiPiv+9A3e7E9Oh1dQtyxavINsLO2atQ5Dl3IkgFdSXklnhjUCq+MCG+y9hI1G/GxJoY3RfB15kzNTQRW//576djWrYGYmJr3F71o4r2/e3dg9epLt2/apAxRion1IoirPdmfVJdgpp/f7JkjMlKr9sfLQM7exhLzx3VpdCAndGvhgfn3dsVTyw9i4dYY9G3thSHtTWuOC5l40CaSAcQk/xtuuHS76CU7oUw9uExmZs3rU6YAxcXKPDTtFhgIWNXx/2nYMD0/ASL9YDBHZITyisvwwR+n5f70Ye3Qyqda6YJGGtEpAI/0C8WSnXF4cdUR/DZtIOvQkeERSQSidMaxY5c2UetMlOQQwVditfr9otfs5EklMBMZnrW36l56qdmfCpG+MZgjMkKf/RON9PxStPJ2wiP9wq77fC8P74DdMRk4dTEPr607jq8e6qmXdhJdE5FcIOqj9ehx6bYRI4CdOy8/VsxL8/JS6rGJshraLE4xR83Ea4sRGVQw9/2uOHy1JQZp+SUID3DF7Dsj0TXEvc5jV+y9gDUHE3D6Yp5uIvdLt3aocbyYSzR/0xms2BeP3KIy9Az1wNujOiHMm/MbyPiJ5blEKRLh1ZHhsLW+/lX57G2s8PH4rrh9wXb8cSIFf5y4iFsj/fXQWqIGDJWKuWyiCO2OHcC+faLi66XeOG3B3J49lVpsIkNTDKNqN9HTJuaxVScSEojMiOprs/5yJAlv/3oSz93cFhueGYCIABdM+GaP/MCqi+g9ELWyVjxxA9Y81R8Bbg546Js9uJhzqeL9l1ti8O3OOLwzqiPWTe0PBxtrTFi8B8VlFc34zIiaxtfbYlFcVokuwW64qYP+5rd18HeVSRDCG/87IYdyiZrURx8pCQkdOijFcL/9Vhk6FasDiKHS6rXXxLFiftwvvyhLQd13H9Cx4+WBHJEZUj2Y+3p7LMb3DsG4niFo6+eCd0Z1goOtlZzcXZdPxnfDQ31DERnohja+znhvTGf5xW5HdLquV05UuX/mpja4JdJf9vTNu7cLUnJL8GdUSp3nFAvwVl+QVyzQS2SIsgpKsXSX0iv3zE1tG1SGpDGeHdoWLb0c5XJgX/x7Tq/nJjMlAjMx1+3DD4Fbb1XqtGmJYVCxIoKonC9WRBBrda5fr8x/E71w1dfXbIZVA4iMlar/O0rLK3E8MQdPDW5do6hp/zbeOHg+u0HnKCqrQFlFJdwdlSWJ4jOLkJZXIs+hJZYrEsOwB89nyV692ubMmYPZs2fr5TkRNaXvdsWhoLRCfkkZGq7/rFMx3PrayAhM+n4/vtkei/t7t0CIp6PeH4dMnCi4K8p4iO2vv5SlrKqvLSrKgQhjxijz4kQJEM5vIzLOnrmswlJUVGrkUkPV+TjbyflzDTH3t5Pwc7XXBW9p+cW6czT0nDNnzkROTo5uEwv0Ehka8aXlhz3KsNOUG1vpvVdOSwSJfVt5yS9b2oxZogbbuBFo0QJ47DHgxx+VQE7UYxs5Epg/X1nmSksMpfbty0CO6DoZdb/1F/9G45cjyfjxiRtkj8K1srOzk5uWGGolMjSbolKQmlciv/wM71hrDUY9EkGiSKy447PtWH8kCY/2D5X16IhqELXZRM+bGBbt0gV4+mnl9v79lWFTsValqMsmNrHUFee2EZlmMOfhaCuXD6qd7CB60Gr3rNW2cOs5/Pffc1g+qY8cctLycbbXncPX9VKtLHE9otpxRMZm2e7z8nJ8rxC9ZLBeSccgN4zpHoyfDyTgwz9PY/mkagVZyXyVlAB//qmsDyqCOO38YpFpqg3m3NyU3jhtFioRmfYwq/hAEh8aO6uSF4TKSg12Rmege8u6S5MIX245h0//isZ3E3ujc3DN40I8HeDjYifPoSWy8g7HZ6N7S/YukHGKTs3HznMZEEun3tenRbM85rSb28LGygI7ojOwN7ZW1XwyPyJYEyU/7rwTWL5cCeTEcknidpFdWh0DOSLzymadNCBM1oMTPQDRqXl4dd1xFJaWY2yPEPnz6SsP473fT+mOF71x8/48g/fv6YxgDwek5hXLraCkXDdENLF/GD79+6wcljp1MRfTVx2Bn6sdbolg7SEyTuL/hyCW2gpyryqM2sSCPRwxtqfy//DjzWea5THJgNRer1RknYq6b2K1heeeUwr4ilIhn37KZa6IzH3O3B1dApFZUCqL/Ios1PBAV9njJnrXhMTsohoTvcVQU2lFJZ5cfrDGeZ4b2hbPD2unmxxeVFqOmWuOIbe4DL1CPfDdo72va14dkVpEb/X6w8pSRWN6NO/C0VOHtMFP++Nlr+CemAz0aeXVrI9PzSw7W0laEPXe9u5ViveGhys/mzEDeOopYMAAUXZA7ZYSUTUWGlGYjWpISEhASEgI4uPjESyGEYhUJAplj1+4Gy521tj3n5ub/UvJq2uPYfmeC+jX2gs/PM65cybp4EHg88+BH35QEhsEsdD8okXAo4+q3TqiBksw089vfr0iMnDrDim9csM7+avSu/zUkDawtrSQvXPHEnKa/fGpCcXGKtmnotbb4sVKIBcZqRT4FYV7GcgRGQUGc0QGTCxBt+FYstwf1S1IlTaIOXpiOoSwcFuteVRknCsyVK/zdvq0srqCWB5LrI967Bjwwgtc35TIiDCYIzJgYpm6vOJymcBzQ5h689UeH6is2brxWDLiMwtVawddB5GsIBIXbrjhUkAn6sGJMiNiDVQxxCp66ZqoGDURNR0Gc0QG7I8TF+XlbZH+cqk7tUQEumJgW2+5YotY5ouMiFi4/qGHlCW0FiwA9u0D/v770s+HDlV66IjIaDGYIzJQInDafDJV7t8S6a92c3S9c6v2xyO7sFTt5tDViEzUceOATp2AZcuAigolcBNFf8UlEZkMBnNEBmp/XKYs2+PmYIPeYZ5qN0f2zHXwd0FhaYXMbiUDdugQ0LEj8NNPyrDpPfcA+/cri9yLmnAcSiUyKQzmiAzUn1Ep8nJoB1/YWKn/X1XUe5xU1Tu3fPd5lFdUm0hP6isru7Qv1kXt3RsYPRo4elQJ6kTGKhGZJPU/IYjoMqL8459RFw1miFXr9s4B8HSyRVJOMf46pQwBk8ry84HXXwfatlVWaBBEz9s//wCrVys9dERk0hjMERmgc2kFiM8skusXD2rnDUMh6tyNq1ria+mu82o3x7yJOXDffKMEcW+9pWSrirlxWg7Ns+wbEamPwRyRAdp6Jk1e9g71hKOt6qvu1fBAnxYQibXbo9MRnZqvdnPMk1gXVQybTpoEXLyoZKr+/LOy3BYRmR0Gc0QGaOtZJZgzpF45rRBPR9zUwU+3VjI1c2/c448r9eCOHAHc3YF585TM1TFjmNhAZKYYzBEZ4KoPYj1WYWBbHxiih/u1lJerDyQgv6Rc7eaYD7FeakmJsj9xInD2LPD884CtrdotIyIVMZgjMjD747JQXFYJXxc7WQrEEPVv7Y1W3k7IKynHr0eS1G6OaRMBW7KypJsk1k3dtk2ZL+dteD23RNT8GMwRGegQq+iVE+VADJFYjWJ8byUR4sd98Wo3x3SHVOfPBzp3BiZPFinOyu2+vsCAAWq3jogMCIM5IgNNfjDE+XLVje4eDGtLCxyOz8api7lqN8f0euNuvBGYPh0oLgaKioCCArVbRUQGisEckQFJzS3GqYt5ch67oc6X0/J2tsOwCCURYiV75/RD9L59/jnQpQuwYwfg7Ax8+aWyBJfYJyKqA4M5IgOy85yS+NAx0E0W5zV09/ZShlrXHkqUiRt0HTIzgVGjgKefVnrixPqpx48rQ6wGOtxORIaBwRyRAdkTqwRzN7RSfy3WhhC9h4Fu9sguLNMtP0bXyNoaOHZMyUz9+GNg0yagpZI1TER0JQzmiAzInthMedknzAvGwMrSAvdUrQixct8FtZtjnEkO2sQGV1dg1Spgzx7guefYG0dEDcZgjshApOYVIyatQH6G9wo1jp45YWyPYNnmHdEZuJBRqHZzjEdqKjBsGLBw4aXbevYEunZVs1VEZIQYzBEZiH2xWfKyg78r3BxtYCzEihAD2iiZtz8fYCJEg4jeN7Ec1z//AK+8AuQyG5iIrh2DOSIDmy/XJ8x4euW07ukRLC/XHEpEZWXVsCFdTgypfvUVMGgQkJAAtG8PbN+uDLESEV0jBnNEBmJPTKbRBnO3RPjD2c4aCVlF2H9e6WGkWsrKgClTlK20FBg9Gti7FwgPV7tlRGTkGMwRGYCsglKcTsmT+72NMJhzsLXCiE7+cn/NwQS1m2OYiQ4jRijz4ywtgblzgZ9/Zo8cEekFgzkiA7A3TumVa+vrDC9nOxgjsSKEsOFoMmvO1WZlBQwZohT+Xb8emDGD2apEpDcM5ogMwP6qYK6XEfbKafUO9USQuwPySsqxiTXnFJWVl/ZnzlSKAI8cqWaLiMgEMZgjMgAHL2TLy54tPWCsLC0tMLp7kNznUCuA1auB/v2B/HzluuiJYxFgImoCDOaIVFZaXoljiTlyv1sL4w3mhLu7KcHc1rPpsm6e2RJz48aOBXbvBr74Qu3WEJGJYzBHpLKTybkyoHN3tEGolyOMWSsfZ3Rr4Y6KSg3WH06CWZYeeecdZT1Vsf/448ALL6jdKiIycQzmiFR26IJSyqNbiDssTGBSvDYRYvXBRJjd/Ljnnwf+8x/l+quvKjXlRPIDEVETYjBHZCDz5bob+RCr1h2dA2BjZSF7HM9UlVsxi9Ijjz0GfPKJcv3jj4G332bGKhE1CwZzRCo7FF/VM2ciwZy7oy1ubOcr981mqDUxEdi4UemFW7oUeO45tVtERGaEwRyRitLyShCfWSQ7cDqHuMFU3Nk1UF6uP5IEjZg7ZupatAD+/htYtQp48EG1W0NEZobBHJGKDsdn64oFu9rbwFTcHO4LBxsrXMgsxJEEJVPX5JSXA0ePXroeGaks0UVE1MwYzBGp6KAu+cE0hli1HG2tMSzCT+7/73CiaQZyogfuhhuAf/5RuzVEZOYYzBGp6HBV8oMo52Fq7uyiDLX+ejRZlioxqaxVUXJk5UolqMszkyQPIjJYDOaIVFJZqcHxqmLBnYNNL5gb1M4Hbg42cl7gnpgMmAQx/2/6dGDJEiXZQQR0d96pdquIyMwxmCNSyfnMQrmOqZ21Jdr6OcPU2FpbYkQnf10ihEl4881L5UcWLwbuvlvtFhERMZgjUsvRBGWINTzAFTZWpvlf8Y6qodaNx5JRUl4BoyaCuFmzlP0FC4AJE9RuERGRZJqfIERGQDvE2inIdEqS1NYnzAu+LnbILS7H1jPpMOrh1S1bLvXOPfOM2i0iItJhMEekkmNmEMxZWVroeueMeqhVFAIUNeRWrLi0XBcRkYFgMEekUvLDicRcud/RhIO56lmtm6NSUFBSDqOSkqL0ygnW1sD48Vyii4gMDoM5IhWTH2xNNPmhus7Bbmjp5YiisgpsPpkCo5GUBPTqBUyaBJSVqd0aImpCmcuXI/qmoTjVuQtix92LouoFwes6/rvvcO624TjVpSvODh6ClDlzUFlSArUwmCNScYg1woSTH7QsLCx0vXO/HEmGURC140aOBOLjgR07gPx8tVtERE0kd+NGpM59D95TpyJszWrYt2+PC5MeR3lG3SWVcn75FakfzZPHt9qwAQFvv43cjb8hbd58qMW0P0WIDNSxqkxWU54vV93IzgHycuuZNOQVG3gvV0UFcN99wOHDgK8v8NtvgIdprdBBRJdkLPkO7mPHwn3MaNi1aQP/2bNgaW+P7NVrUJeiQ4fg0L073O64HbbBQXAe0B+uI0ei6NgxqIXBHJEKzCH5obr2fi5o7eOE0opKwx9qffVVYMMGwN4e+OUXICxM7RYRUSPl5eUhNzdXt5XUMwSqKS1F8YkTcOrXV3ebhaUlnPr2RZH4QlcHh27d5H20Q7Gl8fHI37oVzoMGQS0M5oiamTklP1Qfah3ZWRlq3XDUgIdaf/gBeO+9S0WBe/dWu0VEdA0iIiLg5uam2+bMmVPnceVZ2bI33srLq8btVt5eKE+vu5yS6JHzeeYZxD3wIE527IRzw26BY+9e8J4yGWqxVu2RicxUQlaRkvxgZfrJD9Xd3jkAC/46K+vN5RaXwdXeBgZFzI+ZXPVmPGOGMtRKREYpKioKQUFBuut2dnZ6O3fBnr1IX7gQ/q+/BofOXVB64TxS3p2DtC++gM9TT0EN7JkjamZRyUqvnAjkTD35obp2fi5o4+usDLVGGeBQq/hmvno18MADwDvvqN0aIroOLi4ucHV11W31BXPWHu5yneWKWskOFekZsPb2rvM+aQsWwO3OO+Exdizs27eD67Bh8H1+GjIWLoKmshJqMJ9PEiIDcbIqmOvg7wpzM7JTgGEPtd5yC7BsmXxzJyLTZ2FrC/vISBTs2q27TQRkBbt3w6Fr1zrvoykqgoVlrXqTllXvGdq6lM2MwRxRMzt1UQnmwgNcYG60Wa3bzqYjp8hAslrFOqvR0Wq3gohU4vXIw8j+6Sdkr12HknPncHHWbFQWFcF99N3y50kzZshSJFrOQ4Yga8WPyNmwAaUJCcjfsUP21jkPGQwLlb4Ics4cUTM7mZynqzFnbsRQa1tfZ5xNzZdDrWN6BKvboDVrgOeeA15/HTh9GvDzU7c9RNTsXEeMQHlmFtI+XYCKtHTYhYejxaKFumHWsqRkkeKqO977ySlyJZi0TxagPCUFVp6ecBkyGD7Tpqn2HBjMETUjUWPtQmah3O9ghsGctnfu481nseFYsrrBnOiNe/RRZV+s8sBAjshseT74gNzq0nLp9zWuW1hbw+fpqXIzFBxmJWpGZ1KUXjk/Vzt4OtnCHGnnzW07m6beUGtRETB2LJCbC/TvD9RTtoCIyBgwmCNqRlFVQ6zhZtorJ7T1c5FFhMsqNNikVlarGFoVBUF9fICVKwEbAyuTQkTUCAzmiFTIZDXnYE4YoctqTWr+B//5Z2DRIjnnRRYJrlaLiojIGDGYI1KlLIn5ZbJWN7Kzv7zcHp2OnMJmHGoVZQMWLlT2Z84Ebr65+R6biKiJMJgjasZlvE5fNN9M1ura+LrIgFYMtf4ZdbH5Hlj0xv36K/DJJ8CsWc33uERETYjBHFEzEVmshaUVsLW2RJi3k9rNMZwCwseauYCwrS3w7LOcJ0dEJoPBHFEzD7G283OGtRkt41WfEVUFhLefTUd2YWnTPtju3cB//gOUGUihYiIiPeInClFzJz+Y4TJedWnt4yyHWssrNfjzRBNmtebnX1pvlWuuEpEJYjBH1ExOVs2XM/dM1upur+qd+7Uph1r/7/+AmBigRQvg+eeb7nGIiFTCYI6omQsGm3sma10lSnZGN9FQ6+bNwH//q+wvXgy4uen/MYiIVMZgjqgZFJVW6JbxEkVzSdGqKYdaxeoOEycq+089BQwdqt/zExEZCAZzRM3gXFq+LHHm4WgDb2fzXMar2bNap08H4uOBVq2A997T77mJiAwIgzmiZhxiFb1yFqLWGV2W1bpDn0OtCQnAihXK/rffAs7O+jkvEZEBYjBH1AzOpOTrypLQFbJa9bVWa3Cwsvbq558Dgwbp55xERAaKwRxRMzhb1TPXjvPlrjjUulGfQ61t2ypz5YiITByDOaJmcCa1apjVl8FckxYQ3r8f2LlTfw0jIjICDOaImlhhaTniM4vkPodZm3CotbQUeOQRoH9/YNkyfTeRiMhgWavdgO93xeGrLTFIyy+RxVRn3xmJriHu9U4in/fnGRxLzEFidhFeuz0Cjw0Iq3HM/E1n8MlfZ2vc1srHCX+/MLhJnwdRfaJTlflyXk628HK2U7s5Bl1z7tTFPDnUOq5nSONP8P77wIkTgI8PMGJEUzSRiMggqRrM/XIkCW//ehJv390R3ULcsXhHLCZ8swd/vzgY3nV86IlaXS28HOWQzFu/RtV7XtH7sWxSH911a0t2QJL6yQ9t2St31WBu3qYzMqs1p7AMbo42Db/z6dPAW28p+598Anh6Nlk7iYgMjapRztfbYzG+d4j8Fi5KNrwzqhMcbK2wan98ncd3CXHHKyPCcWeXQNheYaFyK0tL+LrY6zZPpyvX9SopKUFubq5uy8tT5jcR6QOTHxqmja8z2vu5oKxCDLVebPgdRQG/yZOVYdbbbgPGj2/KZhIRGRzVgrnS8kocT8xB/zbelxpjaSGvHzyffV3njksvQO93NmPg+3/juR8PySHZK5kzZw7c3Nx0W0RExHU9PlF9NeaoYct7NSqrdckSYMsWwNER+OILgHX8iMjMqBbMZRWWoqJSc9lwqo+znZw/d626tnDHh2O74LuJvfH2qE6IzyzEuC93Ib+kvN77zJw5Ezk5ObotKqr+IVyia64x58th1qsZ2dlfXm4XQ61FZVe/Q04OMGOGsj9rFhBWcw4tEZE5MLnJZEPa+2Jk5wCZTHFjOx98+2hv5BaVYcPRpHrvY2dnB1dXV93m4sIeFNIP8SVC2zPMYdara+Prohtq3dSQrFbxf1UkPgweDEyb1hxNJCIyOKoFcx6OtrCytEB6rV440Ssneuf0xc3BBmE+TojLUBY5J1Jjvpzogfa4ytxNqjnUeqUvYDoiuUmUI/n7b8CmEQkTREQmRLVgztbaEh2D3LAzOl13W2WlBjujM9C9Zd2lSa5FQUk5zmcUwteFJSGo+Z2tKkvC+nJ6HmoVSQ8FBZeuc54cEZkxVYdZJw0Iw4p98fj5QAKiU/Pw6rrjssDq2B5KjanpKw/jvd9P1UiaOJGUI7eyikqk5BbLfZHwoPXOhijsjsmQc+UOnM/E5KUHZA+gyIAlam7nqoK5tpwv16ihVhH8XnGodcUKoH17YPXq5m4eEZHBUbXO3B1dApFZUCoL/abllSA80FUmLvhU9aKJuUYW1b5xi+Bt5ILtuusLt8bIrU+YJ1ZO7itvS84pxrMrDiG7sEyWJOkZ6oG1T/VjsVZSxbm0fF3ZDWrcUOuZlLMyq/WeHsE1fyhKB734IpCcDJy69GWPiMhcqb4CxMP9QuVWF22AphXi6Yi4uSOveL7P7u+u1/YRXY9zaQW65aqo4UZ2CsDHm89i29k0OdQq5r7qiOLAIpBr3Rp44QU1m0lEZBBMLpuVyFCUlFfgQqaSeNOaPXONImryiaFpMdS6ufpQ69mzwMcfK/sLFgD29qq1kYjIUDCYI2oiFzIKZS1FZztrJuDoq4CwqClXVgYMH871V4mIqjCYI2ri+XKtfZxqzP2khhH1IoVtZ6uyWrdtA9auVcqRfPCB2s0jIjIYDOaImgjny12fdlVDraUVlcpQ659/Kj94/HEgMlLt5hERGQwGc0RNXJaE8+X0NNQqEh+2bgVmz1a7WUREBoXBHFEzDLPS9Q+15haXAQMHAn5+ajeLiMigMJgjagIajYbDrHoaar0/4zg8slNrZrUSEZEOgzmiJpCaV4L8knK5+kgLL0e1m2O8UlPxxg9v4d+Fk3F041a1W0NEZJAYzBE14Xy5Fp6OsLO2Urs5xuutt2BXWICz3iFYUeimDLUSEVENDOaImgDny+lBbCzw1Vdy97u7nkRJJfDXSQ61EhHVxmCOqAlwvpwezJqlFAi++WYEjbld3rThaLUCwkREJDGYI2rSnjkGc9fkxAlg6VJl/9135VqtwtYzVVmtRESkw2COqElrzHGY9Zq89ppICQbuvhvo1Qvt/JzlkLUoIMyhViKimhjMEelZQUk5knKK5X4rb/bMNVplJdCmDeDkBLz9trxJLIem7Z3bcPSiyg0kIjIsDOaI9Cw2XZkv5+VkCw8nW7WbY3zE2qvvvw8kJgIREbqbR1QVEN56Ng15HGolItJhMEekZ5wvpydubjWutvdzQSsx1FouhlpTVWsWEZGhYTBHpGecL3eNxBy5554Ddu2q88c1hlrFWq1ERCQxmCPSs3NVw6xh3gzmGuX334EFC2QpEmRl1XnIiKpgbssZDrUSEWkxmCPSs/MZSjAX6sVgrlG9cqKunPDkk4CHR52HdfDnUCsRUW0M5oj0SKPRIC69UO6zZ64R/vgD2LsXcHAAXnqp3sM41EpEdDkGc0R6lFFQivySclhYACGejmo3x3h65WbPvtQr5+d3xcM51EpEVBODOaImGGINdHOAvY2V2s0xDn/+CezeDdjbX7FXrsZQq7cy1Pr3KQ61EhExmCPSo9iqIdaWXuyVa3Sv3JQpgL//Ve8ihlq1vXNcq5WIiMEcUdMkP3C+XMODuUcfBTp0AP7v/xp8N20w9++ZNDmsTURkzhjMETXB6g+h7Jlr+GoPjz8OREUBAUqA1hDhAS4ywUTJauVarURk3hjMEenR+QztMCt75hpFZIw06nAx1KoMyW5kVisRmTkGc0R6LUvCgsENNmkS8M03QGnpNd19ZKdAefnPaQ61EpF5YzBHpCeZBaXIqwoqWrAsyZWJ7FURyIlSJKnXlpHKoVYiIgWDOSI9iasaYg10s2dZkquZM0e5fOghIDj4mk7BoVYiIgWDOSI90Q6xcr7cVRw/Dqxfr8yTa0QG6xWzWjnUSkTXIXP5ckTfNBSnOndB7Lh7UXT06BWPr8jNxcU338SZgQNxqlNnnLv1NuRv2QK1MJgj0hOWJWmg999XLkePBtq3v65TRQS4yqHWkvJKbIq6qJ/2EZFZyd24Ealz34P31KkIW7Ma9u3b48Kkx1GekVHn8ZrSUlyY+BhKExMR/MknaPXbb/B/601YX2X1mqbEYI5IT2KrhllZluQK4uKAH35Q9mfOvO7TiaHWO7ooiRDrDydd9/mIyPxkLPkO7mPHwn3MaNi1aQP/2bNgaW+P7NVr6jw+e80aVOTkIOSzz+DYvTtsg4Pg1Ls37EW9TJUwmCPSc88ch1mv4MMPgYoKYNgwoEcPvZzyzqpgbtvZdGQVXFtmLBGZlry8POTm5uq2kpKSenvZik+cgFO/vrrbLCwt4dS3L4oOH6773H//DYeuXXHxzbdwpv8AxNxxB9K//Aoa8d6mEgZzRHoqS6ItGMyyJFcwdqwSyOmhV06rja8zIgNdUV6pwcbjTIQgIiAiIgJubm66bY426aqW8qxs+QXTysurxu1W3l4oT0+v8z5l8QnI++MPaCorEPLVV/B+8klkfvst0v/7JdRirdojE5mQrMIy5BWzLMlV3XijsumZ6J07kZSL/x1OwgN9Wur9/ERkXKKiohAUFKS7bmdnp7+TV1bK4C/gzTdhYWUFh46RKEtJRcbib+Dz9FSogT1zRHoQVzXEGuBmDwdbliVpbtp5c/viMpGcU6R2c4hIZS4uLnB1ddVt9QVz1h7ugJUVKmolO1SkZ8Da27vu+/j4wDa0pQzktOxat0JFWroctlUDgzkivZYlYa9cnRYtAmbMABITm+T0ge4O6B3qCY0G+PUIh1qJqGEsbG1hHxmJgl27dbdpKitRsHu3nBdXF4fu3VF2/oI8Tqs0Lk4GeeJ8amAwR6THgsGcL1eH8nLgnXeUkiQbNzbZw9zRVemd+9+RpgkYicg0eT3yMLJ/+gnZa9eh5Nw5XJw1G5VFRXAffbf8edKMGUj9aJ7ueI/7xsts1pR33kVJbCzy/v0X6V8thMcD96v2HDhnjkgPWDD4CtasAc6fB3x8lBUfmsiIjv6Ytf4EjifmIiYtH618nJvssYjIdLiOGIHyzCykfbpADpXahYejxaKFumHWsqRkkeKqO94mIAAhXy9Cyty5yL5rlKwv5/nQQ/B6fJJqz4HBHJE+CwYzmKtJjHt+9JGyP3UqYG/fZA/l5WyHgW295WoQ648kYdrN7ZrssYjItHg++IDc6tJy6feX3ebYrRvCVq6EoeAwK5Eey5KEenPOXA07dgB794pUMuDJJ5v84bQ150QwJ/4uRETmgMEc0XXKLixDblVZkpae7JmrYV7VPJMJEwBf3yZ/uFsi/WFnbYmYtAJZqoSIyBwwmCPSU1kSf1eWJakhOhpYt07Zf/75ZnlIZztr3Bzup+udIyIyBwzmiPQUzLEsSS2Ojso8uXHjgPDwZq8598uRJFRWcqiViEwfEyCIrlNcOsuS1CkwEPj0UyUJohkNbu8DFztrJOcUyyLCfVrVXKaHiMjUsGeOSG89cwzm6mRh0awPZ29jhds6+st9DrUSkTlgMEekt4LBHGaVxHI2kyYBu3ap1oQ7qwoIbzyWjNLyS1XaiYhMEYM5ouvEgsG1/Pwz8M03wJgxQFmZKk3o28oLPi52yCosw5Yzaaq0gYjIoObMjVywrdGjKl9P6AV/t6YrEEpkCLILS5FTpAQsTICoIubJCVOmADY2qjTB2soSd3UJxNfbY7H2UAKGRSgZrkREZhvMRSXn4vGBreDYgLILYq7zf7ec49AGmdUQq5+rHRxtmU+E/fuB3buVIO6JJ1RtyujuwTKY2xyVipzCMrg5qhNYEpF5S5kzt9H38X5yCqzc3Rt8fIM/fZ4Y1AreznYNOvbrbTENbgCRMeMQaz29cqIcib+ShKCWiEBXdPB3wamLedhwLBn392mhanuIyDxlfv89HLp2hUUDRyoKDx6Ex4MP6D+Y2/Z/Q+DlZNvgk26afiP8XDnESuaTyRrGYA5ITQV+/FHZf/ZZGILR3YPw7sZTWHMwgcEcEakm+LNPYe3VsDJJp7v3aJoEiGAPR1g0orxAoLsDrCybtxwBkao9c8xkBRYuVDJZe/dWNgNwV9cgiLei/eezcKFqSJyIqDkFvPsuLF1cGny8/+zZDQ789JLNeuv8rUjKLrqeUxCZRlkS9swBQUFAq1bAM8/AUIgRgv5tvOX+2kOJajeHiMyQ+92jYGnb8NFNtztuh6VYQae5grmErEKUV3C5HDJfLBhczaOPAmfOAOPHw5CIoVZhzaEEaJp5NQoiovokz56N8qws6APrzBFdR1mS7EKWJanBygqwNqys3lsj/WUm/vmMQhy8kK12c4iIpNz1v6AyPx+qB3O9wjxhb8N4kMyTCA4EXxc7ONkZVgDTrKKigGXLgJISGCJRMka7vJdIhCAiMgh6HCm4rkhsyaO94cusVTLzIdZQcx9i/egj4KGHgKefhqEa3S1YXv56NBkl5RVqN4eISK8aFMxtikpBWUXDiwD/cyoVxWV8wyTTFpeu9MyFmnMma0YG8MMPl+bMGai+rb1kYWexWod4fyIiUlv7gwdgGxLSfMHc5KX7kVu1ZFFDPLPiEFJzDXPIhUhfmPwAZQ3W4mKgWzegb18YKlEqaVS3qkSIg8xqJaLmU9HIeXEV+cpnS2M0aKKPGNV98acjsLVu2KgshzHIrAoGe5tpMFdZCXz1lbI/daqyKLMBE0OtX22JwT+nU5FVUAqPRhRCJyK6Vmd690HbbVsbXDsu+sYbEbZubaN67RoUzI3prsw3aUyhTmd7M54QTma2lJeZDrNu3gzExABubgZXjqQu7f1dEBnoihNJuVh/JAkP9wtVu0lEZA40GmT/9HODa8dpyssb/RANirg+HNul0ScmMmVi4fasqrIkZpsA8eWXyuWECYCTcfwO7ukRjBNJUfjpQDyDOSJqFjYBAcj+6acGH2/t7Q2LRpZ4YvcZ0TU4n6n0yvmYa1mSigogN1fZnzwZxmJU1yDM2XgKxxNzcSIpB5GBbmo3iYhMXJu//2ryx2CROKJrEFs1xBpqrkOsojiwdpg1MhLGQsyTGxbhJ/d/2s+ac0RkGhjMEV1HwWCzHWLVCguDsRnbU5kDvO5wIpO1iMgkMJgjuo7kh1BzzGQV66+mGm+ttoFtfeDvai+XYtscZbzPg4ioUcFcl9l/IrOgVO6/9NMR5Jc0PtOCyJSY9eoP06YBwcHA8uUwRqLmnEiEEFbtj1e7OUREzRPMidUf8ouVAG71wQSUcHUHMnNxVcOsZleWJDYW+P13oKwM6NMHxkobzG09m4ak7CK1m0NEJizhmWd0hYOz161DZanSOaZPDUrD697CA08s3Y+OQW6ygPCsX6JgX08B4Q9YxoRMnFgSSttTbXbDrIsWKYtDDxsGtGkDYyX+bn3CPLEnNhNrDibg6Zvaqt0kIjJRef9ugV9hIaycnZH8yqtwHjgQlg0sIKzXYG7+vV3xzfZYXMgsgKjxnldchhIr/Uy3+35XnKzKnpZfgvAAV8y+MxJdQ9zrPPZMSh7m/XkGxxJzkJhdhNduj8BjA8Ku65xEjXWhqlfO29kOzuZUlkR8mxTLdwlTpsDYjesZIoO5VfsT8NTgNrC0NOwVLIjIONmFhSFt3nw4itEMjQa5v/0OS+e6OwLcR426psdo0CeRqKX18vAOcn/Ae39j/riuelkK55cjSXj715N4++6O6BbijsU7YjHhmz34+8XB8oOytqLSCrTwcsSIzgF469covZyTqLFidfPlzGyIdd06JfEhIAC44w4YuxGdAvDG+hO4kFmIvXGZuKGVfr8pExEJ/rNmIeW9ucjfskUue5j2ySd1L39oYdG0wVx122fcBH35enssxvcOkd+QhXdGdcLfp1LlpGTxTbm2LiHuchPe++2UXs4plJSUyE0rLy9PL8+PTNN5c81k1a7DOmkSYGMDY+dga4U7ugRixd4LWLUvnsEcETUJx+7dELZypdw/GR6B1r//1uB1WvUazH27I7bBJ3y0f8PqTpWWV+J4Yg6eGtxad5sY5ujfxhsHz2c3+PH0cc45c+Zg9uzZ1/SYZH7MsmdO9Mjt3Cn+QynBnIkY1zNYBnMbjydj1l2RcLU3/iCViAxXm82bYOXpqffzNiiYE/PlqhOTv4vKKnRvfLnFZXCwsYKXs22Dg7mswlJUVGouG/r0cbbDuTTlw7KxrvWcM2fOxPTp03XXExMTERERcU1tIDMqGGxOPXO+vkB8PCCGCVq0gKkQc2nb+jrjbGo+1h9OwoM3tFS7SURkYopPn65xvULU6qyHffv2TRfMVR9a/d/hRCzddR7v3dMZrX2c5W3n0vIxc/Ux3N/HON/k7ezs5KaVq11zkuhKBYPNrcactzcwZgxMiYWFBe7tFYK3N5zED3su4IE+LeRtRET6EjvqbmWOnKgEcJX3l/CoE80zZ+6jP8/giwe66wI5QeyLzNInlx/AqG5BDTqPh6OtLN6Znn9prpogMlBFT9q1aIpzElUneqEzqsqSmE2NueJiwN4epkrUnHv/j9OISs7FkYQcZr4Tkd6HVrWKT55EyvsfwGviRDh06ypvKzp0GJnffgvfl1685sdodH2R1LxiOZRZW4VGc1kQdSW21paybt3O6HTdbZWVGuyMzkD3ltf2ZtoU5ySquyyJLVzMZX7V6NHAgAHA/v0wRe6Otri9U4Dc/2HPebWbQ0QmxiYoSLelf7UQ/q++Ao/x98ohVbGJfb9XZiL9i/82XzDXv7U3Xll7TCYaaB1LyMF/1h3DgDbejTrXpAFhWLEvHj8fSEB0ah5eXXcchaXlGNtDyUSdvvIw3vv9VI0EhxNJOXITq1Kk5BbLfe2wV0POSXQ9Yqteay3NZYhVzJMTKz7s2AG4m+4XIu0UkV+OJMveVyKiplBy5gxsxHKItYjbSs6du+bzNnqY9f17OuOFn47gjs+2w0ZktgEor6zEoHY+mDumc6POJcoCiGSK+ZvOIC2vBOGBrvhuYm9Z104QhYGrz18RwdvIBdt11xdujZGbqOS+cnLfBp2T6HqcN7c1WZcsUeZ5DB5s1Cs+XE2Plh5o5+eMMyn5WHcoERP6hqrdJCIyQbatWyFj4UIEvPUWLGyVer2a0lJ5m/jZtbLQaMQ7dePFpOUjOjVfBlutfZzQqtocOmOXkJCAkJAQxMfHI7iOCJrM1wurjsj1iV8Y1g7PDDXxJaAqK4HWrYG4OGDpUuDBB2HKluyIlUsVtvdzwe/TBjIRgsgIJRj453fR0aOIf/Ip+SXZrn07eVvJ6TMyMSLkv1/AoXPjOsW0rnktIhG8hVWVZuCbHpldz5w5lCX5+28lkHNzM7ks1rrc3T0Yc38/hdMpeTh4IQs9Wuq/FhQRmTeHzp3RZtOfyPnlV5TGxMjbXIcPh9vtt8PS8dqT6q4pmFu574KsPReXrq235YiJ/cMwvrdxliYhaqg4cxpm/fpr5fKBBwAHB5g6Nwcb3N45UM63Xb7nAoM5ImoSImjzuHecfs/Z2DvM+/M0Zv8ShaHhfvj8ge5yE/tirVTxMyJTlVdchvT8qrIk3iZeliQjA1i7Vtk3oRUfGpoIseFoMnIKmQhBRPolslmzV6++7HZxW/qiRc0XzC3bcwFzRnfCjNs6YFiEn9zE/rujO2Hpbqb1k+mv/ODlZGv6yz65uCjz5J56CujWDeaiW4g7Ovi7oKS8Us6NJCLSp+yVK2Ebdnmig12bNsj+UVm/tVmCOVESpHPw5SUKOgW5obyO+nNEJjfEag7z5USW1bhxwOefw5yI+b8PVC3ptXzPeVxjfhgRUZ3K09Nh7etz2e1ivdbytDQ0WzA3ulsQltXRAycWqx7VtWGrPxAZc8+c2az8YKZGdQ2Ek62VXM95R3SG2s0hIhNiHeCPooMHL7td3GYt1sC+1vNey51W7YvHtrNp6BbiIa8fjs9GUnYRRncPknPntMQSX0SmVjDY5JMfZs8GbGyAxx4D/PxgbsTKHmN6BOP7XeexZGccBrRtXDF0IqL6eIwdi5R350BTVg6nG/rI2wp270bqBx/C89FH0WzBnEjbjwxylfvnM5UPNw8nG7mJn2lZgOVKyLSYRVmS/Hzgww+VS7GElxkGc4IoGiyCub9OpSA+sxAhnuyNJaLr5/nYY6jIzsbFN9+EpkxJsrKws4PXpMfgPfmJ5gvmfnxCWWmByNzEakvxmPIw66pVSiDXti0wcCDMVRtfZwxs641tZ9PltJKZI8LVbhIRmci8XN8XX4T3k0+iJCZGBnK2oaGwrFoNotnmzBGZo/yScqTnl5j+uqza2nJiiNXMi4Frl/T6cV88ikor1G4OEZkQSycnOHTqBPt27a47kJPn00uriMxkiNXTyVYWlzVJJ08Cu3YBVlbAww/D3N3UwRfBHg7IKSrD+iOJajeHiKheDOaIGiDOHIZYv/tOuRwxAvD3h7mzsrTAhL5KmZIlO1mmhIgMF4M5ogYw+WW8KiqUIsHCI4+o3RqDMa5nCOxtLHEyORf74rLUbg4RUZ0YzBE1QFxVWRKTnS+XkwMMHQqEhAC33652awyGu6Otrn7md7vi1G4OEVGdGMwRNaJgcKiprsnq6Ql8/z0QE6Os/kCXJUL8fvwiLuYUq90cIqLLMJgjaoBYUx9m1bK+pjriJi0i0BW9Qz1RUanB9+ydIzJJmcuXI/qmoTjVuQtix92LoqNHG3S/nA0bcLJDOOKnPg01MZgjuoqCknKk5ZWYbjC3Ywdw5IjarTBoEweEycvley6gsLRc7eYQkR7lbtyI1LnvwXvqVIStWQ379u1xYdLjKM+48nJ+pQmJSH3/Azj07AG1MZgjauAQq4ejDdwcTbAsyQsvAF27At9+q3ZLDNawCD+5Jq8oU/LT/gS1m0NEepSx5Du4jx0L9zGjYdemDfxnz4KlvT2yV6+p9z6aigokvfQSfJ55GrbBIVAbgzmihmaymuIyXqK23J49Sm05UZKE6i1T8lhV79w322PlkCsRGa68vDzk5ubqtpISZXSlNk1pKYpPnIBTv0urW1lYWsKpb18UHT5c7/nTP/8CVl6ecL/nHhgCBnNE5lyWpHptOTNdh7Wh7ukRLAtGX8gsxKaoi2o3h4iuICIiAm5ubrptzpw5dR5XnpUtSzNZeXnVuN3K2wvl6el13qfwwAFkr16NgLfegqHgbGeiBpclMbFMVtaWaxRHW2s8eEMLfP7POSzaFovbOgao3SQiqkdUVBSCgpSyQoKdnZ1ezluRX4Ck/5uBgLfehLWHBwwFgzmiq4jTliUxtZ65TZuApCRAfCNlbbkGebhvKBZtjcWB81k4eCEL3VsYzps5EV3i4uICV1dXXI21h7ucZlJRK9mhIj0D1t7elx1fFn8BZYmJiH/yqUs3VlbKi5ORHdH6t42wbdECzY3DrEQN7JkzuTlzS5Yolw88wNpyDeTrao+7ugbK/a+3xajdHCK6Tha2trCPjETBrt262zSVlSjYvRsOIjGsFttWrRC2/n8IW7tGtznfdBMc+/SR+zYqLYXInjmiq5QlSa0qSxJmSj1zZWXArl3KPodYG2XSwFb46UCCLCIcn1mIEE8TG34nMjNejzyMpJdnwr5jRzh07oTM775HZVER3EffLX+eNGMGrH394PvCdFja2cG+Xbsa97dycZGXtW9vTgzmiBqQ/GByZUlsbIDoaGDLFqUsCTVYe38XDGrng61n0mRm66w7I9VuEhFdB9cRI1CemYW0TxegIi0dduHhaLFooW6YtSwpWaS4wpAxmCO6grh07TJeJtQrVz2gu/lmtVthlB4fGCaDuZX74vHs0LbwdOIwNZEx83zwAbnVpeXS769438C5dWfKNifDDjWJVBabnm96Q6wFBboJu3RtBrTxRmSgK4rKKrBkJ5f4IiJ1MZgjuoLYqp65MFPqmXvzTSA0FPjhB7VbYrQsLCwwdUgbub9kRyzyS7jEFxGph8EckTmt/lBertSWi48HHBzUbo1Ruy3SH619nJBbXI5lu8+r3RwiMmMM5ogaUJbEZHrmRG255GSlttzIkWq3xqhZWlrgycFK79zX22JRXFahdpOIyEwxmCOqR25xGTIKSk2rZ4615fRK1JwLcndAen4Jftofr3ZziMhMMZgjukqvnLezHZztTCDxOysLWLdO2WdtOb2wsbLE5Btbyf0vt8SgrIKJJUTU/BjMEdUjVjfEaiJFYX/8ESgtBTp3Zm05PRrXMwTezrZIzC7C+sNJajeHiMwQgzmiq9WY8zKxIVbRK2dhoXZrTIa9jRUeG6D0zn3xbzQqKzVqN4mIzAyDOSJzyWT9+GNg8mTg/vvVbonJefCGFnCxt8a5tAL8fuKi2s0hIjPDYI7oqsOsJhLM9e0LfPkl4OendktMjou9DR7tFyr3P9l8lr1zRNSsGMwRXa1nzlSGWalJiaFW0Tt3OiUPG48nq90cIjIjDOaI6pBdWIrswjK5H2rsCRB//aUMr+7bp3ZLTJqbow0eGxAm9z/efBYV7J0jombCYI7oCkOsfq52cLQ18rIkCxcq27JlarfE5E0cEAZXe2tEp+bj16PMbCWi5sFgjsiUh1hZW65Zudrb4PGBrXRz58pZd46ImgGDOaI6xFaVJTH65AfWlmt2j/QPhbujDWLSC7D+CHvniKjpMZgjusLqD0ZfloS15VTJbH1ikNI7t+Av9s4RUdNjMEdkqsOsJ08Ce/cC1tbKWqzUbB7uGwpPJ1vEZRRizcFEtZtDRCaOwRxRLRqNxjRqzH33nXI5fDjg66t2a8yKk501plSt2frx5jMoLqtQu0lEZMIYzBHVkllQirzicrnf0suIy5L4+wMhIUx8UMmEvqEIcLNHUk4xlu46r3ZziMiEMZgjqmeINdDNXq67abSmTQPi4oC77lK7JWZJvHaev7md3P/832jkFCl1C4mI9I3BHFE9maxGn/wgWFoCVkYckBq50d2D0NbXWRag/mrLObWbQ0QmisEckallsmZnA+vXA2XsCVKbtZUlXrq1vdxfvCMWKbnFajeJiEwQgzmiWmKrhlnDjDWTdeVKZWj1llvUbgkBGBbhhx4tPVBcVimX+SIi0jcGc0Sm1jOnrS13++1qt4QgyvtZ4OXhHeT+qv3xOJeWr3aTiMjEMJgjqqayUoOYNCMuS3LqFLB7tzJPjrXlDEavUE8M7eCLikoN5v52Su3mEJGJYTBHVM3F3GIUlVXA2tLCOMuSVK8tJ0qTkMGYOaIDrCwtsCkqBTuj09VuDhGZEAZzRNVoe+VaeDnCxsrI/ntUVABLlyr7rC1ncNr4uuDBPi3k/pu/RsleOiIifTCyTyuipqWdz9TK2xlG56+/gMREwNOT8+UM1LSb28HNwQanLubJ+XNERPrAYI6ompiqYK61rxHOl/vnH+XyvvsAOzu1W0N18HCyxbSb28r9D/84jdxilo8houvHYI6omnNVw6ytjbFnbs4c4MgR4IUX1G4JXcGDN7REKx8nZBSU4vN/otVuDhGZAAZzRKbSMyd07gyEhandCroCMRfztZERcv/b7XE4X1XXkIjoWjGYI6pSWFouF0U3yjlzhcoSZGQcBrf3waB2PiitqMRbv55UuzlEZOQYzBHVymT1dLKVc5uMxtmzgI+PksFaWal2a6iBhYRfvz0cNlYW2HwyBZujUtRuEhEZMQZzRLUyWVv7OBlfbTnRM5eaCljyv7QxlSp5bEAruT/rlxMoKq1Qu0lEZKT4zk9Uq2fOqIZYRW05baFg1pYzOs8ObYNAN3skZBXhi3+ZDEFE14bBHFHtnjljSn4Q5UgSEgB3d+DOO9VuDTWSo601Xr8jUu5/tSVGl4BDRNQYDOaIavXMtfYxop65JUsu1Zazt1e7NXQNbo30w5D2SjLEG+tPQKPhyhBE1DgM5ogg8gY0iEmvWv3BWIK53FxgzRpln0OsRp0MMevOSNhaW2Lb2XRsOJasdpOIyMgwmCMCkJRThOKySpldGOLhAKOwahVQVASEhwO9eqndGroOLb2cMHVwG7k/a30Ucgq5MgQRNRyDOaJqQ6ziQ9Xaykj+W4wcCbz7LvDSS6J7R+3W0HWaMrgV2vg6Iz2/BG9viFK7OURkRIzkU4uoaRllWZKAAGDmTODRR9VuCemBnbUV3hvTScblPx1IwLazaWo3iYiMBIM5ouplSYxlvhyZpB4tPfFw31C5P3PNMbkqCRHR1TCYI6rRM2cEwVxpKXDPPcCPPwJlnFtlal66tT2C3B1k7bkP/zijdnOIyAhYwwB8vytO1lhKyy9BeIArZt8Zia4h7vUev+FoMj7adFq+2YV5OeHl4R0wpIOv7ucvrDqC1QcTatxHrIP4/cTeTfo8yBTKkhjBMOsvvwCrVwM7dihBHZkUJztrvDu6Ex5evBff7ozF7V0C0L2Fh9rNIiIDpnrP3C9HkvD2ryfx3M1tseGZAYgIcMGEb/bIScB1OXA+E8/+eAj39gzBxmcH4JZIPzyxdD9OX8yrcdyN7Xyw99Whuu3T8d2a6RmRsckrLsPF3GLjGWb95hvl8uGHAWuD+D5Geibev0Z3D4IoOffiT0dQXMalvojIgIO5r7fHYnzvEIzrGYK2fi54Z1QnONhaYdX++DqPX7wjTr7RTb6xtVzb8IVb2iMy0A3f7YqrcZyo2eTrYq/b3BxtmukZkbE5m6oMsfq52sHNwcBfJ2K1hz/+UPYnTlS7NdSEXr89Ar4udrLXeO5vp9RuDhEZMFWDudLyShxPzEH/Nt6XGmRpIa8fPJ9d530Onc+qcbx2CPXg+awat+2OyUCPtzbhpg//xatrjyGroLTedpSUlCA3N1e35eXV7OUj03Y2Rfl7t/NzgcET67BWVgIDBwLt2qndGmpC7o62eP+eznJ/yc44bD+brnaTiMhAqRrMZRWWoqJSA29nuxq3+zjbyflzdRG3ezvb1jretsaw7I3tfTBvXFcsf7wPZgzvgD2xmXjk273yseoyZ84cuLm56baIiAi9PD8yDmdSlJ65tr4GHsyJIG7xYmX/scfUbg01g8HtffHgDS3k/ks/H0FOERNeiMgAh1mbwp1dAjEswg8d/F1xa6Q/Fj/cC0cScmRvXV1mzpyJnJwc3RYVxYKd5uSMrmfOwOfLbdkCxMQALi5MfDAjr4wIR6iXI5JzijFr/Qm1m0NEBkjVYM7D0RZWlhaXJTuI3jfRO1cXcXt6fs0h07T80st696pr4eUITydbxGUoGYu12dnZwdXVVbe5iA9LMhtntT1zhh7MWVoCAwYA998POBlB1i3phaOtNebd2xWWFsDaQ4nYyLVbiciQgjmRpNAxyA07o9NrLHi+MzoD3VvWXZqkW0uPGscL28+moXvL+lP3k3OK5JCuSIQgqk4MW2kzWUVCjUG78UZg2zbgs8/Ubgk1M1Ga5KmqtVtfXn0UCVmFajeJiAyI6sOskwaEYcW+ePx8IAHRqXl4dd1xWfV8bI8Q+fPpKw/jvd8vZXJN7B+KLWfSsGhrDKJT8zF/0xkcS8zRVU0vKCnHuxtP4uCFLMRnFmJHdDoe/34/Qr2cMKhdzcQJIvGaE/xd7Q0/k1WL5UjM0rND26JLiDtyi8vx7IpDKKuoVLtJRGQgVP9UuKNLIDILSmVQlpZXgvBAV3w3sTd8XJRh08TsIlhUW0RcLHfzyfhu+OjP0/jgj9MI9XbEwod6or2/0qsihm1PJudi9YEE5BaXyd44EcRNH9Zern1IVGfyg6EPsS5dCgwfDnjzC4m5EiMZn93XDSMWbMPBC9mYt+kMZtzWQe1mEZEBsNBoRFlKqi4hIQEhISGIj49HcHCw2s2hJjT7lxP4dkccHhsQhtduN9As5iNHgK5dAWdn4OJFzpczc2LO3FPLD8p9saqNKM1EROb9+a36MCuRISQ/GHQm61dfKZeiZ46BnNkb0SkAD/RRypVMX3UYqXnKnE8iMl8M5sisacuSiNVHDFJ+PrBsmbI/ebLarSEDIXqRO/i7yMz+51YcRjnnzxGZNQZzZLZyCsuQmqeUxWnra6A9cytWAGJFkrZtgSFD1G4NGQh7Gyt8dn93ONpaYVdMhpw/TETmi8Ecma0zVZmsgW72cLG3Mewh1ieeUOrMEVVp4+uMD+7pIve/2hqDX48mqd0kIqOVuXw5om8ailOduyB23L0oOnq03mOzVq1C3AMP4nTvPnI7/+ijVzy+OfDTgcyWwQ+x7t8PHDgA2NoCjzyidmvIAI3sHIDJg1rJ/f/7+ShOX+S60kSNlbtxI1LnvgfvqVMRtmY17Nu3x4VJj6M8o+5Vowr37oPryBFo+d0ShP64Ajb+Abjw2CSUpaRALQzmyGwZfPLDoUOAjQ0wZgxLklC9Xrq1Pfq38UJhaQWmLDvA9VuJIGan5CE3N1e3lZTUvd67kLHkO7iPHQv3MaNh16YN/GfPgqW9PbJXr6nz+KAPP4Dn/ffDPjwcdq1aIeDtt+Ta2QW7dkEtDObIbGl7Mdoa6soPjz8u8uyBd99VuyVkwKytLPHpfd0R5O6A2PQCPL/yMCoqWXGKzFtERATc3Nx025w5c+o8TlNaiuITJ+DUr6/uNgtLSzj17Yuiw4cb9FiVRcXQlJfDys0NamEwR2ZJlFc8eTFX7ocHuMJg+foCocrqJkT1EWtPf/lgD9hZW+LvU6mYs/Gk2k0iUlVUVBRycnJ028yZM+s8rjwrG6iogJWXV43brby9UJ5ec+nQ+qR+9CGsfX3h1K8f1MJgjsySWI81u7BMrhhicKs/iDreZ8+q3QoyMp2C3fDhWCUh4uvtsfhhzwW1m0SkGhcXF7i6uuo2OztlVSl9S1+4CLkbf0PwZ5/CsokeoyEYzJFZEku+Ca28nWSZB4OyezfQrp1SJJgLtFAjl0ecPqyd3H/tf8ex/WzDehaIzJW1hztgZYWKWskOFekZsL7KXOWMbxYjY9EitPj6a5k0oSYGc2SWTiYr8+UiAl0NtxyJnx9QbV1iooZ45qY2uLtbkJw39+TyA4hOVRJ9iOhyFra2sI+MRMGu3brbNCKZYfduOIhlFOuR8fXXSP/vf9Fi0UI4dOoItTGYI7MUlWyg8+XEHI0ff1T2p0xRuzVkhCwsLDB3TCf0bOmBvOJyPLpkL5f8IroCr0ceRvZPPyF77TqUnDuHi7Nmo7KoCO6j75Y/T5oxA6kfzdMdn75oEdI+WYCAd96BTVAQytPS5FZZUAC1WKv2yEQqOplkoMHc118DIoW+Rw+gTx+1W0NGys7aCl891AN3f7ETFzIL8cjifVg5+QbDLY5NpCLXESNQnpmFtE8XoCItHXbh4bLHTTvMWpaULFJcdcdnr/gRmrIyJD73XI3ziDp1Ps88DTVYaERaH9WQkJCAkJAQxMfHIzg4WO3mkJ4VlpYj8o0/5HS0va8Oha+LPQxCeTnQqhUQHw8sWQI8/LDaLSIjF5degHu+3CnXcO3bygtLJvaSgR6RqUow089vDrOSWdaXE4Gct7Ot4QRywvr1SiAnvg3ee6/arSETEOrthCWP9oaznbVcw5U16IhME4M5MtvkB4MbYl227NI6rPYGFGSSUesY5IaFD/WArZUlNh67iDfWH5d1FonIdDCYI7MtSxJhaMHcihXA0qXAk0+q3RIyMf3aeGPevV1kcvSy3Rfw7saTDOiITAgTIMjsGGwmqyg4+eCDareCTNTtnQNlduvMNcewaFssbKws5bquIvuViIwbe+bIrFRWanDK0II5kb1aUaF2K8gM3Ne7Bd68K1Luf/HvOXzyF1caITIFDObIrMSkF6CgtAL2NpZo7eMEg/DZZ8qKDz/8oHZLyAxM6BuK/4wMl/sfbz6Lz/+JVrtJRHSdGMyRWTmWmC0vIwPdYG1laRjlSEQwFxMDFBaq3RoyE5MGtsL/3aYsP/TBH6fx8eYznENHZMQM4NOMqPkcTciRl52C3GAQ1q4F4uKUciT33692a8iMPDW4jZwzp+2hm/vbKQZ0REaKwRyZZTDXJcQAgjnxwfnBB8r+1KmAo6PaLSIzM3VIG7x2e4Tc/2prDF7/3wk5r5SIjAuDOTIb5RWVOJGk7ZlzV7s5wPbtwL59Sk25p55SuzVkph4bEIY5ozvJsiVLd5/HSz8flf9XiMh4MJgjsxGdlo/iskpZDb+VtwEkP3z4oXI5YQLg66t2a8jMs1znj+sKK0sLrD6YgMe/34+CknK1m0VEDcRgjszG0XilV65jkCssLVWurSXmyYnlu4Tp09VtCxGAUd2C8OWDPWSm9z+n03Dfot1IyytRu1lE1AAM5shsHK3KZO0cbABDrKGhwI4dwNy5QHtlEjqR2oZF+OGHx2+Ap5OtnF865r87EZOWr3aziOgqGMyR2ThWlfzQOdgAkh+Efv2AGTPUbgVRDd1beGD1k/3QwtMRFzILZUB34Hym2s0ioitgMEdmobS8EieT8+R+Z7WTH8SKD0QGLMzbCWue6ocuwW7IKizDfQv3YNW+eLWbRUT1YDBHZuHUxVyUVlTCzcEGIZ4O6jUkOxsICwOmTWORYDJo3s52WPHEDRje0V/+3/m/1Ucxa/0JZroSGSAGc2QWDpzPkpfdWriru7D4558DycnA5s1KSRIiA+Zoa43P7++OaTe3ldeX7IzDw9/uRVZBqdpNI6JqGMyRWQVzPVt6qNeI/Hxg/nxl/5VXAEv+9yPDJzK/p93cDl8+2B2OtlbYEZ2Buz7fgeOJyhxUIlIfP03IrIK57moGc199BWRkAG3aAOPGqdcOomtwW8cAOY9OTFMQiRGjv9gpiwxzCTAi9TGYI5OXmF2E5JxiWRC1a4hKyQ9FRZeKBM+cCVhbq9MOouvQwd8Vvzw9ADeH+8l5dK+tO45nVhxCXnGZ2k0jMmsM5sjk7Y9TyipEBrrKOUCqWLwYuHgRaNECePBBddpApAfujrZYNKEH/jMyHNaWFvj1aDLu+HQ7h12JVMRgjkzewaoh1h5qDbFWVgIff6zsi7pytrbqtINIT0QS0aSBrbBqSl8EuTsgLqMQd3+xA5//E81sVyIVMJgjk7df7WBOJDps3aokPTz2mDptIGqiAsMbnh2A2yL9UVahwQd/nMa4r3YhLr1A7aYRmRUGc2TSxFyek8m5cr9nS0/1GhIQALzzDmBnp14biJpo2PW/D3bHvHFd4GJnjYMXsjH8k21YxuQIombDYI5M2r64TFRqgFAvR/i7qVDXLSmp+R+TSIVh19Hdg/H784PQt5UXisoq8J91xzF+4W6u7UrUDBjMkUnbGZ0hL/u29m7+BxdlSDp0AIYPB7KUoV4iUybmzy2f1Aev3R4BBxsr7InNxG2fbMOnf52VS+oRUdNgMEcmbec5JZjr19qr+R/8vfeAvDwgJQVwc2v+xydSqcjwYwPC8Ofzg3BjOx8ZxH206Qxu/3Sbrt4jEekXgzkyWWLJoaiq+XI3tGrmYC4uDliwQNl/+22u9kBmJ8TTEUse7YVPxneFl5MtzqTkY8x/d+KFVUeQmlusdvOITAo/Ychk7Y5ReuXa+7nAx6WZEw9ECZKSEmDoUGWYlchM59Ld1TUIm6ffiHE9g+Vtqw8mYMiH/+KLf6NRXFahdhOJTAKDOTL5Ida+zT3EumMHsGqV+CQD5s1TLonMmIeTLd6/pwvWTe0vV2EpKK3A+7+fxi3zt+L34xeZ9Up0nRjMkcnaEZ3e/MGcKBD8/PPKvqgp17lz8z02kYETgdyaJ/th/r1d4OdqJ9d4nbLsAEb/dyd2nlP+vxJR4zGYI5MUm16AmPQCudxQsyY/JCYC6emAszPw1lvN97hERpQgcXe3YPz9wmA8PaSNzHo9dCEb9y/ag4e+2YOjCdlqN5HI6DCYI5P096lUedk7zBMu9jbN98AhIcDJk8CmTYC/f/M9LpGRcbKzxou3tseW/xuMCX1bwsbKAtvOpuPOz3Zg8tL9XOuVqBEYzJFJ+qcqmLupg2/zP7hY5eGGG5r/cYmMkK+LPd68q6PsqRvdLUhOMf3jRApu/3Q7Hl68Vxb+JqIrYzBHJie/pBx7YpXkh6Hhfs3zoHv3Ap98ApSXN8/jEZlgKZN593bFH9MGYVTXQFhaAFvOpGHsl7vkeq9in4kSRHWzrud2IqO1/WyaXPQ7zNtJbk1OBHCTJwOHDyurPrz5ZtM/JpGJaufngo/Hd8Pzw9rhyy0xWH0gAXtjM7E3di86+LvgkX6hGNUtCPY2Vmo3lchgsGeOTM6mqGYeYn3/fSWQ8/AAnnmmeR6TyMS19HLCnNGdsPX/hsgVJRxtrXDqYh5eXnMMN8z5C+/9fgpJ2UVqN5PIIDCYI5NSUl6BP6Muyv1bIpphiPXIEWDWLGVfrPjg49P0j0lkRvzd7OVar7tmDsV/RoYj2MMB2YVl+O+/5zDw/X8wZekB/HM6FRWVHIIl88VhVjIpW06nIa+4HP6u9ugV6tm0D1ZaCkyYAJSVAXffDTzwQNM+HpEZc3OwwaSBrfBo/zD8dTIF3+6Iw66YDPx+4qLcAtzsMbZHMMb2DJHz74jMCYM5Mim/HE2Wl7d3DpD1rJrU7NnA0aOAtzfw5Zdc6YGoGVhZWuCWSH+5nb6Yhx/3XcDaQ4lIzinGgr+j8ek/0ejf2hv39AjGsAg/WQKFyNTxVU4mo7C0HJujUuT+HV0Cm/bBUlOV7FVBBHK+KpRAITJz7f1d8MYdkXh5eAf8eSIFq/bHy1p126OVzd7GUma039E5EIPb+zBpgkwWgzkyGZtPpqKorAItPB3ROditaR9MBG87dwJr1wJjxjTtYxHRFdlZW8kvcGKLzyzEzwcSsP5IklwJZsPRZLm52Fvj1kh/jOjkj36tvRnYkUlhMEcmY+W+C/JS1KiyaI4hT7HuKtdeJTIoYr6cKGsy7ea2OJ6Yi/VHEvHLkWRczC2WQZ7YRGbsoLY+uCXST2a9uzvaqt1souvCYI5MQlx6AXZEZ8hpa+N6hTTdA737LnDTTVzhgcjAiS90nYLd5DZzeLhcSeLXo8nYFJUiAztt4oSYg9cr1AM3h/thYFsftPNzbp4vg0R6xGCOTMKKvUqv3I3tfBDs0USZbGJu3KuvAra2wKlTQFhY0zwOEemVSIbq08pLbm/eFYljiTkyqBObqF23OyZTbsBJ+LrYyaBuUDtv9G/jDW9nO7WbT3RVDObI6BWUlOPHffFy//7eLZrmQf78E3j6aWX/tdcYyBEZKdHr1jnYXW4v3NIeFzIKselkCraeSZPLAKbmlWD1wQS5CZGBrujbygu9wjxluSNPJw7JkuFhMEdGTwRyOUVlcumuJlmLdfduYPRooKICeOghpXeOiExCCy9HucKE2IrLKnDgfBa2nk3DtjPpiErOxYkkZft6e6w8vq2vswzs+lQFd4HuDmo/BSIGc2Tcyioq8c22GLn/+MBWcv6LXolluoYPBwoKgKFDgUWLWE+OyESJDFcxtCq2mcOBtLwS7DyXjj1ybdhMRKfm42zV9sMeZWqHKFbcRfT0hbjJSzFHz9XeRu2nQmaGwRwZ/Vy5pJxiOa9ldPcg/Z48JgYYNgzIzgb69wf+9z/AjvNniMyFj4sd7uoaJDchs6BUJlLsi82Ul8eTcmWx4uQcJZlCq5W3kyyPJIZyxTBtB39XuDkywKOmw2COjFZ+STk+2XxW7j83tI3+60a1bAkMGgTExwMbNgBOTvo9PxEZFTFfTtSqE5t2vu7xxBwcScjGkYQcHE3IRnxmEWLSC+S27nCS7r6iB6+Dvwva+7siPMBFBnitfJxgY8Ul0un6MZgjo/Xp32eRUVAq58qN12fig5gbZ2WlbD/8oKzB6uKiv/MTkUkQS4Vps2S1RO+dCOqOyuAuB6cu5iIhq6iqB68Y/5xO0x1rY2WBUC8nGdS18nGWPXrisrWPE2vfUaMwmCOjJL4Nf71NmZD8yohw/Xy7LSsDXnwRSEkBVqxQ5saJYVUOrRJRI3rvBrf3lZtWbnEZzlzMk2VQRHB3KlnZF6ML2jl4QMpl5xHBnfiyKgohh3g6IMTDUZZeEuVTmnztaTIqDObIKNdgfWHVEVRUanB75wC5mPZ1E3XjHn4Y2LtXuf7MM8o8OSKi6yQSInqGespNS6PRIDG7COfSChCTlo8YcZmuXIoePNHDJ7b957MuO5+ttSWC3R0QLII8DwcZ4AW628Pf1R7+bvbwc7XncmVmhsEcGRXxBvjKmmM4nZIHb2dbzLoz8vpOKIZQFyxQascVFwNubsCSJQzkiKjJ692JIExsoth57S+sSnBXIFe3ScgqlHPx4rMKZaBXWl6pm5dXH3dHG11wJy79dIGeHbyc7ODtIi5tGfSZCAZzZFSB3NzfTslJxaIEyef3d7/26uwaDbB+PfDSS8BZJYkCt9wCfPMNEBys13YTETWGo601Oga5ya228opKGdCJwC4hs0gJ9OScvCJczCmWS5UVl1Uiu7BMbmI490qc7azh5WwrAzsvZzv5JVkEe/I2Zzu4O9jIwNBNXDrYwsXemkO8BojBHBlNPbm3f43Cd7vOy+tvj+pYY9LxNZk1Swnk/PyUNVcffZQ15IjIoFlbWVbNoXMEWtf9pTe3qFwGdXKTQV6J3E+p2sTwbUZ+KUorKuW8PbGdzyhs0OOLt0gxbKwN8LSbuC6CPbEvAj5nsdlZK/t2l25zsrXWfz1QMoxg7vtdcfhqSwzS8ksQHuCK2XdGomuIe73HbziajI82nZYZQmFeTnh5eAcM6eBb48U8f9MZrNgXj9yiMvQM9cDbozrJiaRkfEShzplrjmJfnDJ3ZNYdEbivMdmrIjtVzIUTmamvvw74+CjvSG+8odz+8suAq2vTPQEiomYcvhU17cTW3r/+LHzxOZlXUi6Duoz8EqTLTQnyMgpK5KW4Tayuo90KSyvkoIb2+rVysrWSgd2EvqGYOqQNDEHm8uXI/GYxytPTYdehA/z/8yocOneu9/jc339H2icLUJaYCNuWLeH74gtwvvFGmG0w98uRJLz960m8fXdHdAtxx+IdsZjwzR78/eLgOofQDpzPxLM/HsL/3doeQ8N98b/DSXhi6X78+sxA3Qv3yy0x+HZnHD4a20V+e/nozzOYsHgPNj1/I+cHGInKSg0OxWdhxd54rDuUiPJKjXwDmHdvV12Np3rl5QFHjgCHDgHbtgGbNwNZVZOI27YFnn1W2R81StmIiMww6BM9bGJraEdHSXmFDOJEJ4kYws2pfqm7vVT29OUVKz1+citWroueQKGgtEJuJeXKdbXlbtyI1LnvwX/WLDh06YzM777HhUmPo/VvG2HtdfkIUOHBQ0h84UX4Tn8ezoMHI+fXXxH/9DMIW/0z7Nu1U+U5WGhEeK6iuz7fgS7Bbnjzro66D/G+c//Cw/1C8dTgyyP2qT8cRFFpBRY/0kt326jPdyAi0BXv3t1Jftvo/e5feHxgGJ4Y1FqXFt7z7c34cGwX3Nkl8KptSkhIQEhICOLj4xGsx/lToh15KRmwzM6S326kar9+sVvp4wuNoyM00MAiLxdW6enKIRpxy6XjxbUKX39onJ3l7fLYixdrnlN7rAao8PdHhasy/8IiPw/WCcoi0sp5NeKFoLtbuV8Ayj2UrCtLcex5pQSIPKZWm8v8A1HupUzetSzIh+05Zf6ZplL3BJX7iGP9AlDmVxWIFRXC4VRU1bGVyCuuQF5hKVLzSxCXUYCdhXY4Zq30ztqVl+IRuwxMHBAGPycbJVjLzb209e0LDBignPfoUaBr1xptlERiw4gRwNNPA/36XfsfkYiIrokIBkVgpw32RPkVfa9tm3ANn9+x4+6FQ8eO8H/9Nd1nUvTgIfB48EF4P/H45Y/x/PPQFBYh5KsvL53j3nth3yEcAbNnwex65kRGjqgX9tTgSwP/YmKlWBfv4PnsOu9z6HwWHhvYqsZtg9r54M+qpVRExo9YT0+cQ0t88xDDtgfPZ9UZzJWUlMhNK08EC01g2e7zSH37A8z6a2G9xzw8dja2tOoh98cd+RPv/76g3mMnj3oFf7RXApM7orbg018+qPfY50dOx9qON8n9m8/uwddr3qr32FdveQrLu42Q+/3iDuOHlf+p99i3hjyGb3rfLfe7JZ7C2mUv1nvsRwMewKf975P7HVJj8fu3z9R77H/73IPYWyfh5nBfTArSoOOg0fUei+eeuxTMBQQogVxQENCtG9Czp7IkV+/egLXqHdFERGbLztoKds5WMrGiqeXl5SFXfNnXPradndxq05SWovjEiRpBm4WlJZz69kWRWJu7DkWHj8DrkYdr3ObcfwDy/voLalH10y2rsFTWCqs9nOrjbCdr79RFzKsT2TY1j7eVY/vKz4t156h9TnHfusyZMwezZ89GU7O2tICFjTWKrC+1TaObB6rs2NiKCaLKULC1nS3ybR0vO1ZTdayd7CJX/oQ2DvbIsXfWnkZ3jKZqQr+do738FiSu2Ts5INPpUpZU9WPFno2zk1yTUOw7uTghzaVabSTtA1Sd18bNRS5TI6655Tvhopvopas2ubXarrW7G4I9HORdvcqdkeQZoPuZmA9raWkpJ8aKAsAjbozAxNdulv/5ceEC0Kaql9bSUlmNQcxxE5vocas+r8HbG0hNVebFERGRWYqIiKhx/Y033sAskfRWS3lWtpxXbVVrONXK2wslscqo1GX3SU+HlZf3ZceL29XCrgoAM2fOxPTp03XXExMTL3sh6IMc9h30OQCx1e3rGtduA1B/b1vNPrtbAbxZ77FzqzbFMOD7mfUeK17ul17yNwOLptV77MtVm2Io8NmUeo99rmrT+fCReo+tkY7QosWl8iFXIyJFBnJERGYtKioKQWKEpkpdvXKmRNVgzsPRVvbEaHvVtEQPWu2eNS1xu8i4qXl8qa53z8fZXncOX1dlX3s9IqDujMXa3a/Vu2aJiIjIuLi4uMC1AVUKrD3c5TrcFRkZNW6vSM+AtRjpqes+3t6oyEhv8PHNQQ8LWl47sSSJKIq4M/rSL0UkQOyMzkD3lnWXJunW0qPG8cL2s2no3tJD7ov168QQoTiHVl5xGQ7HZ+uOISIiIrKwtYV9ZCQKdu3W3SYSIAp274aDSKarg0PXLjWOFwp27qz3eJMP5oRJA8JkPbifDyQgOjUPr647LpcyGdsjRP58+srDeO/3U7rjJ/YPxZYzaVi0NUbWHxP15I4l5uDhvqG6dOuJ/cPw6d9nsSkqRS5qPH3VEbmEyS36WMOTiIiITIbXIw8j+6efkL12HUrOncPFWbNRWVQE99FKcl/SjBlI/Wie7njPhyYgf/t2ZCz+FiUxMUj79DMUnTgBjwfuN985c3d0CZTVqEVQJrJQwwNd8d3E3rJ3TRALEYsATatHS098Mr4bPvrzND744zRCvR2x8KGeNYojTrmxFYpKyzFzzTFZDqRXqAe+e7Q3a8wRERFRDa4jRqA8Mwtpny5ARVo67MLD0WLRQt2waVlSskhx1R3v2L0bgj78AGkff4K0+fNhG9oSIZ99qlqNOYOoM2eImqrOHBERETWdBDP9/FZ9mJWIiIiIrh2DOSIiIiIjxmCOiIiIyIgxmCMiIiIyYgzmiIiIiIwYgzkiIiIiI8ZgjoiIiMiIMZgjIiIiMmIM5oiIiIiMmOrLeRmiyspKeZmcnKx2U4iIiKiBkqs+t7Wf4+aCwVwdUlJS5GXv3r3VbgoRERFdw+d4ixYtYC64NmsdysvLcejQIfj5+cHS0nhGovPy8hAREYGoqCi4uLjAHPF3oODvgb8Dgb8D/g7M7XdQWVkpA7lu3brB2tp8+qsYzJmQ3NxcuLm5IScnB66urjBH/B0o+Hvg70Dg74C/A4G/A9NnPN1ORERERHQZBnNERERERozBnAmxs7PDG2+8IS/NFX8HCv4e+DsQ+Dvg70Dg78D0cc4cERERkRFjzxwRERGREWMwR0RERGTEGMwRERERGTEGc0RERERGjMGckQsNDYWFhUWNbe7cuVe8T3FxMaZOnQovLy84OztjzJgxuiXMjE1cXBwee+wxhIWFwcHBAa1bt5ZZW6WlpVe83+DBgy/7vU2ZMgXG4vPPP5d/e3t7e/Tp0wd79+694vE//fQTOnToII/v1KkTNm7cCGM2Z84c9OrVS1az9/X1xahRo3D69Okr3mfJkiWX/c3F78NYzZo167LnI/7G5vQ6qOv9T2zi/c1UXwNbt27FHXfcgcDAQNn+devW1fi5yGl8/fXXERAQIN8Tb775Zpw9e1bv7ylkWBjMmYA333xTLi6s3Z555pkrHv/888/jl19+kW/sW7ZsQVJSEkaPHg1jdOrUKbl8y1dffYUTJ05g/vz5+PLLL/HKK69c9b6PP/54jd/b+++/D2OwcuVKTJ8+XQatBw8eRJcuXXDrrbciNTW1zuN37tyJ++67Twa9Ypk6EfiI7fjx4zBW4nUrPrB3796NTZs2oaysDLfccgsKCgqueD9R/b763/z8+fMwZpGRkTWez/bt2+s91hRfB/v27avx/MVrQRg7dmy99zH214B4jYv/8yL4qot4H1uwYIF8H9yzZw+cnJzk+4P4Eq+v9xQyQKI0CRmvli1baubPn9/g47OzszU2Njaan376SXfbyZMnRXkaza5duzSm4P3339eEhYVd8Zgbb7xR89xzz2mMUe/evTVTp07VXa+oqNAEBgZq5syZU+fx48aN04wcObLGbX369NFMnjxZYypSU1Pla3jLli31HvPtt99q3NzcNKbijTfe0HTp0qXBx5vD60D8n27durWmsrLSLF4D4jW/du1a3XXxvP39/TUffPBBjfd8Ozs7zYoVK/T2nkKGhz1zJkAMq4ohU7Gw8AcffIDy8vJ6jz1w4IDsxRBd71pi2KVFixbYtWsXTIFYf9DT0/Oqxy1fvhze3t7o2LEjZs6cicLCQhg6MXws/obV/36Wlpbyen1/P3F79eMF8a3bVP7e2r+5cLW/e35+Plq2bImQkBDcddddsjfXmInhMzHc1qpVKzzwwAO4cOFCvcea+utA/N9YtmwZJk6cKIcfzeU1UF1sbCwuXrxY4+8s1mQVw6b1/Z2v5T2FDI+12g2g6/Pss8+ie/fu8kNMDKOIoEQMHcybN6/O48V/dFtbW7i7u9e43c/PT/7M2EVHR+PTTz/Fhx9+eMXj7r//fvmGLj4Ijx49ihkzZsg5V2vWrIEhS09PR0VFhfx7VSeuiyHnuoi/a13Hm8LfWxDD7NOmTUP//v1lYF6f9u3bY/HixejcubMM/sRrpF+/fvLDPDg4GMZGfECLOWDieYn/87Nnz8bAgQPlsKmYS2hurwMxdyw7OxuPPPKI2bwGatP+LRvzd76W9xQyPAzmDNDLL7+M995774rHnDx5UvaoiXkOWuINSgRqkydPlhPEjXnplsb8DrQSExNx2223yfkyYj7clTzxxBO6fTERXEwWHjp0KM6dOyeTKMh4iLlzIoC50nwxoW/fvnLTEh/i4eHhcr7lW2+9BWMzfPjwGv/3RXAnvqCsWrVKzoszN9988438nYgvaObyGiDSYjBngF544YUrfrsUxLBKXcQbuhhmFVme4ltobf7+/rJbXXyDrd47J7JZxc+M9XcgkjiGDBki35wXLlzY6McTvzdtz54hB3NiWNjKyuqy7OMr/f3E7Y053pg8/fTT+PXXX2WGX2N7VmxsbOTUBPE3NwXi/3O7du3qfT6m/DoQSQybN29udM+6qb0GtH9L8XcVX1C1xPWuXbvq7T2FDA/nzBkgHx8f2eN0pU30wNXl8OHDcr6DKNdQlx49esg3sL/++kt3mxheFHNtqn9jNabfgeiRE6VGxHP79ttv5fNvLPF7E6q/ARoi8ZzF86z+9xPDjOJ6fX8/cXv14wWR9WdIf+/GEnO/RSC3du1a/P3337I0TWOJoaVjx44Z/N+8ocRcMNGzXN/zMcXXgZb4fy/e80aOHGnWrwHx/0AEYNX/zrm5uTKrtb6/87W8p5ABUjsDg67dzp07ZSbr4cOHNefOndMsW7ZM4+Pjo5kwYYLumISEBE379u01e/bs0d02ZcoUTYsWLTR///23Zv/+/Zq+ffvKzRiJ59emTRvN0KFD5X5ycrJuq+93EB0drXnzzTflc4+NjdX873//07Rq1UozaNAgjTH48ccfZXbakiVLNFFRUZonnnhC4+7urrl48aL8+UMPPaR5+eWXdcfv2LFDY21trfnwww9l5rLIghQZzceOHdMYqyeffFJmJf777781/uaFhYW6Y2r/HmbPnq35448/5P+VAwcOaMaPH6+xt7fXnDhxQmOMXnjhBfn8xWtY/I1vvvlmjbe3t8zsNZfXgTbzUryfzZgx47KfmeJrIC8vT3Po0CG5iY/wefPmyf3z58/Ln8+dO1e+H4j3taNHj2ruuusumd1fVFSkO8dNN92k+fTTTxv8nkKGj8GcERNvRqK0gPhQE29I4eHhmnfffVdTXFysO0a80Yv/8P/884/uNvGf+qmnntJ4eHhoHB0dNXfffXeN4MeYiFID4vnVtdX3O7hw4YIM3Dw9PeUbmAgGX3rpJU1OTo7GWIg3YvEBZmtrK8sK7N69u0bZlYcffrjG8atWrdK0a9dOHh8ZGanZsGGDxpjV9zcXr4f6fg/Tpk3T/c78/Pw0I0aM0Bw8eFBjrO69915NQECAfD5BQUHyuviiYk6vA0EEZ+Jvf/r06ct+ZoqvAfE+VtdrX/s8RXmS1157TT4/8f4mvujW/t2IklYimG/oewoZPgvxj9q9g0RERER0bThnjoiIiMiIMZgjIiIiMmIM5oiIiIiMGIM5IiIiIiPGYI6IiIjIiDGYIyIiIjJiDOaIiIiIjBiDOSIiIiIjxmCOiIxaaGgoPv744yZ9jCVLlsDCwkJu06ZNa/D9Zs2apbtfU7eRiMwXgzkiogZwdXVFcnIy3nrrrQbf58UXX5T3CQ4ObtK2EZF5s1a7AURExkD0rvn7+zfqPs7OznKzsrJqsnYREbFnjohUsXDhQgQGBqKysrLG7XfddRcmTpwo98+dOyev+/n5yaCoV69e2Lx5c73njIuLk0HX4cOHdbdlZ2fL2/7991/dbcePH8fw4cPlOcW5H3roIaSnpzeq/adOnYKjoyN++OEH3W2rVq2Cg4MDoqKiGnUuIqLrwWCOiFQxduxYZGRk4J9//tHdlpmZid9//x0PPPCAvJ6fn48RI0bgr7/+wqFDh3DbbbfhjjvuwIULF675cUVwd9NNN6Fbt27Yv3+/fLyUlBSMGzeuUefp0KEDPvzwQzz11FOyPQkJCZgyZQree+89REREXHP7iIgai8OsRKQKDw8P2TsmeraGDh0qb/v555/h7e2NIUOGyOtdunSRm5aYr7Z27VqsX78eTz/99DU97meffSYDuXfffVd32+LFixESEoIzZ86gXbt2DT6XCOQ2btyIBx98ELa2trLn8JlnnrmmdhERXSv2zBGRakQP3OrVq1FSUiKvL1++HOPHj4elpaWuZ04kEYSHh8Pd3V0Oi548efK6euaOHDkiewO189nEJnrZtMO6jSUCwaNHj+LgwYO6rFcioubEnjkiUo0YMtVoNNiwYYPs1dq2bRvmz5+v+7kI5DZt2iSHM9u0aSPno91zzz0oLS2t83zaIFCcU6usrKzGMSJAFI8rhkNrCwgIuKbgsKCgQD62yFy9lnMQEV0PBnNEpBp7e3uMHj1a9shFR0ejffv26N69u+7nO3bswCOPPIK7775bF4iJJIf6+Pj4yEsRVImhVKF6MoQgzi96A0V9Omvr63sLFHP8RPteffVV+Ziip1H00Imgk4iouXCYlYhUJQIg0TMnhiu1iQ9abdu2xZo1a2RAJnrA7r///suyX6sTQdQNN9yAuXPnyuHYLVu24D//+U+NY6ZOnSqDsPvuuw/79u2TQ6t//PEHHn30UVRUVDSq7SLhQcy1E48xb948eX/Rm0hE1JwYzBGRqkRmqaenJ06fPi2DtepEgCQSJfr16yeHRm+99dYaPXd1EUFheXk5evToIVdrePvtt2v8XJRDET1+IvC65ZZb0KlTJ3mcmJOnHaZtiO+//14mPyxdulT28Dk5OWHZsmVYtGgRfvvtt0b+FoiIrp2FpvrkEiIiuoxIbBABnyhrci3EkK64f2OWAiMiaij2zBERNUBOTo7MfJ0xY0aD7yPKn4j7XE/2LRHR1bBnjojoKvLy8mRhYUEMx4paeA0h5uaJTZuc4ebm1qTtJCLzxGCOiIiIyIhxmJWIiIjIiDGYIyIiIjJiDOaIiIiIjBiDOSIiIiIjxmCOiIiIyIgxmCMiIiIyYgzmiIiIiIwYgzkiIiIiGK//B1we/JseAqLpAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "stochast = Stochast()\n", "stochast.distribution = DistributionType.log_normal\n", "stochast.fit(data)\n", "\n", "stochast.print()\n", "stochast.plot()" ] }, { "cell_type": "markdown", "id": "bc9a427d", "metadata": {}, "source": [ "The result of the goodness-of-fit test is:" ] }, { "cell_type": "code", "execution_count": 24, "id": "e51ee856", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "kolmogorov smirnov test = 0.2550238105742991\n" ] } ], "source": [ "get_ks_test(data)" ] } ], "metadata": { "kernelspec": { "display_name": "base", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.10" } }, "nbformat": 4, "nbformat_minor": 5 }